Mathematica Pannonica

18/2 (2007), 189-200

DISTRIBUTION OF q-ADDITIVE FUNCTIONS ON SOME SUBSETS OF INTEGERS

Imre Kátai ${ }^{(1)}$

Eötvös Loránd University, Department of Computer Algebra, and Research Group of Applied Number Theory of the Hungarian Academy of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

M. V. Subbarao

University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Dedicated to Professor Maurer on the occasion of his $80^{\text {th }}$ birthday
 Received: September 2007

MSC 2000: 11 A 25, $11 \mathrm{~L} 20,11 \mathrm{~N} 64$
Keywords: q-additive functions, q-multiplicative functions, sets on which the sum of digits function is fixed.

Abstract: Distribution of q-additive functions on the subsets of integers characterized by the values of sum of digits function is investigated.

1. Introduction

Let $q \geq 2$ be an integer, $A_{q}:=\{0,1, \ldots, q-1\}, n=\sum_{j=0}^{\infty} \varepsilon_{j}(n) q^{j}$, $\varepsilon_{j}(n) \in A_{q}(j=0,1, \ldots)$ be the q-ary expansion of n. Let $\mathbb{N}_{0}=\mathbb{N} \cup$ $\cup\{0\}=$ set of nonnegative integers. Let $\mathcal{A}_{q}, \mathcal{M}_{q}$ be the q-additive, q multiplicative functions, respectively. We say that $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ belongs

[^0]to \mathcal{A}_{q} if $f(0)=0$, and $f(n)=\sum_{j=0}^{\infty} f\left(\varepsilon_{j}(n) q^{j}\right)(n \in \mathbb{N})$, furthermore g :
$: \mathbb{N}_{0} \rightarrow \mathbb{C}$ belongs to \mathcal{M}_{q} if $g(0)=1$, and $g(n)=\prod_{j=0}^{\infty} g\left(\varepsilon_{j}(n) q^{j}\right)(n \in \mathbb{N})$.
We say that $g \in \overline{\mathcal{M}}_{q}$, if $g \in \mathcal{M}_{q}$ and $|g(n)|=1(n=1,2,3, \ldots)$.
Let $\alpha(n)=\sum_{j=0}^{\infty} \varepsilon_{j}(n), \beta_{l}(n)=\#\left\{j \mid \varepsilon_{j}(n)=l\right\}(l=1,2, \ldots, q-1)$.
Let N be a fixed integer. For some positive integers $r_{1}, r_{2}, \ldots, r_{q-1}$ let $\underline{r}=\left(r_{1}, r_{2}, \ldots, r_{q-1}\right)$,
$$
\mathcal{B}=\mathcal{B}(N \mid \underline{r})=\left\{n<q^{N} \mid \beta_{l}(n)=r_{l}, l=1, \ldots, q-1\right\} .
$$

Let $r_{0}:=N-\left(r_{1}+r_{2}+\ldots+r_{q-1}\right)$. It is clear that \mathcal{B} is empty if $r_{0}<0$, and that

$$
\begin{equation*}
B(N \mid \underline{r}):=\#(\mathcal{B}(N \mid \underline{r}))=\frac{N!}{r_{0}!r_{1}!\ldots r_{q-1}!}, \tag{1.1}
\end{equation*}
$$

if $r_{0} \geq 0$.
Let $\delta_{j}\left(=\delta_{j, N}\right)=\frac{r_{j}}{N}(j=0,1, \ldots, q-1)$. Let $0<\varepsilon<\frac{1}{2 q}$ be a fixed number, and assume that

$$
\begin{equation*}
\delta_{j} \geq \varepsilon(j=0, \ldots, q-1) \tag{1.2}
\end{equation*}
$$

Let $\underline{\delta}^{(N)}=\left(\delta_{1}, \ldots, \delta_{q-1}\right)$. Let $f \in \mathcal{A}_{q}$,

$$
\begin{equation*}
F_{\mathcal{B}(N \mid \underline{r})}(y):=\frac{1}{B(N \mid \underline{r})} \#\{n \in \mathcal{B}(N \mid \underline{r}), f(n)<y\} \tag{1.3}
\end{equation*}
$$

Let furthermore

$$
\begin{equation*}
Q_{\mathcal{B}(N \mid \underline{r})}(D):=\sup _{y \in \mathbb{R}}\left(F_{\mathcal{B}(N \mid \underline{r})}(y+D)-F_{\mathcal{B}(N \mid \underline{r})}(y)\right) \tag{1.4}
\end{equation*}
$$

