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Abstract: The aim of the paper is to find a general form of homomorphisms
Θ : G → Γ, Θ(t)(X) =

∑

∞

k=1
ck(t)Xk, from an abelian group (G,+) into the

group (Γ, ◦) of invertible formal power series with coefficients in K ∈ {R, C},
under the condition that c1 takes infinitely many values. This is equivalent to
determine all the solutions F (t,X) =

∑

∞

k=1
ck(t)Xk of the translation equation

F (s + t,X) = F (s, F (t,X)) for s, t ∈ G.

We will show, using simultaneous conjugation, that in this case the solution
of the translation equation in rings of formal power series has the standard
form F (t,X) = S−1(c1(t)S(X)) well known for the solutions of the translation
equation for real functions. All these results will be proved also in the ring of
s-truncated formal power series.
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1. Introduction

By K[[X]] we denote the ring of all formal power series
∑∞

k=0 ckX
k

with coefficients ck ∈ K, where K ∈ {R, C} is a field of real or complex
numbers. For a formal power series f(X) =

∑∞
k=0 ckX

k, where ck 6= 0
for some k ∈ N ∪ {0} (N stands here for the set of all positive integers),
we define

ord f(X) := min{i ∈ N ∪ {0} : ci 6= 0 }.

assuming additionally ord
(
∑∞

i=10X
i
)

=∞. It is known that the set Γ =
{f(X)∈K[X] : ord f(X) = 1} with the substitution ◦ as a binary oper-
ation is a group. Moreover, the set Γ1 =

{

f(X)=
∑∞

k=1 ckX
k∈Γ: c1 =1

}

is a subgroup of Γ. A very good reference for this topic is [1].
With every f(X) =

∑∞
i=0 ciX

i ∈ K[[X]], we may associate the s-
truncation of f(X) defined by

f [s](X) :=
s

∑

i=0

ciX
i ∈ K[[X]]s ⊂ K[[X]].

In the set K[[X]]s of all s-truncated formal power series f(X) =
∑s

i=0 ciX
i

(K[[X]]s may be treated as a set of all polynomials of degree at most s)
we introduce, in a natural way, an addition of truncated formal power
series. It appears that a multiplication and a substitution must be defined
in a specific way that K[[X]]s should be closed under them. Let for
f(X), g(X) ∈ K[[X]]s,

(fg)(X) := (fg)[s](X),

and, in the case when ord g(X) ≥ 1,

(f ◦ g)(X) := (f ◦ g)[s](X).

Then (K[[X]]s, +, ·) is a ring, the set Γs := {p(X) ∈ K[[X]]s : ord p(X) =
= 1} is a group under substitution and Γs

1 =
{

f(X) =
∑s

k=1 ckX
k ∈

∈ Γs : c1 = 1
}

is a subgroup. To unify notation, from now on by Γ∞

and Γ∞
1 we will mean Γ and Γ1.

Definition 1. Let s be a positive integer or s = ∞. By a one-parameter
group of formal power series we understand every homomorphism of a
group (G, +) into (Γs, ◦), i.e. each function ΘG : G → Γs which satisfies
the equation

(1) ΘG(t1 + t2) = ΘG(t1) ◦ ΘG(t2) for t1, t2 ∈ G.

Let Ft(X) = F (t,X) = ΘG(t)(X) ∈ Γ. In the case when ΘG is
a one-parameter group of formal power series we will also say that the
family (Ft(X))t∈G = (F (t,X))t∈G forms a one-parameter group of formal
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power series. From (1) we then obtain, as an equivalent formulation, the
so called translation equation (in the case s = ∞)

(2) F (t1 + t2, X) = F (t1, F (t2, X)) for t1, t2 ∈ G,

in a ring of formal power series, and (in the case s < ∞),

(3) F (t1 + t2, X) = F (t1, F (t2, X)) mod Xs+1 for t1, t2 ∈ G,

in the ring of s-truncated formal power series. Then (2) and (3) may
jointly be written in the form

(4) Ft1+t2(X) = (Ft1 ◦ Ft2)(X) for t1, t2 ∈ G.

We recall some basic facts about solutions of the translation equa-
tion in K[[X]], which will be needed in what follows. For integers k ≤ l,
by |k, l| we denote the set of all integers n with k ≤ n ≤ l, whereas by
|k,∞| we will mean the set of all n ≥ k. If k > l, then we assume that
|k, l| = ∅. Moreover,

∑

t∈∅ a0 = 0 and
∏

t∈∅ at = 1.
Let s be a positive integer or s = ∞ and let F (t,X) =

∑s

k=1 ck(t)X
k,

where c1 : G → K \ {0}, ck : G → K for k ∈ |2, s|. Then from (2) we get

(5)
∞

∑

k=1

ck(t1 + t2)X
k =

∞
∑

l=1

cl(t1)

(

∞
∑

j=1

cj(t2)X
j

)l

, t1, t2 ∈ G.

Analogously, from (3) we obtain

(6)
s

∑

k=1

ck(t1+t2)X
k =

s
∑

l=1

cl(t1)

(

s
∑

j=1

cj(t2)X
j

)l

mod Xs+1, t1, t2∈G.

It is known (cf. [3]) that if either
∞

∑

k=1

ak

(

∞
∑

l=1

blX
l

)k

=
∞

∑

n=1

dnX
n,

or
s

∑

k=1

ak

(

s
∑

l=1

blX
l

)k

=
s

∑

n=1

dnX
n mod Xs+1,

then

(7) dn =
n

∑

k=1

ak

∑

un∈Un,k

Bun

n
∏

j=1

b
uj

j for n ∈ |1, s|,

where

Un,k :=

{

un := (u1, . . . , un) ∈ |0, k|n :
n

∑

j=1

uj = k ∧
n

∑

j=1

juj = n

}

,
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Bun
:=

k!
n
∏

j=1

uj!
.

