Mathematica Pannonica

18/2 (2007), 169-187

ON THE STANDARD FORM OF THE SOLUTION OF THE TRANSLATION EQUATION IN RINGS OF FORMAL POWER SERIES

Wojciech Jabłoński

Department of Mathematics, University of Rzeszow, Rejtana 16 A, 35-310 Rzeszów, Poland

Ludwig Reich

Institute of Mathematics, Karl-Franzens-University Graz, Heinrichstrasse 36, A-8010 Graz, Austria

Received: August 2007
MSC 2000: Primary 39 B 72, 13 F 25; Secondary 13 J 05, 13 H 05
Keywords: Formal power series, translation equation.

Abstract

The aim of the paper is to find a general form of homomorphisms $\Theta: G \rightarrow \Gamma, \Theta(t)(X)=\sum_{k=1}^{\infty} c_{k}(t) X^{k}$, from an abelian group $(G,+)$ into the group (Γ, \circ) of invertible formal power series with coefficients in $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, under the condition that c_{1} takes infinitely many values. This is equivalent to determine all the solutions $F(t, X)=\sum_{k=1}^{\infty} c_{k}(t) X^{k}$ of the translation equation $$
F(s+t, X)=F(s, F(t, X)) \quad \text { for } \quad s, t \in G .
$$

We will show, using simultaneous conjugation, that in this case the solution of the translation equation in rings of formal power series has the standard form $F(t, X)=S^{-1}\left(c_{1}(t) S(X)\right)$ well known for the solutions of the translation equation for real functions. All these results will be proved also in the ring of s-truncated formal power series.

[^0]
1. Introduction

By $\mathbb{K} \llbracket X \rrbracket$ we denote the ring of all formal power series $\sum_{k=0}^{\infty} c_{k} X^{k}$ with coefficients $c_{k} \in \mathbb{K}$, where $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ is a field of real or complex numbers. For a formal power series $f(X)=\sum_{k=0}^{\infty} c_{k} X^{k}$, where $c_{k} \neq 0$ for some $k \in \mathbb{N} \cup\{0\}$ (\mathbb{N} stands here for the set of all positive integers), we define

$$
\operatorname{ord} f(X):=\min \left\{i \in \mathbb{N} \cup\{0\}: c_{i} \neq 0\right\} .
$$

assuming additionally $\operatorname{ord}\left(\sum_{i=1}^{\infty} 0 X^{i}\right)=\infty$. It is known that the set $\Gamma=$ $\{f(X) \in \mathbb{K}[X]$: ord $f(X)=1\}$ with the substitution \circ as a binary operation is a group. Moreover, the set $\Gamma_{1}=\left\{f(X)=\sum_{k=1}^{\infty} c_{k} X^{k} \in \Gamma: c_{1}=1\right\}$ is a subgroup of Γ. A very good reference for this topic is [1].

With every $f(X)=\sum_{i=0}^{\infty} c_{i} X^{i} \in \mathbb{K} \llbracket X \rrbracket$, we may associate the s truncation of $f(X)$ defined by

$$
f^{[s]}(X):=\sum_{i=0}^{s} c_{i} X^{i} \in \mathbb{K} \llbracket X \rrbracket_{s} \subset \mathbb{K} \llbracket X \rrbracket .
$$

In the set $\mathbb{K}\left[[X]_{s}\right.$ of all s-truncated formal power series $f(X)=\sum_{i=0}^{s} c_{i} X^{i}$ $\left(\mathbb{K}\left[[X]_{s}\right.\right.$ may be treated as a set of all polynomials of degree at most s) we introduce, in a natural way, an addition of truncated formal power series. It appears that a multiplication and a substitution must be defined in a specific way that $\mathbb{K} \llbracket X \rrbracket_{s}$ should be closed under them. Let for $f(X), g(X) \in \mathbb{K}\left[[X]_{s}\right.$,