A direct consequence of the 3 series theorem of Kolmogorov is that $f \in \mathcal{A}_{q}$ has a limit distribution, i.e. that

$$
\lim _{N \rightarrow \infty} \frac{1}{q^{N}} \#\left\{n<q^{N} \mid f(n)<y\right\}=F(y)(\text { almost all } y),
$$

F is a distribution function, if and only if

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b=1}^{q-1} f\left(b q^{j}\right) \quad \text { is convergent } \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum f^{2}\left(b q^{j}\right) \quad \text { is convergent. } \tag{1.6}
\end{equation*}
$$

First we shall give necessary and sufficient conditions for the existence of such distribution function $F_{\xi}(y)$ depending on the parameter $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{q-1}\right)$, where $\xi_{i} \geq \varepsilon(i=1, \ldots, q-1), \xi_{0}:=1-\left(\xi_{1}+\right.$ $\left.+\ldots+\xi_{q-1}\right) \geq \varepsilon$, for which

$$
\begin{equation*}
\left.\lim _{\substack{N \rightarrow \infty \\ \delta_{j} \rightarrow \xi_{j}}} F_{\mathcal{B}(N, r)}(y)=F_{\underline{\xi}}(y) \quad \text { (almost all } y\right) \tag{1.7}
\end{equation*}
$$

is satisfied.
Theorem 1. Let $f \in \mathcal{A}_{q}$. If there exists some $\xi_{1}, \ldots, \xi_{q-1}$ satisfying $\xi_{i} \geq \varepsilon(i=0,1, \ldots, q-1)$, for which (1.7) holds, then (1.5), (1.6) are satisfied. If (1.5), (1.6) hold, then (1.7) holds true for all choices of ξ_{i} satisfying $\xi_{i} \geq \varepsilon(i=0, \ldots, q-1) . \quad F_{\underline{\xi}}(y):=P\left(\Theta_{\underline{\xi}}<y\right)$, where $\eta_{0}, \eta_{1} \ldots$ are independent random variables, $P\left(\eta_{j}=f\left(a q^{j}\right)\right)=\xi_{a}(a=$ $=0,1, \ldots, q-1), \Theta_{\underline{\xi}}=\sum_{j=0}^{\infty} \eta_{j}$.
Theorem 2. Let $g \in \overline{\mathcal{M}}_{q}$, and for $\xi_{i} \geq \varepsilon(i=0, \ldots, q-1)$ let

$$
\begin{equation*}
M_{N, \underline{\xi}}(g):=\prod_{j=0}^{N-1}\left(\xi_{0}+\xi_{1} g\left(1 \cdot q^{j}\right)+\ldots+\xi_{q-1} g\left((q-1) q^{j}\right)\right) \tag{1.8}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{a=1}^{q-1}\left(g\left(a q^{j}\right)-1\right) \quad \text { is convergent } . \tag{1.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sup \left|\frac{1}{B(N, \underline{r})} \sum_{n \in \mathcal{B}(N, \underline{r})} g(n)-M_{N, \delta^{(N)}}(g)\right| \rightarrow 0 \quad(N \rightarrow \infty) \tag{1.2}
\end{equation*}
$$

Consequently, if $r_{j}=r_{j}^{(N)}(j=1, \ldots, q-1)$ are so chosen that $r_{j}^{(N)} / N \rightarrow \xi_{j}(j=1, \ldots, q-1)$ then

$$
\begin{equation*}
\frac{1}{B\left(N, r^{(N)}\right)} \sum_{n \in \mathcal{B}\left(N, \underline{r}^{(N)}\right)} g(n)=M_{\infty, \underline{\xi}}(g), \tag{1.10}
\end{equation*}
$$

where $M_{\infty, \underline{\xi}}$ is the limit of $M_{N, \underline{\xi}}$ (defined by (1.8)) for $N \rightarrow \infty$.

Theorem 3. Let $f \in \mathcal{A}_{q}, f\left(b q^{j}\right)$ be bounded for $j \in \mathbb{N}_{0}, b \in A_{q}$. Let

$$
\begin{equation*}
\tau_{b}=\tau_{b}^{(N)}:=\frac{1}{N} \sum_{j=0}^{N-1} f\left(b q^{j}\right) \tag{1.11}
\end{equation*}
$$

$\tilde{f}\left(b q^{j}\right)=f\left(b q^{j}\right)-\tau_{b}, b \in A_{q}, j=0,1, \ldots, N-1, \tilde{f}$ be extended to \mathbb{N}_{0} as a q-additive function.