As examples of (7) we quote

(8)
d1 = a1b1,
d2 = a1b2 + a2b

2
1,

d3 = a1b3 + 2a2b1b2 + a3b
3
1.

Moreover, for every n ≥ 2, we have (see [3, Cor. 2])

(9) dn = a1bn +
n−1
∑

k=2

ak

∑

un∈Un,k

Bun

n−k+1
∏

j=1

b
uj

j + anb
n
1 .

Then, from (5) and (6), on account of (8) and (9), by comparing coeffi-
cients we obtain the system of functional equations

(10)











































c1(t1 + t2)=c1(t1)c1(t2)

c2(t1 + t2)=c1(t1)c2(t2) + c2(t1)c1(t2)
2

c3(t1 + t2)=c1(t1)c3(t2) + 2c2(t1)c1(t2)c2(t2) + c3(t1)c1(t2)
3

cn(t1 + t2) = c1(t1)cn(t2)

+
n−1
∑

k=2

ck(t1)
∑

un∈Un,k

Bun

n−1
∏

j=1

cj(t2)
uj +cn(t1)c1(t2)

n, n∈|4, s|,

for t1, t2 ∈ G. Note that c1 must be a generalized exponential function.
The main results of our paper are Theorems 3, 4 and 5. In Th. 4

we state for a solution F (t,X)t∈G, F (t,X) =
∑s

i=1 ci(t)X
i of (4), where

s is a positive integer or s = ∞ and (G, +) is an abelian group such that
the generalized exponential function c1 takes infinitely many values that
there exists a unique S(X) ∈ Γs

1 for which

F (t,X) =
(

S−1 ◦ Lc1(t) ◦ S
)

(X) for all t ∈ G

holds, the so called standard form of the solution of the translation equa-
tion. Here Lρ(X) = ρX. Th. 4 is based upon Th. 3, where we show the
same representation for solutions F (t,X)t∈K, F (t,X) =

∑∞
i=1 ci(t)X

i

of (2) with regular (C∞ or entire) coefficient functions, under the as-
sumption c1 6= 1. Th. 5 deals with the situation where F (t,X)t∈G is
a finite one-parameter group of formal power series (then clearly im c1

is also finite). We obtain here the standard form for F (t,X)t∈G, too.
Our method of proof uses certain semicanonical forms of formal power
series with respect to conjugation, when the multiplier of the series is
a (complex) root of 1.
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In the following we use the standard notation

∂F (t,X)

∂X
:=

∞
∑

k=1

kck(t)X
k−1,

and, in the case when G = K and the coefficient functions are differen-
tiable,

∂F (t,X)

∂t
:=

∞
∑

k=1

c′k(t)X
k.

For G = K the following theorem describes the general regular
solution of the translation equation (2) in the ring of formal power series,
which means that the coefficient functions are analytic when K = C, or
C∞, when K = R.

Theorem 1 (cf. [10]). (i) If a family (F (t,X))t∈K is a regular one-pa-
rameter group of formal power series, then there exists a formal power
series H(X) ∈ K[[X]] such that

(11)







∂F (t,X)

∂t
= H(F (t,X)) for t ∈ K,

F (0, X) = X.

(ii) For each formal power series H(X) ∈ K[[X]] with ord H ≥ 1,
the family (F (t,X))t∈K defined by (11) is a regular one-parameter group
of formal power series.

(iii) The series H is uniquely determined by (F (t,X))t∈K. It is

given by the formula H(X) := ∂F (t,X)
∂t

|t=0. In particular, ord H ≥ 1.

Remark 1. Condition (iii) establishes a 1 − 1-correspondence between
regular one-parameter groups and formal series H with ord H ≥ 1.

The general solution of the system of equations (2) under some
assumptions on c1 is described in the following

Theorem 2 (cf. [5, Th. 6]). Let s be a positive integer or s = ∞.
Assume that (G, +) is an abelian group which admits a generalized ex-
ponential function from G into K \ {0} with infinite image. Then there
exists a sequence of polynomials (Pn)n≥2 defined by



































P2(X) = 0; R2(X; λ2) = λ2X − λ2

Pn(X; λ2, . . . , λn−1)

=
n−1
∑

k=2

((k − 1)λk

∑

un∈Un,k

Bun

∫ X

1

tk−2

n−k+1
∏

j=2

(Rj(t; λ2, . . . , λj))
uj dt.

Rn(X; λ2, . . . , λn) = λn(Xn−1 − 1) + Pn(X; λ2, . . . , λn−1),
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such that for every solution (cn)n∈|1,s| of the system of functional equa-
tions (10) (that is for every solution F (t,X)g∈G, F (t,X) =

∑s

k=1 ck(t)X
k

of the translation equation (4)) with a generalized exponential function c1

taking infinitely many values, there exists a unique sequence of constants
(λn)n∈|2,s| such that
(12)
cn(t) = λn(c1(t)

n − c1(t)) + c1(t)Pn(c1(t); λ2, . . . , λn−1), t ∈ G, n ∈ |2, s|.

Conversely, for every exponential function c1 and for each sequence
(λn)n∈|2,s|, the sequence (cn)n∈|2,s| defined by (12) is a solution of the
system (10).

2. The standard form of the general regular solution
of the translation equation with c1 6= 1

Now we will give, using simultaneous conjugation, another form
of the solution (F (t, x))t∈K of the translation equation in a ring of for-
mal power series, which is familiar for representations of solutions of the
translation equation satisfying some regularity conditions (cf. [7] and [8]).