$$
(f g)(X):=(f g)^{[s]}(X)
$$

and, in the case when ord $g(X) \geq 1$,

$$
(f \circ g)(X):=(f \circ g)^{[s]}(X)
$$

Then $\left(\mathbb{K} \llbracket X \rrbracket_{s},+, \cdot\right)$ is a ring, the set $\Gamma^{s}:=\{p(X) \in \mathbb{K} \llbracket X]_{s}:$ ord $p(X)=$ $=1\}$ is a group under substitution and $\Gamma_{1}^{s}=\left\{f(X)=\sum_{k=1}^{s} c_{k} X^{k} \in\right.$ $\left.\in \Gamma^{s}: c_{1}=1\right\}$ is a subgroup. To unify notation, from now on by Γ^{∞} and Γ_{1}^{∞} we will mean Γ and Γ_{1}.
Definition 1. Let s be a positive integer or $s=\infty$. By a one-parameter group of formal power series we understand every homomorphism of a group $(G,+)$ into $\left(\Gamma^{s}, \circ\right)$, i.e. each function $\Theta_{G}: G \rightarrow \Gamma^{s}$ which satisfies the equation

$$
\begin{equation*}
\Theta_{G}\left(t_{1}+t_{2}\right)=\Theta_{G}\left(t_{1}\right) \circ \Theta_{G}\left(t_{2}\right) \quad \text { for } \quad t_{1}, t_{2} \in G \tag{1}
\end{equation*}
$$

Let $F_{t}(X)=F(t, X)=\Theta_{G}(t)(X) \in \Gamma$. In the case when Θ_{G} is a one-parameter group of formal power series we will also say that the family $\left(F_{t}(X)\right)_{t \in G}=(F(t, X))_{t \in G}$ forms a one-parameter group of formal
power series. From (1) we then obtain, as an equivalent formulation, the so called translation equation (in the case $s=\infty$)

$$
\begin{equation*}
F\left(t_{1}+t_{2}, X\right)=F\left(t_{1}, F\left(t_{2}, X\right)\right) \quad \text { for } t_{1}, t_{2} \in G \tag{2}
\end{equation*}
$$

in a ring of formal power series, and (in the case $s<\infty$),
(3) $\quad F\left(t_{1}+t_{2}, X\right)=F\left(t_{1}, F\left(t_{2}, X\right)\right) \quad \bmod X^{s+1} \quad$ for $t_{1}, t_{2} \in G$, in the ring of s-truncated formal power series. Then (2) and (3) may jointly be written in the form

$$
\begin{equation*}
F_{t_{1}+t_{2}}(X)=\left(F_{t_{1}} \circ F_{t_{2}}\right)(X) \quad \text { for } \quad t_{1}, t_{2} \in G \tag{4}
\end{equation*}
$$

We recall some basic facts about solutions of the translation equation in $\mathbb{K}[X]$, which will be needed in what follows. For integers $k \leq l$, by $|k, l|$ we denote the set of all integers n with $k \leq n \leq l$, whereas by $|k, \infty|$ we will mean the set of all $n \geq k$. If $k>l$, then we assume that $|k, l|=\emptyset$. Moreover, $\sum_{t \in \emptyset} a_{0}=0$ and $\prod_{t \in \emptyset} a_{t}=1$.

Let s be a positive integer or $s=\infty$ and let $F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}$, where $c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$. Then from (2) we get

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k}\left(t_{1}+t_{2}\right) X^{k}=\sum_{l=1}^{\infty} c_{l}\left(t_{1}\right)\left(\sum_{j=1}^{\infty} c_{j}\left(t_{2}\right) X^{j}\right)^{l}, \quad t_{1}, t_{2} \in G \tag{5}
\end{equation*}
$$

Analogously, from (3) we obtain
(6) $\sum_{k=1}^{s} c_{k}\left(t_{1}+t_{2}\right) X^{k}=\sum_{l=1}^{s} c_{l}\left(t_{1}\right)\left(\sum_{j=1}^{s} c_{j}\left(t_{2}\right) X^{j}\right)^{l} \bmod X^{s+1}, t_{1}, t_{2} \in G$.