Let r_{1}, \ldots, r_{q-1} be satisfying $(1.2)_{\varepsilon}$,

$$
\sigma_{N}^{2}\left(\underline{\delta}^{N}\right):=\frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N \mid \underline{r})} \tilde{f}^{2}(n)
$$

We have

$$
\sigma_{N}^{2}\left(\underline{\delta}^{N}\right)=\frac{N}{N-1} \sum_{l=0}^{N-1}\left(\sum_{b \in A_{q}} \frac{r_{b}}{N}\left(\tilde{f}\left(b q^{l}\right)-m_{l}\right)^{2}\right), m_{l}=\sum_{b \in A_{q}} \frac{r_{l}}{N} \tilde{f}\left(b q^{l}\right)
$$

Assume that

$$
\sigma_{N}^{2}\left(\frac{1}{q}, \ldots, \frac{1}{q}\right) \rightarrow \infty \quad(N \rightarrow \infty)
$$

Let $h=h_{N} \in \mathcal{A}_{q}, h(n):=\frac{\tilde{f}(n)}{\sigma_{N}\left(\underline{\delta}^{N}\right)}$. Then

$$
\max _{(1.2)_{\varepsilon}} \max _{y \in \mathbb{R}}\left|\frac{1}{B(N \mid \underline{r})} \#\{n \in \mathcal{B}(N \mid \underline{r}), \quad h(n)<y\}-\Phi(y)\right| \rightarrow 0
$$

as $N \rightarrow \infty$.

2. Lemmata

Lemma 1. Let $f \in \mathcal{A}_{q}, D>0$ be fixed. If $f \in \mathcal{A}_{q}, \limsup _{b q^{j} \rightarrow \infty}\left|f\left(b q^{j}\right)\right|=$ $=\infty$, then

$$
\max _{(1.2)_{\varepsilon}} \frac{Q_{B(N \mid \underline{r})}(D)}{B(N \mid \underline{r})} \rightarrow 0 \quad(N \rightarrow \infty)
$$

Proof. Let $b^{*} \in A_{q} \backslash\{0\}$ be such coefficient for which $\limsup _{j \rightarrow \infty}\left|f\left(b^{*} q^{j}\right)\right|=$ $=\infty$. By changing the sign of f, if needed, we may assume that $\limsup f\left(b^{*} q^{j}\right)=\infty$.
$j \rightarrow \infty$
Let $l_{1}<l_{2}<\ldots$ be such a sequence of integers for which $2 D \leq$ $\leq f\left(b^{*} q^{l_{1}}\right), f\left(b^{*} q^{l_{h+1}}\right) \geq 2 f\left(b^{*} q^{l_{h}}\right)$.

Let N be a large integer, T be defined such that $l_{T} \leq N-1<$ $<l_{T+1}$. Then $T=T_{N} \rightarrow \infty$. We may assume that $T_{N} \mid \log N \rightarrow 0$ (say). Let

$$
U=\left\{l_{1}, l_{2}, \ldots, l_{T}\right\}, \quad V=\{0,1, \ldots, N-1\} \backslash U
$$

Consider all those $n \in \mathcal{B}(N, \underline{r})$ for which $f(n) \in[y, y+D]$. Let $s_{0}, s_{1}, \ldots, s_{q-1}$ be nonnegative integers such that $s_{0}+s_{1}+\ldots+s_{q-1}=$ $=T$. Let

$$
\begin{aligned}
\mathcal{E}_{s_{0}, s_{1}, \ldots, s_{q-1}}^{(U)} & =\left\{m \mid m=\sum_{j=1}^{T} \varepsilon_{l_{j}}(m) q^{l_{j}}, \beta_{b}(m)=s_{b}, b \in \mathbb{A}_{q}\right\} \\
\mathcal{F}_{s_{0}, \ldots, s_{q-1}}^{(U)} & =\left\{\nu \mid \nu=\sum_{r \in V} \varepsilon_{r}(\nu) q^{r}, \beta_{b}(\nu)=r_{b}-s_{b}, b \in A_{q}\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\# \mathcal{F}_{s_{0}, \ldots, s_{q-1}}^{(U)} & =B(N-T \mid \underline{r}-\underline{s})=\frac{(N-T)!}{\left(r_{0}-s_{0}\right)!\left(r_{1}-s_{1}\right)!\ldots\left(r_{q-1}-s_{q-1}\right)!} \\
\# \mathcal{E}_{s_{0}, \ldots, s_{q-1}}^{(U)} & =B(T \mid \underline{s})=\frac{T!}{s_{0}!s_{1}!\ldots s_{q-1}!}
\end{aligned}
$$