Theorem 3. Let (F (t,X))t∈K, F (t,X)=
∑∞

k=1ck(t)X
k, c1 : K→K\{0},

ck : K → K for k ≥ 2, be a regular solution of the translation equation (2)
with an exponential function c1 6= 1. Then there exists a unique formal
power series S(X) = X +

∑∞
k=2 vkX

k ∈ Γ1 such that

F (t,X) = S−1 (c1(t)S(X)) for t ∈ K.

Conversely, for every generalized exponential function c1 : K→K\{0}
and for an arbitrary S(X) = X+

∑∞
k=2 vkX

k∈Γ1, the function F (t,X) =
= S−1 (c1(t)S(X)) is a solution of the translation equation (2).

Proof. Let F (t,X) =
∑∞

k=1 ck(t)X
k be a regular solution of the trans-

lation equation (2) with an exponential function c1 6= 1. Then, in virtue
of Th. 1, there exists a formal power series H(X) ∈ Γ such that

∂F (t,X)

∂t
= H(F (t,X)) for t ∈ K,

and H is given by the formula H(X) = ∂F (t,X)
∂t

|t=0. Let λ1 6= 0 and put
H(X) = λ1

(

X +
∑∞

k=2(k − 1)λkX
k
)

. Then c1(t) = eλ1t for t ∈ K.
First, suppose that there is a formal power series S(X) = X +

+
∑∞

k=2 vkX
k ∈ Γ1 such that

(13) S(F (t,X)) = eλ1tS(X) for t ∈ K.
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Differentiating (13) with respect to t we get
dS

dX

∣

∣

∣

∣

F (t,X)

·
∂

∂t
F (t,X) = λ1e

λ1tS(X).

Put t = 0. Then, since F (0, X) = X and H(X) = ∂F (t,X)
∂t

|t=0, we obtain

(14)
dS

dX
· H(X) = λ1S(X)

from which we get
(

1 +
∞

∑

k=2

kvkX
k−1

)

λ1

(

X +
∞

∑

k=2

(k − 1)λkX
k

)

= λ1

(

X +
∞

∑

k=2

vkX
k

)

,

or, which is the same,

(15)

(

1 +
∞

∑

k=1

(k + 1)vk+1X
k

) (

1 +
∞

∑

k=1

kλk+1X
k

)

= 1 +
∞

∑

k=1

vk+1X
k,

Equality (15) is equivalent to the system of equations






















λ2 + 2v2 = v2,

2λ3 + 2v2λ2 + 3v3 = v3,

(n − 1)λn +
n−1
∑

k=2

k(n − k)vkλn+1−k + nvn = vn, n ≥ 4,

from which one can derive

(16)























v2 = −λ2,

v3 = −λ3 − v2λ2 = −λ3 + λ2
2,

vn = −λn −
n−1
∑

k=2

k(n − k)

n − 1
vkλn+1−k, n ≥ 4.

This means that a power series S(X) satisfying (13), if it exists, is de-
termined uniquely.

Now, let us take a power series S(X) = X +
∑∞

k=2 vkX
k satisfying

condition (16). Hence also (14) is satisfied. Replace in (14) X by F (t,X).
Then we obtain

dS

dX

∣

∣

∣

∣

F (t,X)

· H(F (t,X)) = λ1S(F (t,X))

and, since H(F (t,X)) = ∂F
∂t

(t,X), so we get
dS

dX
(F (t,X))

∂

∂t
F (t,X) = λ1S(F (t,X))
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or, equivalently, ∂
∂t

S(F (t,X))=λ1S(F (t,X)). Put R(t,X)=S(F (t,X)).
Then

(17)
∂

∂t
R(t,X) = λ1R(t,X)

with the initial condition R(0, X) = S(X). Since eλ1tS(X) is also a so-
lution of (17) satisfying the same initial condition, from the uniqueness
theorem for systems of the form (17), we obtain S(F (t,X))=eλ1tS(X) for
every t∈K. Conversely, let F (t,X)=S−1(eλ1tS(X)). This is the standard
form of a solution of the translation equation, and hence satisfies (2). ♦

3. The standard form of the general solution of the
translation equation with infinite im c1

Now we are going to generalize the result from the previous section
to the general case (F (t,X))t∈G with infinite im c1. We will show that,
in fact, also the same formulas hold as for the general regular solution.
This will be done jointly for finite and infinite s. By Em we denote the
set of all roots of 1 of order m in the field K.

We begin with a crucial property of the sequence of polynomials
(Pn)n≥2 from Th. 2. This property we deduce using regular solutions of
the translation equation (2). To do this, we need
Lemma 1. Let s ≥ 2 be an integer or s = ∞. For every S(X) = X +
+

∑s

k=2 vkX
k ∈ Γs

1 there exist polynomials σk(v2, . . . , vk) ∈ Q[v2, . . . , vk]
such that Γs

1 ∋ S−1(X) = X +
∑s

k=2 σk(v2, . . . , vk)X
k.