It is known (cf. [3]) that if either

$$
\sum_{k=1}^{\infty} a_{k}\left(\sum_{l=1}^{\infty} b_{l} X^{l}\right)^{k}=\sum_{n=1}^{\infty} d_{n} X^{n}
$$

or

$$
\sum_{k=1}^{s} a_{k}\left(\sum_{l=1}^{s} b_{l} X^{l}\right)^{k}=\sum_{n=1}^{s} d_{n} X^{n} \bmod X^{s+1}
$$

then

$$
\begin{equation*}
d_{n}=\sum_{k=1}^{n} a_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n} b_{j}^{u_{j}} \quad \text { for } n \in|1, s|, \tag{7}
\end{equation*}
$$

where

$$
U_{n, k}:=\left\{\bar{u}_{n}:=\left(u_{1}, \ldots, u_{n}\right) \in|0, k|^{n}: \sum_{j=1}^{n} u_{j}=k \wedge \sum_{j=1}^{n} j u_{j}=n\right\}
$$

$$
B_{\bar{u}_{n}}:=\frac{k!}{\prod_{j=1}^{n} u_{j}!}
$$

As examples of (7) we quote

$$
\begin{align*}
d_{1} & =a_{1} b_{1} \\
d_{2} & =a_{1} b_{2}+a_{2} b_{1}^{2} \tag{8}\\
d_{3} & =a_{1} b_{3}+2 a_{2} b_{1} b_{2}+a_{3} b_{1}^{3}
\end{align*}
$$

Moreover, for every $n \geq 2$, we have (see [3, Cor. 2])

$$
\begin{equation*}
d_{n}=a_{1} b_{n}+\sum_{k=2}^{n-1} a_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n-k+1} b_{j}^{u_{j}}+a_{n} b_{1}^{n} \tag{9}
\end{equation*}
$$

Then, from (5) and (6), on account of (8) and (9), by comparing coefficients we obtain the system of functional equations

$$
\left\{\begin{array}{l}
c_{1}\left(t_{1}+t_{2}\right)=c_{1}\left(t_{1}\right) c_{1}\left(t_{2}\right) \tag{10}\\
c_{2}\left(t_{1}+t_{2}\right)=c_{1}\left(t_{1}\right) c_{2}\left(t_{2}\right)+c_{2}\left(t_{1}\right) c_{1}\left(t_{2}\right)^{2} \\
c_{3}\left(t_{1}+t_{2}\right)=c_{1}\left(t_{1}\right) c_{3}\left(t_{2}\right)+2 c_{2}\left(t_{1}\right) c_{1}\left(t_{2}\right) c_{2}\left(t_{2}\right)+c_{3}\left(t_{1}\right) c_{1}\left(t_{2}\right)^{3} \\
c_{n}\left(t_{1}+t_{2}\right)=c_{1}\left(t_{1}\right) c_{n}\left(t_{2}\right) \\
\quad+\sum_{k=2}^{n-1} c_{k}\left(t_{1}\right) \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n-1} c_{j}\left(t_{2}\right)^{u_{j}}+c_{n}\left(t_{1}\right) c_{1}\left(t_{2}\right)^{n}, n \in|4, s|,
\end{array}\right.
$$

for $t_{1}, t_{2} \in G$. Note that c_{1} must be a generalized exponential function.
The main results of our paper are Theorems 3, 4 and 5. In Th. 4 we state for a solution $F(t, X)_{t \in G}, F(t, X)=\sum_{i=1}^{s} c_{i}(t) X^{i}$ of (4), where s is a positive integer or $s=\infty$ and $(G,+)$ is an abelian group such that the generalized exponential function c_{1} takes infinitely many values that there exists a unique $S(X) \in \Gamma_{1}^{s}$ for which

$$
F(t, X)=\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X) \quad \text { for all } t \in G
$$

holds, the so called standard form of the solution of the translation equation. Here $L_{\rho}(X)=\rho X$. Th. 4 is based upon Th. 3, where we show the same representation for solutions $F(t, X)_{t \in \mathbb{K}}, F(t, X)=\sum_{i=1}^{\infty} c_{i}(t) X^{i}$ of (2) with regular (C^{∞} or entire) coefficient functions, under the assumption $c_{1} \neq 1$. Th. 5 deals with the situation where $F(t, X)_{t \in G}$ is a finite one-parameter group of formal power series (then clearly im c_{1} is also finite). We obtain here the standard form for $F(t, X)_{t \in G}$, too. Our method of proof uses certain semicanonical forms of formal power series with respect to conjugation, when the multiplier of the series is a (complex) root of 1 .