It is clear that every $n \in \mathcal{B}(N \mid \underline{r})$ can be written uniquely as $n=m+\nu$, where $m \in \mathcal{E}_{s_{0}, \ldots, s_{q-1}}^{(U)}$ and $\nu \in \mathcal{F}_{s_{0}, \ldots, s_{q-1}}^{(U)}$. Let us fix a ν with

$$
\nu=\sum_{r \in V} \varepsilon_{r}(\nu) q^{r}, \beta_{b}(\nu)=r_{b}-s_{b}, \quad b \in A_{q} .
$$

Let $U_{s_{0}, s_{b^{*}}}$ be an arbitrary subset of U having exactly $s_{0}+s_{b^{*}}$ elements,

$$
\begin{gathered}
U_{s_{0}, s_{b^{*}}}=\left\{j_{1}<j_{2}<\ldots<j_{s_{0}+s_{b^{*}}}\right\} \\
H_{s_{0}, s_{b^{*}}}=U \backslash U_{s_{0}, s_{b^{*}}}, \quad H_{s_{0}, s_{b^{*}}}=\left\{k_{1}<k_{2}<\ldots<k_{T-\left(s_{0}+s_{b^{*}}\right)}\right\} .
\end{gathered}
$$

We shall write every $m \in \mathcal{E}_{s_{0}, \ldots, s_{q-1}}^{(U)}$ as $\kappa+\rho$, where $\kappa=\sum_{h=1}^{s_{b^{*}}} b^{*} q^{r_{h}}$, $r_{1}<r_{2}<\ldots<r_{s_{b}}^{*}$ is an arbitrary sequence of the elements of $U_{s_{0}, s_{b}^{*}}$, and $\rho=\sum \varepsilon_{p}(\rho) q^{p}$, where p runs over all elements of $H_{s_{0}, s_{b^{*}}}, \varepsilon_{p}(\rho) \in$ $\in A_{q} \backslash\left\{0, b^{*}\right\}$, and $\beta_{l}(\rho)=s_{l}$ if $l \in A_{q} \backslash\left\{0, b^{*}\right\}$.

Let $H_{s_{0}, s_{b^{*}}}$ be fixed, and $r_{1}^{(i)}<r_{2}^{(i)}<\ldots<r_{s_{b^{*}}}^{(i)}(i=1,2)$ be two subsequences and $\kappa^{(1)}, \kappa^{(2)}$ be the corresponding integers: $\kappa^{(j)}=$ $=\sum_{h=1}^{s_{b^{*}}} b^{*} q^{r_{h}^{(j)}}(j=1,2)$.

From the definition of the sequence U we obtain that $\mid f\left(\kappa^{(1)}\right)-$ $-f\left(\kappa^{(2)}\right) \mid>D$.

Assume that $f(n) \in[y, y+D]$, in $\in \mathcal{B}(N \mid \underline{r})$. Then n can be written in the form

$$
n=\kappa+\rho+\nu
$$

Let ν be fixed, $\beta_{l}(\nu)=r_{\nu}-s_{\nu}, s_{0}, \ldots, s_{q-1}$ are determined by ν. We can form exactly $\binom{T}{s_{0}+s_{b^{*}}}$ different sets $U_{s_{0}}, s_{b^{*}}$.

Assume that $U_{s_{0}, s_{b^{*}}}$ is fixed. Then the number of ρ is

$$
\frac{\left(T-\left(s_{0}+s_{b^{*}}\right)\right)!}{\prod_{j \neq 0, b^{*}} s_{j}!}
$$

Let us assume now that $\nu, \rho, s_{0}, s_{b}^{*}$ and $U_{s_{0}, s_{b}^{*}}$ are fixed. Then no more than one κ is appropriate. Thus we have

$$
\begin{align*}
& Q_{\mathcal{B}(N, r)}(d) \leq \\
& \leq \sum_{s_{0}, \ldots, s_{q-1}} \frac{(N-T)!}{\left(r_{0}-s_{0}\right)!\ldots\left(r_{q-1}-s_{q-1}\right)!}\binom{T}{s_{0}+s_{b^{*}}} \frac{\left(T-\left(s_{0}+s_{b^{*}}\right)\right)!}{\prod_{j \neq 0, b^{*}} s_{j}!}, \\
& \quad \frac{Q_{\mathcal{B}(N, r)}(D)}{B(N \mid r)} \leq \\
& \quad \leq 2.1) \quad \sum_{s_{0}+\cdots+s_{q-1}=T} \frac{T!}{s_{0}!\ldots s_{q-1}!}\left(\frac{r_{0}}{N}\right)^{s_{0}} \ldots\left(\frac{r_{q-1}}{N}\right)^{s_{q-1}} \cdot \frac{s_{0}!s_{b^{*}}!}{\left(s_{0}+s_{b}^{*}\right)!} \tag{2.1}
\end{align*}
$$

We subdivide the sum on the right hand side of (2.1) as $\sum_{1}+\sum_{2}+$ $+\sum_{3}+\sum_{4}$, where in $\sum_{1} s_{0}=0$, in $\sum_{2} s_{b}^{*}=0 ;$ in $\sum_{3} s_{0}+s_{b}^{*} \leq H$ and $s_{0}, s_{b^{*}} \geq 1$; and in $\sum_{4}: s_{0}+s_{b}^{*}>H, s_{0} s_{b^{*}} \neq 0$.