Proof. Since Γs
1 is a group, let S−1(X) = X +

∑s

k=2 σkX
k. Then

(S−1 ◦ S)(X) = X, which is equivalent (cf. (8) and (9)) to the system of
equalities























v2 + σ2 = 0,

v3 + 2v2σ2 + σ3 = 0,

vn +
n−1
∑

k=2

σk

∑

un∈Un,k

Bun

n−k+1
∏

j=2

v
uj

j + σn = 0, n ∈ |4, s|,

from which we get

(18)























σ2 = −v2 =: σ2(v2),

σ3 = −v3 − 2v2σ2 = −v3 + 2v2
2 =: σ3(v2, v3),

σn = −vn−
n−1
∑

k=2

σk

∑

un∈Un,k

Bun

n−k+1
∏

j=2

v
uj

j =: σn(v2, ..., vn), n∈|4, s|.
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Conversely, define for S(X) = X +
∑s

k=2 vkX
k the polynomials

σn(v2, . . . , vn) by (18). Then, for S ′(X) = X +
∑s

k=2 σk(v2, . . . , vk)X
k,

we get (S ′ ◦ S)(X) = X. Since Γs
1 is a group, so also (S ◦ S ′)(X) = X.

This means that S ′ = S−1. ♦

Lemma 2. Let X and Y be independent indeterminates over K. For
every (λk)k≥2 there exists a unique sequence (vk)k≥2 such that

(19) Y X +
∞

∑

k=2

(

λk(Y
k − Y ) + Y Pk(Y ; λ2, ..., λk−1

)

Xk =S−1(Y S(X)),

where S(X) = X +
∑∞

k=2 vkX
k, and conversely, for each (vk)k≥2 there

exists a unique sequence (λk)k≥2 satisfying (19).

Proof. Assume that s = ∞, (G, +) = (K, +) and let us consider a regu-

lar solution F (t,X) = etX +
∑∞

k=2 ck(t)X
k of (2). From Th. 2 we know

that for every n ≥ 2 we have cn(t) = λn(ent − et)+ etPn(et; λ2, . . . , λn−1),

and the sequence (λn)n≥2 determines F (t,X) uniquely. On the other

hand, by Th. 3, there exists a unique formal power series S(X) =

= X +
∑∞

k=2 vkX
k ∈ Γ∞

1 such that F (t,X) = S−1(etS(X)). Then,

on account of Lemma 1, we obtain

etX+
∞

∑

k=2

(

λk(e
kt−et)+etPk(e

t; λ2, ..., λk−1)
)

Xk =F (t,X)=S−1(etS(X))

= et

(

X +
∞

∑

k=2

vkX
k

)

+
∞

∑

l=2

σl(v2, . . . , vl)

(

et

(

X +
∞

∑

k=2

vkX
k

))l

= etX +
∞

∑

k=2

Qk(e
t; v2, . . . , vk)X

k,

for every t ∈ K, where (Qk(X; v2, . . . , vk))k≥2 is a sequence of polynomi-
als. This implies
λk(e

kt − et) + etPk(e
t; λ2, ..., λk−1) = Qk(e

t; v2, ..., vk) for k ≥ 2 and t∈K.

Since et runs through infinitely many values, we obtain the polynomial
identities

λk(Y
k − Y ) + Y Pk(Y ; λ2, . . . , λk−1) = Qk(Y ; v2, . . . , vk) for k ≥ 2

with an indeterminant Y . By the meaning of Wk and Qk we get (19).
Conversely, it is known that F (t,X) = S−1(etS(X)) is a regular

solution of (2) for every S(X) = X +
∑∞

k=2 vkX
k ∈ Γ∞

1 . Then, by Th. 2,
there exists a unique sequence (vk)k≥2 satisfying
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S−1(etS(X))=F (t, x) = etX+
∞

∑

k=2

(

λk(e
kt−et) + etPk(e

t; λ2, ..., λk−1)
)

Xk,

and similarly as above we obtain (19). ♦

Corollary 1. Let s ≥ 2 be an integer. For every sequence (λk)k∈|2,s|

there exists a unique (vk)k∈|2,s| such that

Y X+
s

∑

k=2

[

λk(Y
k − Y ) + Y Pk(Y ; λ2, . . . , λk−1)

]

Xk =
(

S−1 ◦ LY ◦ S
)

(X)

and conversely (here LY (X) = Y X).

Proposition 1. Let s ≥ 2 be an integer or s = ∞. Assume that (G, +)
is an abelian group and let c1 : G → K \ {0} be a generalized exponential
function.

(i) For every sequence (λk)k∈|2,s|,
(20)

F (t,X) = c1(t)X +
s

∑

k=1

[

λk(c1(t)
k−c1(t))+c1(t)Pk(c1(t); λ2, ..., λk−1)

]

Xk

is a solution of the translation equation (4).
(ii) Every solution (20) of the translation equation (4) has a repre-

sentation

(21) F (t,X) =
(

S−1 ◦ Lc1(t) ◦ S
)

(X) for t ∈ G,

with some S(X) = X +
∑s

k=2 vkX
k ∈ Γs

1.
(iii) Conversely, each F (t,X) given by (21) is a solution of (4) and

has a representation (20) with some sequence (λk)k∈|2,s|.
(iv) If c1 takes infinitely many values, then (20) and (21) yield the

general solution of (4) (with unique sequences (λk)k∈|2,s| and (vk)k∈|2,s|).

Proof. (i) is just a part of Th. 2. Let F (t,X) = c1(t)X +
∑s

k=2 ck(t)X
k

be a solution of the translation equation (4). Then, by Lemma 2 if s = ∞,
and from Cor. 1 for s < ∞, replacing Y by c1(t), we get

F (t,X) = c1(t)X+
s

∑

k=2

[

λk(c1(t)
k−c1(t))+c1(t)Pk(c1(t); λ2, ..., λk−1)

]

Xk

=
(

S−1 ◦ Lc1(t) ◦ S
)

(X).