In the following we use the standard notation

$$
\frac{\partial F(t, X)}{\partial X}:=\sum_{k=1}^{\infty} k c_{k}(t) X^{k-1}
$$

and, in the case when $G=\mathbb{K}$ and the coefficient functions are differentiable,

$$
\frac{\partial F(t, X)}{\partial t}:=\sum_{k=1}^{\infty} c_{k}^{\prime}(t) X^{k}
$$

For $G=\mathbb{K}$ the following theorem describes the general regular solution of the translation equation (2) in the ring of formal power series, which means that the coefficient functions are analytic when $\mathbb{K}=\mathbb{C}$, or C^{∞}, when $\mathbb{K}=\mathbb{R}$.
Theorem 1 (cf. [10]). (i) If a family $(F(t, X))_{t \in \mathbb{K}}$ is a regular one-parameter group of formal power series, then there exists a formal power series $H(X) \in \mathbb{K} \llbracket X \rrbracket$ such that

$$
\left\{\begin{array}{l}
\frac{\partial F(t, X)}{\partial t}=H(F(t, X)) \quad \text { for } t \in \mathbb{K}, \tag{11}\\
F(0, X)=X
\end{array}\right.
$$

(ii) For each formal power series $H(X) \in \mathbb{K} \llbracket X \rrbracket$ with ord $H \geq 1$, the family $(F(t, X))_{t \in \mathbb{K}}$ defined by (11) is a regular one-parameter group of formal power series.
(iii) The series H is uniquely determined by $(F(t, X))_{t \in \mathbb{K}}$. It is given by the formula $H(X):=\left.\frac{\partial F(t, X)}{\partial t}\right|_{t=0}$. In particular, ord $H \geq 1$.
Remark 1. Condition (iii) establishes a 1-1-correspondence between regular one-parameter groups and formal series H with ord $H \geq 1$.

The general solution of the system of equations (2) under some assumptions on c_{1} is described in the following
Theorem 2 (cf. [5, Th. 6]). Let s be a positive integer or $s=\infty$. Assume that $(G,+)$ is an abelian group which admits a generalized exponential function from G into $\mathbb{K} \backslash\{0\}$ with infinite image. Then there exists a sequence of polynomials $\left(P_{n}\right)_{n \geq 2}$ defined by

$$
\left\{\begin{array}{l}
P_{2}(X)=0 ; \quad R_{2}\left(X ; \lambda_{2}\right)=\lambda_{2} X-\bar{\lambda}_{2} \\
P_{n}\left(X ; \lambda_{2}, \ldots, \lambda_{n-1}\right) \\
=\sum_{k=2}^{n-1}\left((k-1) \lambda_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \int_{1}^{X} t^{k-2} \prod_{j=2}^{n-k+1}\left(R_{j}\left(t ; \lambda_{2}, \ldots, \lambda_{j}\right)\right)^{u_{j}} d t\right. \\
R_{n}\left(X ; \lambda_{2}, \ldots, \lambda_{n}\right)=\lambda_{n}\left(X^{n-1}-1\right)+P_{n}\left(X ; \lambda_{2}, \ldots, \lambda_{n-1}\right),
\end{array}\right.
$$

such that for every solution $\left(c_{n}\right)_{n \in|1, s|}$ of the system of functional equations (10) (that is for every solution $F(t, X)_{g \in G}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}$ of the translation equation (4)) with a generalized exponential function c_{1} taking infinitely many values, there exists a unique sequence of constants $\left(\lambda_{n}\right)_{n \in|2, s|}$ such that
$c_{n}(t)=\lambda_{n}\left(c_{1}(t)^{n}-c_{1}(t)\right)+c_{1}(t) P_{n}\left(c_{1}(t) ; \lambda_{2}, \ldots, \lambda_{n-1}\right), t \in G, n \in|2, s|$.
Conversely, for every exponential function c_{1} and for each sequence $\left(\lambda_{n}\right)_{n \in|2, s|}$, the sequence $\left(c_{n}\right)_{n \in|2, s|}$ defined by (12) is a solution of the system (10).