One can see easily that $\sum_{1}, \sum_{2}, \sum_{3}=o_{N}(1)$.
Since $\frac{s_{0}!s_{b} *!}{\left(s_{0}+s_{b}\right)!}=\frac{1}{\binom{s_{0}+s_{b}}{s_{0}}} \leq \frac{1}{s_{0}+s_{b}} \leq \frac{1}{H}$, we obtain that $\sum_{4} \leq 2 / H$. Since H is an arbitrary large fixed number, therefore Lemma 1 is true.
Lemma 2. Let $f \in \mathcal{A}_{q}, \tilde{f}$ be defined as in Th. 3.
Let $m_{l}:=\sum_{b \in A_{q}} \frac{r_{b}}{N} \tilde{f}\left(b q^{l}\right)$. Then

$$
\begin{equation*}
\frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N \mid r)} \tilde{f}^{2}(n)=\frac{N}{N-1} \sum_{l=0}^{N-1} \sum_{b} \frac{r_{b}}{N}\left(\tilde{f}\left(b q^{l}\right)-m_{l}\right)^{2} . \tag{2.2}
\end{equation*}
$$

Proof. Since

$$
\frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N \mid \underline{r})} \tilde{f}(n)=\sum_{j=0}^{N-1} \sum_{b \in A_{q}} \tilde{f}\left(b q^{j}\right) \frac{r_{b}}{N}=0
$$

we have

$$
\begin{aligned}
& \frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N \mid \underline{r})} \tilde{f}^{2}(n)=\sum_{b_{1} \neq b_{2}} \frac{r_{b_{1}}}{N} \frac{r_{b_{2}}}{(N-1)} \sum_{l_{1} \neq l_{2}} \tilde{f}\left(b_{1} q^{l_{1}}\right) \tilde{f}\left(b_{2} q^{l_{2}}\right)+ \\
& \quad+\sum_{b \in A_{q}} \frac{\left(r_{b}-1\right) r_{b}}{(N-1) N} \sum_{l_{1} \neq l_{2}} \tilde{f}\left(b q^{l_{1}}\right) \tilde{f}\left(b q^{l_{2}}\right)+\sum_{b} \frac{r_{b}}{N} \sum_{l=0}^{N-1} \tilde{f}^{2}\left(b q^{l}\right) . \\
& \text { Since } \sum_{j=0}^{N-1} \tilde{f}\left(b q^{j}\right)=0\left(b \in A_{q}\right), \text { therefore } \\
& \quad \sum=-\sum_{b_{1} \neq b_{2}} \frac{r_{b_{1}}}{N} \cdot \frac{r_{b_{2}}}{(N-1)} \sum_{l=0}^{N-1} \tilde{f}\left(b_{1} q^{l}\right) \tilde{f}\left(b_{2} q^{l}\right)+ \\
& \quad+\sum_{b} \frac{r_{b}}{N}\left(1-\frac{r_{b-1}}{N-1}\right) \sum_{l} \tilde{f}^{2}\left(b q^{l}\right)
\end{aligned}
$$

whence we obtain that

$$
\sum=\frac{N}{N-1} \sum_{l=0}^{N-1} \sum_{b} \frac{r_{b}}{N}\left(\tilde{f}\left(b q^{l}\right)-m_{l}\right)^{2}
$$

thus Lemma 2 is true.