Further, (21) is a solution of (4), and the representation (20) may be
proved as above in (iii). Finally, (iv) is a consequence of Th. 2, condi-
tions (ii) and (iii), and uniqueness in Th. 2, Lemma 2 and Cor. 1. ♦
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Remark 2. The formal power series S(X) = X +
∑s

k=2 vkX
k ∈ Γs

1 such
that F (t,X) =

(

S−1 ◦ Lc1(t) ◦ S
)

(X), which exists on account of Prop. 1,
need not be unique, because we do not assume that a sequence (λn)n∈|2,s|

uniquely determines

F (t,X) = c1(t)X+
s

∑

k=1

[

λk(c1(t)
k − c1(t)) + c1(t)Pk(c1(t); λ2, ..., λk−1)

]

Xk.

If it is the case, then S(X) is unique (cf. Lemma 2 and Cor. 1).
From Th. 2 and Prop. 1 we obtain the main result of the section.

Theorem 4. Let s ≥ 2 be an integer or s = ∞. Let (G, +) be an
abelian group which admits a generalized exponential function from G
into K \ {0} having infinitely many values. Assume that (F (t,X))t∈G,
F (t,X) =

∑s

k=1 ck(t)X
k, c1 : G → K \ {0}, ck : G → K for k ∈ |2, s|, is

a solution of the translation equation (4) with a generalized exponential
function c1 taking infinitely many values. Then there exists a unique
formal power series S(X) = X +

∑s

k=2 vkX
k ∈ Γs

1 such that

F (t,X) =
(

S−1 ◦ Lc1(t) ◦ S
)

(X) for t ∈ G.

Conversely, for each generalized exponential function c1 : G → K \ {0}
and for every S(X) = X +

∑s

k=2 vkX
k ∈ Γs

1, the family F (t,X) =
=

(

S−1 ◦ Lc1(t) ◦ S
)

(X) is a solution of the translation equation (4).

From Th. 4 we obtain nice formulas for coefficients functions of the
solution of the translation equation (4) in the considered case.

Corollary 2. Let s ≥ 2 be an integer or s = ∞. The general solution
(F (t,X))t∈G, F (t,X) =

∑s

k=1 ck(t)X
k, c1 : G → K\{0}, ck : G → K for

k ∈ |2, s|, of the translation equation (4) with a generalized exponential
function c1 taking infinitely many values is given by

(22) cn(t) = vn(c1(t)
n−c1(t))−

n−1
∑

k=2

ck(t)
∑

un∈Un,k

Bun

n−k+1
∏

j=2

v
uj

j for t∈G,

for n ∈ |2, s|, where (vk)k∈|2,s| are arbitrary constants.

Proof. Since for every S(X) = X +
∑s

j=2 vjX
j ∈ Γs

1 also S−1(X) ∈ Γs
1,

we derive from Th. 4 that the general solution F (t,X) =
∑s

k=1 ck(t)X
k

of the translation equation (4) with a generalized exponential function c1

taking infinitely many values, may be given by the formula
F (t,X) =

(

S ◦ Lc1(t) ◦ S−1
)

(X),

where S(X) = X +
∑s

k=2 vkX
k ∈ Γs

1 is an arbitrary formal power series.
Thus, substituting S(X) for X, we obtain (Ft ◦ S)(X) = S (c1(t)X) for
every t ∈ G, which is equivalent to the equality
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s
∑

k=1

ck(t)

(

X +
s

∑

l=2

vlX
l

)k

= c1(t)X +
s

∑

l=2

vlc1(t)
lX l mod Xs+1.

Thus, using the formulas (9), for every n ∈ |2, s| we obtain (put v1 = 1)

c1(t)vn +
n−1
∑

k=2

ck(t)
∑

un∈Un,k

Bun

n−k+1
∏

j=2

v
uj

j + cn(t) = snc1(t)
n

from which we get (22). ♦

4. The standard form of the solution of the transla-
tion equation for finite set {F (t, X) : t ∈ G}

We are going to study one-parameter groups of formal power series
F (t,X)t∈G, F (t,X) =

∑s

k=1 ck(t)X
k, c1 : G → K \ {0}, ck : G → K for

k ∈ |2, s|, where s is a positive integer or s = ∞, under the assumption
that the set {F (t,X) : t ∈ G} is finite. Note that then also im c1 must
be finite. We will need some properties of (7). In [3] we considered
a natural isomorphism between the groups (Γ∞, ◦) and (Z∞, ·) = L1

∞,
namely Ψ : Z∞ → Γ∞,

Ψ(x1, x2, . . .)(X) =
∞

∑

k=1

xk

k!
Xk.

Furthermore, in [2] are proved some properties of the group operation
in L1

s, which are also valid for the group L1
∞. Using the isomorphism Ψ

and these properties one can derive the following lemma.

Lemma 3 (cf. [2, Lemma 2]). Let p, q be integers such that 1 ≤ p ≤ q.
If aj = 0 for all j ∈ |2, q| and bj = 0 for all j ∈ |2, p|, then dn given
by (7) are of the form

1) d1 = a1b1,
2) dn = 0 for n ∈ |2, p|,
3) dn = a1bn for n ∈ |p + 1, q|,
4) dn = a1bn + anb

n
1 for n ∈ |q + 1, p + q|.