2. The standard form of the general regular solution of the translation equation with $c_{1} \neq 1$

Now we will give, using simultaneous conjugation, another form of the solution $(F(t, x))_{t \in \mathbb{K}}$ of the translation equation in a ring of formal power series, which is familiar for representations of solutions of the translation equation satisfying some regularity conditions (cf. [7] and [8]). Theorem 3. $\operatorname{Let}(F(t, X))_{t \in \mathbb{K}}, F(t, X)=\sum_{k=1}^{\infty} c_{k}(t) X^{k}, c_{1}: \mathbb{K} \rightarrow \mathbb{K} \backslash\{0\}$, $c_{k}: \mathbb{K} \rightarrow \mathbb{K}$ for $k \geq 2$, be a regular solution of the translation equation (2) with an exponential function $c_{1} \neq 1$. Then there exists a unique formal power series $S(X)=X+\sum_{k=2}^{\infty} v_{k} X^{k} \in \Gamma_{1}$ such that

$$
F(t, X)=S^{-1}\left(c_{1}(t) S(X)\right) \quad \text { for } t \in \mathbb{K}
$$

Conversely, for every generalized exponential function $c_{1}: \mathbb{K} \rightarrow \mathbb{K} \backslash\{0\}$ and for an arbitrary $S(X)=X+\sum_{k=2}^{\infty} v_{k} X^{k} \in \Gamma_{1}$, the function $F(t, X)=$ $=S^{-1}\left(c_{1}(t) S(X)\right)$ is a solution of the translation equation (2).
Proof. Let $F(t, X)=\sum_{k=1}^{\infty} c_{k}(t) X^{k}$ be a regular solution of the translation equation (2) with an exponential function $c_{1} \neq 1$. Then, in virtue of Th. 1, there exists a formal power series $H(X) \in \Gamma$ such that

$$
\frac{\partial F(t, X)}{\partial t}=H(F(t, X)) \quad \text { for } \quad t \in \mathbb{K}
$$

and H is given by the formula $H(X)=\left.\frac{\partial F(t, X)}{\partial t}\right|_{t=0}$. Let $\lambda_{1} \neq 0$ and put $H(X)=\lambda_{1}\left(X+\sum_{k=2}^{\infty}(k-1) \lambda_{k} X^{k}\right)$. Then $c_{1}(t)=e^{\lambda_{1} t}$ for $t \in \mathbb{K}$.

First, suppose that there is a formal power series $S(X)=X+$ $+\sum_{k=2}^{\infty} v_{k} X^{k} \in \Gamma_{1}$ such that

$$
\begin{equation*}
S(F(t, X))=e^{\lambda_{1} t} S(X) \quad \text { for } t \in \mathbb{K} \tag{13}
\end{equation*}
$$

Differentiating (13) with respect to t we get

$$
\left.\frac{d S}{d X}\right|_{F(t, X)} \cdot \frac{\partial}{\partial t} F(t, X)=\lambda_{1} e^{\lambda_{1} t} S(X)
$$

Put $t=0$. Then, since $F(0, X)=X$ and $H(X)=\left.\frac{\partial F(t, X)}{\partial t}\right|_{t=0}$, we obtain

$$
\begin{equation*}
\frac{d S}{d X} \cdot H(X)=\lambda_{1} S(X) \tag{14}
\end{equation*}
$$

from which we get
$\left(1+\sum_{k=2}^{\infty} k v_{k} X^{k-1}\right) \lambda_{1}\left(X+\sum_{k=2}^{\infty}(k-1) \lambda_{k} X^{k}\right)=\lambda_{1}\left(X+\sum_{k=2}^{\infty} v_{k} X^{k}\right)$,
or, which is the same,

$$
\begin{equation*}
\left(1+\sum_{k=1}^{\infty}(k+1) v_{k+1} X^{k}\right)\left(1+\sum_{k=1}^{\infty} k \lambda_{k+1} X^{k}\right)=1+\sum_{k=1}^{\infty} v_{k+1} X^{k} \tag{15}
\end{equation*}
$$