3. Proof of Theorem 3

We shall use the Frechet-Shohat theorem. (See [1].)
Let

$$
\begin{equation*}
m_{l}:=\sum_{b \in A_{q}} \frac{r_{b}}{N} \tilde{f}\left(b q^{l}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{l}(b)=\tilde{f}\left(b q^{l}\right)-m_{l} \quad\left(b \in A_{q}\right) \tag{3.2}
\end{equation*}
$$

For $n<q^{N}$ let

$$
\begin{equation*}
g(n):=\sum_{j=0}^{N-1} g_{j}\left(\varepsilon_{j}(n)\right) \tag{3.3}
\end{equation*}
$$

We have

$$
\sum_{l=0}^{N-1} m_{l}=\sum_{b \in A_{q}} \frac{r_{b}}{N} \sum_{l}\left(f\left(b q^{l}\right)-\tau_{b}\right)=0
$$

Let

$$
\begin{equation*}
K(n):=\frac{g(n)}{\sigma_{N}} \quad\left(n=0,1, \ldots, q^{N}-1\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{h}(N):=\frac{1}{B(N \mid \underline{r})} \sum_{n<q^{N}} K^{h}(n) . \tag{3.5}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\max _{(1.2)_{\varepsilon}}\left|S_{h}(N)-\mu_{h}\right| \rightarrow 0 \quad(N \rightarrow \infty) \tag{3.6}
\end{equation*}
$$

where

$$
\mu_{h}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{h} e^{-u^{2} / 2} d u
$$

We have

$$
\begin{aligned}
\sum_{n \in \mathcal{B}(N \mid r)} K^{h}(n)= & \sum_{s=1}^{h} \sum_{a_{1}+\ldots+a_{s}=h} d\left(a_{1}, \ldots, a_{s}\right) \sum_{b_{1}, \ldots, b_{s} \in A_{q}} \\
& \sum_{l_{1}, \ldots, l_{s}} K^{a_{1}}\left(b_{1} q^{l_{1}}\right) \ldots K^{a_{s}}\left(b_{s} q^{l_{s}}\right) E_{N}(s, \underline{b}, \underline{a}, \underline{l}),
\end{aligned}
$$

where a_{1}, \ldots, a_{s} are positive integers, $d\left(a_{1}, \ldots, a_{s}\right)$ the coefficient coming from the polynomial theorem, b_{1}, \ldots, b_{s} run over the possible values of A_{q}, independently, l_{1}, \ldots, l_{s} run over $\{0,1, \ldots, N-1\}$ such that $l_{i} \neq l_{j}$ if $i \neq j$, and

$$
E_{N}(s, \underline{b}, \underline{a}, \underline{l})=\frac{(N-s)!}{\prod_{b=0}^{q-1}\left(r_{b}-e_{b}\right)!}
$$

where $e_{b}:=\#\left\{b\right.$ among $\left.b_{1}, \ldots, b_{s}\right\}$.
We have

$$
\begin{align*}
\psi_{a}(s, \underline{b}) & =\frac{E(s, \underline{b}, \underline{a}, \underline{l})}{B(N \mid \underline{r})}=\prod_{b=0}^{q-1} \prod_{j=0}^{e_{b}-1}\left(r_{b}-j\right) \cdot \prod_{j=0}^{s-1} \frac{1}{(N-j)}= \tag{3.7}\\
& =\prod_{b=0}^{q-1}\left(\frac{r_{b}}{N}\right)^{e_{b}} \cdot \prod_{j=0}^{s-1} \frac{1}{(1-j / N)} \cdot \prod_{b=0}^{q-1} \prod_{j=0}^{e_{b}-1}\left(1-j / r_{b}\right) .
\end{align*}
$$

Thus

$$
\begin{aligned}
\frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N \mid \underline{r})} K^{h}(n) & =\sum_{s=1}^{h} \sum_{a_{1}, \ldots, a_{s}=h} d\left(a_{1}, \ldots, a_{s}\right) H\left(a_{1}, \ldots, a_{s}\right), \\
H\left(a_{1}, \ldots, a_{s}\right) & =\sum_{b_{1}, \ldots, b_{s}} T\left(a_{1}, \ldots, a_{s} \mid b_{1}, \ldots, b_{s}\right),
\end{aligned}
$$

$$
\begin{equation*}
T\left(a_{1}, \ldots, a_{s} \mid b_{1}, \ldots, b_{s}\right)=\sum_{l_{1}, \ldots, l_{s}} K^{a_{1}}\left(b_{1} q^{l_{1}}\right) \ldots K^{a_{s}}\left(b_{s} q^{l_{s}}\right) \psi_{a}(s, b) \tag{3.8}
\end{equation*}
$$

Let $a_{j}=1$ for some $j \in\{1, \ldots, s\}$. We have

$$
\begin{gathered}
\sum_{l \neq\left\{l_{1}, \ldots, l_{j-1}, l_{j+1}, \ldots, l_{s}\right\}} K\left(b_{j} q^{l}\right)= \\
=-K\left(b_{j} q^{l_{1}}\right)-\ldots-K\left(b_{j} q^{l_{j-1}}\right)-K\left(b_{j} q^{l_{j+1}}\right)-\ldots-K\left(b_{j} q^{l_{s}}\right) .
\end{gathered}
$$