From now on, if it will not be another stated, s ≥ 2 is an integer
or s = ∞. We begin with

Lemma 4. If U(X) = X +
∑s

k=2 ukX
k ∈ Γs

1 and ul 6= 0 for some l ∈
∈ |2, s|, then for every n ∈ N, n ≥ 2 we have Un(X) 6= X. Moreover,
for every m,n ∈ N, m 6= n we have Um(X) 6= Un(X).
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Proof. The proof is by induction on n. Let n = 2. Put l := min{k ∈
∈ |2, s| : uk 6= 0 }. Then U(X) = X + ulX

l +
∑s

k=l+1 ukX
k. Using

Lemma 3 (p = q = l − 1) we obtain that U2(X) = (U ◦ U)(X) = X +
+ 2ulX

l +
∑s

k=l+1 u′
kX

k with some u′
l+1, . . . , u

′
s, and, since ul 6= 0, so

U2(X) 6= X.
Assume now that for some n ∈ |3, s| we have Un−1(X) 6= X, and if

Un−1(X) = X +
s

∑

k=2

vkX
k,

then for m := min{k ∈ |2, s| : vk 6= 0 } we have m = l and vl = (n − 1)ul

(cf. the case n = 2). On account of Lemma 3 we get

Un(X) = (Un−1 ◦ U)(X) = X + nulX
l +

s
∑

k=l+1

v′
kX

k

with some v′
l+1, . . . , v

′
s. Finally, for m,n ∈ N, m 6= n, we have

Um(X) = X +mulX
l +

s
∑

k=l+1

wkX
k 6= X +nulX

l +
s

∑

k=l+1

w′
kX

k = Un(X),

which finishes the proof. ♦

Lemma 5. Let F (t,X)t∈G, F (t,X) =
∑s

k=1 ck(t)X
k, c1 : G → K \ {0},

ck : G → K for k ∈ |2, s|, be a solution of the translation equation (4) (i.e.
Θs

G : G → Γs, Θs
G(t)(X) = F (t,X) is a homomorphism) such that the

set {F (t,X) : t ∈ G} = Θs
G(G) is a finite group. Then ker c1 = ker Θs

G.

Proof. Clearly, ker ΘG ⊂ ker c1. For the proof by a contradiction let
us suppose that for some t0 ∈ ker c1, t0 6= 0, we have ΘG(t0)(X) =
=

∑s

k=1 ck(t0)X
k = X +

∑s

k=2 dkX
k, where dl 6= 0 for some l ∈ |2, s|.

Then Θs
G(nt0)(X) = ((Θs

g(t0))
n)(X) for every n ∈ N, which jointly with

Lemma 4 means that the image im Θs
G is infinite. This contradiction

proves ker c1 = ker Θs
G. ♦

Lemma 6. Let F (X) = d1X +
∑s

k=2 dkX
k ∈ Γs, where d1 ∈ Em \ {1} is

a primitive root of the order m. Then there exists a formal power series
U(x) = X +

∑s

k=2 ukX
k ∈ Γs

1 and a sequence of constante (δlm+1)l∈|1,r|

such that

(U ◦ F ◦ U−1)(X) = d1X +
r

∑

l=1

δlm+1X
lm+1 =: Nm(X) ∈ Γs,

where r is the greatest positive integer such that rm + 1 ≤ s if s < ∞
and r = ∞ otherwise (Nm(X) is called semicanonical form of F (X),
cf. [9, 11]).
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Proof. Let F (X) = d1X +
∑s

k=2 dkX
k ∈ Γs, where d1 ∈ Em \ {1} is

a primitive root of unit of order m. We find U(x) = X +
∑s

k=2 ukX
k ∈

∈ Γs
1 and Nm(X) = d1X +

∑r

l=1 δlm+1X
lm+1 = d1X +

∑s

k=2 δkX
k, where

r is the greatest positive integer such that rm + 1 ≤ s if s < ∞ and
r = ∞ otherwise, δk = 0 for k ∈ |2, s| with k 6≡ 1 mod m, such that
(U ◦ F )(X) = (Nm ◦ U)(X), i.e. the system























































































d2 + u2d
2
1 = d1u2,

dn +
n−1
∑

k=2

uk

∑

un∈Un,k

Bun

n−k+1
∏

j=1

d
uj

j + und
n
1 = d1un for n ∈ |3,m|,

dm+1 +
m

∑

k=2

uk

∑

um+1∈Um+1,k

Bum+1

m−k+2
∏

j=1

d
uj

j + um+1d
m+1
1

= d1um+1 + δm+1 if m + 1 ≤ s,

dn +
n−1
∑

k=2

uk

∑

un∈Un,k

Bun

n−k+1
∏

j=1

d
uj

j + und
n
1 =

d1un +
n−1
∑

k=2

δk

∑

un∈Un,k

Bun

n−k+1
∏

j=2

u
uj

j + δn for n ∈ |m + 2, s|

is satisfied with δk = 0 for k ≥ 2 with k 6≡ 1 mod m. This is equivalent to
the system of equalities
(23)















































































u2(d
2
1 − d1) = −d2,

un(dn
1 − d1) = −dn −

n−1
∑

k=2

uk

∑

un∈Un,k

Bun

n−k+1
∏

j=1

d
uj

j for n ∈ |3,m|,

δm+1 = dm+1 +
m

∑

k=2

uk

∑

um+1∈Um+1,k

Bum+1

m−k+2
∏

j=1

d
uj

j if m + 1 ≤ s,

un(dn
1 − d1) − δn = −dn +

n−1
∑

k=2

∑

un∈Un,k

Bun

(

δk

n−k+1
∏

j=2

u
uj

j − uk

n−k+1
∏

j=1

d
uj

j

)

for n ∈ |m + 2, s|.

As it is easy to see, we can find a (not unique) solution (uk)k∈|2,s|,
(δlm+1)l∈|1,r| (here l is the greatest integer such that rm + 1 ≤ s if s < ∞
and r = ∞ otherwise) of this system. Indeed, we find
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

































u2 = (d2
1 − d1)

−1 − d2,

un = (dn
1 − d1)

−1



−dn−
n−1
∑

k=2

uk

∑

un∈Un,k

Bun

n−k+1
∏

j=1

d
uj

j



 for n ∈ |3,m|,

δm+1 = dm+1 +
m

∑

k=2

uk

∑

um+1∈Um+1,k

Bum+1

m−k+2
∏

j=1

d
uj

j ,

and we fix um+1 arbitrarily. Finally, consider for some n ∈ |m + 2, s| the
equation

un(dn
1 − d1) − δn = −dn +

n−1
∑

k=2

∑

un∈Un,k

Bun

(

δk

n−k+1
∏

j=2

u
uj

j − uk

n−k+1
∏

j=1

d
uj

j

)

.

Not that the sum
∑n−1

k=2

∑

un∈Un,k
Bun

(

δk

∏n−k+1
j=2 u

uj

j − uk

∏n−k+1
j=1 d

uj

j

)

contains only terms with indices less than n. If n 6≡ 1 mod m, then
δn = 0 and

un = (dn
1−d1)

−1



−dn +
n−1
∑

k=2

∑

un∈Un,k

Bun

(

δk

n−k+1
∏

j=2

u
uj

j − uk

n−k+1
∏

j=1

d
uj

j

)



 .

Otherwise we fix ulm+1 arbitrarily and we find

δlm+1 = dlm+1 −
lm
∑

k=2

∑

ulm+1∈Ulm+1,k

Bulm+1

(

δk

lm−k+2
∏

j=2

u
uj

j − uk

lm−k+2
∏

j=1

d
uj

j

)

.

Thus we find U(X) and Nm(X) satisfying (U ◦F )(X)=(Nm◦U)(X). ♦

Lemma 7. Let Nm(X) = d1X +
∑r

l=1 δlm+1X
lm+1, where d1 ∈ Em \ {1}

is a primitive root of order m, r is the greatest positive integer such that
rm + 1 ≤ s if s < ∞ and r = ∞ otherwise, δlm+1 6= 0 for some l ∈ |1, r|.
Then, for every p, q ∈ N, p 6= q, we have Np

m(X) 6= N q
m(X).

Proof. Let ν := min{l ∈ |1, r| : δlm+1 6= 0 }. Then

Nm(X) = d1X + δνm+1X
νm+1 +

r
∑

k=ν+1

δkm+1X
km+1.

We prove by induction on n that

Nn
m(X) = dn

1X + ndn−1
1 δνm+1X

νm+1 +
r

∑

k=ν+1

δ′km+1X
km+1

with some (δlm+1)l∈|ν+1,r| Put n = 2. Then, on account of Lemma 3, we
get
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N2
m(X) = d2

1X + (d1δνm+1 + δνm+1d
νm+1
1 )Xνm+1 +

r
∑

k=ν+1

δ′′km+1X
km+1

= d2
1X + 2d1δνm+1X

νm+1 +
r

∑

k=ν+1

δ′′km+1X
km+1.

Assuming now that for some n ≥ 3 we have

Nn−1
m (X) = dn−1

1 + (n − 1)dn−2
1 δνm+1X

νm+1 +
r

∑

k=ν+1

δ′′km+1X
km+1,

we obtain, on account of Lemma 3,
Nn

m(X) = (Nn−1
m ◦ Nm)(X)

= dn
1X + (dn−1

1 δνm+1 + (n − 1)δνm+1d
n−2
1 dνm+1

1 )Xνm+1

+
r

∑

k=ν+1

δ′km+1X
km+1 =dn

1X+ndn−1
1 δνm+1X

νm+1+
r

∑

k=ν+1

δ′km+1X
km+1.

Since pdp−1
1 δνm+1 6= qdq−1

1 δνm+1 for every p 6= q, so Np
m(X) 6= N q

m(X). ♦

Now we are in a position to prove the main result of this section.
We begin with the simple case when G = Em for some integer m ≥ 2.
We prove

Proposition 2. A family F (t,X)t∈Em
, F (t,X) =

∑s

k=1 ck(t)X
k, c1 :

: Em → K \ {0}, ck : Em → K for k ∈ |2, s|, is a solution of the
translation equation

(24) Fz1·z2
(X) = (Fz1

◦ Fz2
)(X) for z1, z2 ∈ Em,

such that c1 is a multiplicative function with im c1 = Em if and only if
there exists a power series U(X) ∈ Γs

1 such that

(25) Fz(X) =
(

U−1 ◦ Lc1(z) ◦ U
)

(X) for every z ∈ Em.

Proof. Clearly, the family (F (z,X))z∈Em
defined by (25) is a solution

of the translation equation (24).
Now, let F (t,X)t∈Em

, F (t,X) =
∑s

k=1 ck(t)X
k, c1 : Em→K\{0},

ck : Em → K for k ∈ |2, s|, be a solution of (24). Clearly c1(z0), where

z0 = e
2π
m

i, is a primitive root of the unit of order m. Then, from Lemma 6,
for F (z0, X) = c1(z0)X+

∑s

k=2 ck(z0)X
k there exists a formal power series

U(x) = X +
∑s

k=2 ukX
k ∈ Γs

1 such that

(U ◦ Fz0
◦ U−1)(X) = c1(z0)X +

r
∑

l=1

δlm+1X
lm+1

with some (δlm+1)l∈N, where r is the greatest integer such that rm+1 ≤ s
if s < ∞ and r = ∞ otherwise. We will show that δlm+1 = 0 for every
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l ∈ |1, r|. If not then, on account of Lemma 7, for p, q ∈ N, p 6= q, we
obtain

(U ◦ Fz0
◦ U−1)p(X) 6= (U ◦ Fz0

◦ U−1)q(X),

or, equivalently, (Fz0
)p(X) 6= (Fz0

)q(X). In particular, we have

Fz0
(X) = Fzm+1

0
(X) = (Fz0

)m+1(X) 6= (Fz0
)1(X) = Fz0

(X).