Iterating this procedure we can rewrite (3.8) as no more than $O(h)$ sums of type

$$
\begin{equation*}
\psi_{a}(s, \underline{b}) \cdot \sum_{t_{1}, t_{2}, \ldots, t_{p}} \prod_{j=1}^{p}\left(\prod_{u=1}^{m_{j}} K^{q_{u, j}}\left(c_{u, j} q^{t_{j}}\right)\right)=: Q \tag{3.9}
\end{equation*}
$$

where $c_{u, j} \in A_{q}, \sum_{u=1}^{m_{j}} q_{u, j} \geq 2$, and $\#\left\{c_{u, j}=b \mid u, j\right\}=e_{b}$ and the summation is over those $t_{j} \in\{0, \ldots, N-1\}(j=1, \ldots, p)$ for which $t_{i} \neq t_{j}(i \neq j)$.

We shall prove that $Q=o_{N}(1)$ if $\max _{j} \sum_{u=1}^{m_{j}} q_{u, j} \geq 3$.
Indeed

$$
\left|K\left(b_{1} q^{t}\right) K\left(b_{2} q^{t}\right)\right| \leq K^{2}\left(b_{1} q^{t}\right)+K^{2}\left(b_{2} q^{t}\right),
$$

and in general

$$
\left|K\left(b_{1} q^{t}\right) \ldots K\left(b_{v} q^{t}\right)\right| \leq\left(\left|K^{v}\left(b_{1} q^{t}\right)\right|+\ldots+\left|K^{v}\left(b_{v} q^{t}\right)\right|\right) .
$$

Furthermore $\max _{b, l}\left|K\left(b q^{l}\right)\right| \leq \frac{c}{\sigma_{N}} \rightarrow 0(N \rightarrow \infty)$, and hence our asser-
tion directly follows.
It remains to consider the case when $\sum_{u=1}^{m_{j}} q_{u, j}=2$ holds for every $j=1,2, \ldots, p$.

Let Q be such a sum in which there is an l for which $q_{1, l}=q_{2, l}=1$. Observe that

$$
\begin{equation*}
\psi_{a}(s, b)=\prod_{b=0}^{q-1}\left(\frac{r_{b}}{N}\right)^{e_{b}}\left(1+O\left(\frac{1}{N}\right)\right) \tag{3.10}
\end{equation*}
$$

Then

$$
\begin{align*}
& Q\left(\left.\begin{array}{c|c}
c_{l} & .) \\
d_{l}
\end{array} \right\rvert\, \cdot\right)= \\
& =\psi_{a}(s, b) \sum_{t_{l}} K\left(c_{l} q^{t_{l}}\right) K\left(d_{l} q^{t_{l}}\right) \sum_{\substack{t_{1}, \ldots, t_{l}-1, t_{l+1}, \ldots, t_{p}}}^{*} \prod_{j \neq l} \prod_{u=1}^{m_{j}} K^{q_{u, j}}\left(c_{u, j} q^{t_{j}}\right) \tag{3.11}
\end{align*}
$$

and $*$ means that $t_{\nu} \neq t_{l}$ if $\nu \neq l$.
$Q_{0}\left(\begin{array}{c|c}c_{l} & . \\ d_{l} & .)\end{array}\right)=$
$=\sum\left(\frac{r_{c_{l}}}{N} K\left(c_{l} q^{t_{l}}\right)\right) \frac{r_{d_{l}}}{N} K\left(d_{1} q^{t_{l}}\right) \sum^{*} \prod_{j \neq l} \prod_{u=1}^{m_{j}}\left(\frac{r_{c_{u, j}}}{N} K^{q_{u, j}}\left(c_{u, j} q^{t_{j}}\right)\right)$.
Then

$$
\begin{aligned}
Q\left(\left.\begin{array}{c}
c_{l} \\
d_{l}
\end{array} \right\rvert\, \cdot\right)= & Q_{0}\left(\left.\begin{array}{c}
c_{l} \\
d_{l}
\end{array} \right\rvert\, \cdot\right)+ \\
& +O\left(\frac{1}{N} \sum_{t_{l}}\left|\frac{r_{c_{l}}}{N} K\left(c_{l} q^{t_{l}}\right)\right|\left|\frac{r_{d_{l}}}{N} K\left(d_{l} q^{t_{l}}\right)\right|\right. \\
& \left.\cdot \sum^{*} \prod_{j \neq l} \prod_{u=1}^{m_{j}}\left|\frac{r_{c_{u, j}}}{N} K\left(c_{u, j} q^{t_{j}}\right)^{q_{u, j}}\right|\right)
\end{aligned}
$$