This contradiction proves that δlm+1 = 0 for every l ∈ |1, r|. Thus we
have

(

U ◦ Fz0
◦ U−1

)

(X) = c1(z0)X.

Then, for arbitrary Em ∋ z = e
2πik

m with 0 ≤ k ≤ m− 1, we have z = zk
0 ,

and
(

U ◦ Fz ◦ U−1
)

(X) =
(

U ◦ Fzk
0
◦ U−1

)

(X) =
(

U ◦ (Fz0
)k ◦ U−1

)

(X)

=
(

U ◦ Fz0
◦ U−1

)k
(X) = (c1(z0))

kX = c1(z
k
0 )X = c1(z)X = Lc1(z)(X),

which means that (25) holds. ♦

Theorem 5. Let (G, +) be an abelian group. To each F (t,X)t∈G,
F (t,X) =

∑s

k=1 ck(t)X
k, c1 : G → K \ {0}, ck : G → K for k ∈

∈ |2, s|, being a solution of the translation equation (4) such that the set
{F (t,X) : t ∈ G} is finite, there exists a power series U(X) ∈ Γs

1 such
that

(26) Ft(X) =
(

U−1 ◦ Lc1(t) ◦ U
)

(X) for every t ∈ G.

Conversely, a family F (t,X)t∈G defined by (26) is a solution of the trans-
lation equation (4).

Proof. Assume that F (t,X)t∈G, F (t,X) =
∑s

k=1 ck(t)X
k, c1 : G →

→ K \ {0}, ck : G → K for k ∈ |2, s|, is a solution of the translation
equation (4) such that the set {F (t,X) : t ∈ G} is finite. We know
that c1 is a generalized exponential function, i.e. it is a homomorphism.
Then, for the homomorphism ΘG : G → Γs, ΘG(t)(X) = F (t,X), on
account of Lemma 5, ker c1 = ker ΘG. Thus, by the first isomorphism
theorem (cf. [6, p. 16]), {F (t,X) : t ∈ G} = im ΘG

∼= G/ ker ΘG = G/
/ ker c1

∼= im c1 (which means that also im c1 is finite). So assume that
card{F (t,X) : t ∈ G} = cardim ΘG = cardim c1 =: m with a positive
integer m. This means that im c1

∼= Em and there exists a canonical
homomorphism κ : G → G/ ker c1

∼= Em. Then the homomorphism ΘG

must be of the form ΘG = ΘEm
◦ κ, where ΘEm

: Em → Γs and κ :
: G → Em are homomorphisms such that ΘEm

(t)(X) =
∑s

k=1 ck(t)X
k,

c1 : Em → Em is a multiplicative function such that im c1 = Em, c1 ◦κ =
= c1, and ck : Em → K for k ∈ |2, s|. Hence F (t,X) = F (κ(t), X), where
F (z,X) = ΘEm

(t)(X).
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If m = 1 then clearly c1 = 1, F (t,X) = X for every t ∈ G, so with
every U(X) ∈ Γs

1 we have (U ◦ Ft ◦ U−1)(X)) = (U ◦ U−1)(X) = X for
t ∈ G. Thus assume that m ≥ 2. Then, from Prop. 2, we get
(U◦Ft◦U

−1)(X) = (U◦F κ(t)◦U
−1)(X) = c1(κ(t))X = c1(t)X = Lc1(t)(X),

which completes the proof. ♦

Remark 3. Note that a power series U(X) = X+
∑s

k=2 ukX
k, which de-

termines a particular solution (F (t,X))t∈G of the translation equation (4)
in the case considered here is not unique. This comes from the fact that
the solution (uk)k∈|2,s| of the system (23) is not unique. Moreover, if a
power series U(X) ∈ Γs

1 determines a solution of the translation equa-
tion (4), then also any power series W (X) ∈ Γs

1, W (X) = (V ◦ U)(X)
determines the same solution, where V (X) = X +

∑r

l=1 vlm+1X
lm+1 with

arbitrary sequence (vlm+1)l∈|1,r|, where r = ∞ if s = ∞ and r is the
greatest integer such that rm + 1 ≤ s provided s is finite. Indeed,
(U−1 ◦ Lc1(t) ◦ U)(X) = ΘG(t)(X) = (W−1 ◦ Lc1(t) ◦ W )(X) for t ∈ G,

then c1(t)X = ((W ◦ U−1)−1 ◦ Lc1(t) ◦ (W ◦ U−1))(X), so with V = W ◦
◦ U−1 we have (V −1 ◦ Lc1(t) ◦ V )(X) = c1(t)X, or, which is the same
V (c1(t)X) = c1(t)V (X) for each t ∈ G. Since U(X),W (X) ∈ Γs

1, so also
V (X) ∈ Γs

1. Put V (X) = X +
∑s

k=2 vkX
k. Then we get

c1(t)X +
s

∑

k=1

vkc1(t)
kXk = c1(t)X +

s
∑

k=1

c1(t)vkX
k,

and hence vk(c1(t)
k − c1(t)) = 0 for t ∈ G and k ∈ |2, s|. Using the fact

that im c1 = Em, we get vk = 0 if k 6≡ 1 mod m and vlm+1 is arbitrary
for l ∈ |1, r|. Thus we have W (X) = (V ◦ U)(X), where V (X) = X +
+

∑r

l=1 vlm+1X
lm+1.
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