The error term is clearly $o_{N}(1)$. Furthermore Q_{0} does not depend on the numbers e_{j}. In the definition of $H\left(a_{1}, \ldots, a_{s}\right)$ we have to sum $T\left(a_{1}, \ldots, a_{s} \mid b_{1}, \ldots, b_{s}\right)$ over all possible values of $b_{1}, \ldots, b_{s} \in A_{q}$. Since

$$
\left(\sum_{c_{l}=0}^{q-1} \frac{r_{c_{l}}}{N} K\left(c_{l} q^{t_{l}}\right)\right)\left(\sum_{d_{l}=0}^{q-1} \frac{r_{d_{l}}}{N} K\left(d_{l} q^{t_{l}}\right)\right)=0
$$

the effect of these summands can be ignored.
Hence we obtain that (3.6) holds with $\mu_{h}=0$ if $h=$ odd, and for $h=2 s$

$$
\begin{align*}
& \frac{1}{B(N \mid \underline{r})} \sum_{n \in \mathcal{B}(N, r)} K^{2 s}(n)=d(2,2, \ldots, \stackrel{s}{2}) \tag{3.13}\\
& \sum_{b_{1}, \ldots, b_{s} \in A_{q}} \sum_{l_{1}, \ldots, l_{s}} K^{2}\left(b_{1} q^{l_{1}}\right) \ldots K^{2}\left(b_{s} q^{l_{s}}\right) \psi_{\underline{2}}(s, \underline{b})+o_{N}(1) .
\end{align*}
$$

Substituting $\psi_{2}(s, b)$ by $\prod_{b=0}^{q-1}\left(\frac{r_{b}}{N}\right)^{e_{b}}$, and omitting the condition on the right hand side of (3.13), the difference is $o_{N}(1)$. Thus the left hand side of (3.13) equals to

$$
d(2, \ldots, 2)\left(\sum_{l} \sum_{b \in A_{q}} \frac{r_{b} K^{2}\left(b q^{l}\right)}{N}\right)^{s}+o_{N}(1)=\frac{(2 s)!}{2^{s}}+o_{N}(1)
$$

This proves the theorem.

4. Proof of Theorem 1, necessity

In Lemma 1 we proved that if f has a limit distribution according to Th. 1 , then $f\left(b q^{j}\right)$ is bounded. If (1.6) would be divergent, then we would be able to show that f satisfied the conditions of Th. 3, which would imply that $Q_{\mathcal{B}(N, \underline{r})}(D) \rightarrow 0(N \rightarrow \infty)$.

Therefore (1.6) is convergent.
The proof of the convergence of (1.5) easily follows from Lemma 2. We omit the details.

Proof of Theorem 2 and the sufficiency part of Theorem 1

Let $g_{R}(n):=\prod_{j=0}^{R-1} g\left(\varepsilon_{j}(n) q^{j}\right)$. Let $g\left(a q^{j}\right)=e^{i \psi\left(a q^{j}\right)}, \psi\left(a q^{j}\right) \in$ $\in[-\pi, \pi]$. From (1.9) we obtain that $\sum_{j} \sum_{a} \psi\left(a q^{j}\right)$ is convergent, and
that $\sum_{j} \sum_{a} \psi^{2}\left(a q^{j}\right)$ is convergent as well. Hence, by using Lemma 2 we can deduce that

$$
\sup _{(1.2)_{\varepsilon}} \frac{1}{B(N, \underline{r})} \sum_{n<q^{N}}\left|g(n)-g_{R}(n)\right| \leq \kappa_{R}(N),
$$

where $\kappa_{R}(N) \rightarrow 0$ if $R, N \rightarrow \infty$, and this implies Th. 2.
The sufficiency part of Th. 1 can be proved by defining $g(n):=$ $:=g_{\tau}(n)=e^{i \tau f(n)}$, and considering

$$
\frac{1}{B(N \mid \underline{r})} \sum_{n<q^{N}} g_{\tau}(n)
$$

as the characteristic function of the distribution function of f. Since

$$
\sum_{j=0}^{\infty} \sum_{a=0}^{q-1}\left(g_{\tau}\left(a q^{j}\right)-1\right)
$$

converges, we can apply Th. 1 . This completes the proof. \diamond

Reference

[1] GALAMBOS, J.: Advanced Probability Theory, Marcel Dekker, Inc., New York, 1988.

[^0]: ${ }^{(1)}$ Financially supported by OTKA T46993.
 ${ }^{(2)}$ M. V. Subbarao died on 15th February 2006.