Equality (15) is equivalent to the system of equations

$$
\left\{\begin{array}{l}
\lambda_{2}+2 v_{2}=v_{2} \\
2 \lambda_{3}+2 v_{2} \lambda_{2}+3 v_{3}=v_{3} \\
(n-1) \lambda_{n}+\sum_{k=2}^{n-1} k(n-k) v_{k} \lambda_{n+1-k}+n v_{n}=v_{n}, \quad n \geq 4
\end{array}\right.
$$

from which one can derive

$$
\left\{\begin{array}{l}
v_{2}=-\lambda_{2} \tag{16}\\
v_{3}=-\lambda_{3}-v_{2} \lambda_{2}=-\lambda_{3}+\lambda_{2}^{2} \\
v_{n}=-\lambda_{n}-\sum_{k=2}^{n-1} \frac{k(n-k)}{n-1} v_{k} \lambda_{n+1-k}, \quad n \geq 4
\end{array}\right.
$$

This means that a power series $S(X)$ satisfying (13), if it exists, is determined uniquely.

Now, let us take a power series $S(X)=X+\sum_{k=2}^{\infty} v_{k} X^{k}$ satisfying condition (16). Hence also (14) is satisfied. Replace in (14) X by $F(t, X)$. Then we obtain

$$
\left.\frac{d S}{d X}\right|_{F(t, X)} \cdot H(F(t, X))=\lambda_{1} S(F(t, X))
$$

and, since $H(F(t, X))=\frac{\partial F}{\partial t}(t, X)$, so we get

$$
\frac{d S}{d X}(F(t, X)) \frac{\partial}{\partial t} F(t, X)=\lambda_{1} S(F(t, X))
$$

or, equivalently, $\frac{\partial}{\partial t} S(F(t, X))=\lambda_{1} S(F(t, X))$. Put $R(t, X)=S(F(t, X))$. Then

$$
\begin{equation*}
\frac{\partial}{\partial t} R(t, X)=\lambda_{1} R(t, X) \tag{17}
\end{equation*}
$$

with the initial condition $R(0, X)=S(X)$. Since $e^{\lambda_{1} t} S(X)$ is also a solution of (17) satisfying the same initial condition, from the uniqueness theorem for systems of the form (17), we obtain $S(F(t, X))=e^{\lambda_{1} t} S(X)$ for every $t \in \mathbb{K}$. Conversely, let $F(t, X)=S^{-1}\left(e^{\lambda_{1} t} S(X)\right)$. This is the standard form of a solution of the translation equation, and hence satisfies (2). \diamond

3. The standard form of the general solution of the translation equation with infinite im c_{1}

Now we are going to generalize the result from the previous section to the general case $(F(t, X))_{t \in G}$ with infinite $\operatorname{im} c_{1}$. We will show that, in fact, also the same formulas hold as for the general regular solution. This will be done jointly for finite and infinite s. By E_{m} we denote the set of all roots of 1 of order m in the field \mathbb{K}.

We begin with a crucial property of the sequence of polynomials $\left(P_{n}\right)_{n \geq 2}$ from Th. 2. This property we deduce using regular solutions of the translation equation (2). To do this, we need
Lemma 1. Let $s \geq 2$ be an integer or $s=\infty$. For every $S(X)=X+$ $+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$ there exist polynomials $\sigma_{k}\left(v_{2}, \ldots, v_{k}\right) \in \mathbb{Q}\left[v_{2}, \ldots, v_{k}\right]$ such that $\Gamma_{1}^{s} \ni S^{-1}(X)=X+\sum_{k=2}^{s} \sigma_{k}\left(v_{2}, \ldots, v_{k}\right) X^{k}$.
Proof. Since Γ_{1}^{s} is a group, let $S^{-1}(X)=X+\sum_{k=2}^{s} \sigma_{k} X^{k}$. Then $\left(S^{-1} \circ S\right)(X)=X$, which is equivalent (cf. (8) and (9)) to the system of equalities

$$
\left\{\begin{array}{l}
v_{2}+\sigma_{2}=0, \\
v_{3}+2 v_{2} \sigma_{2}+\sigma_{3}=0, \\
v_{n}+\sum_{k=2}^{n-1} \sigma_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=2}^{n-k+1} v_{j}^{u_{j}}+\sigma_{n}=0, \quad n \in|4, s|
\end{array}\right.
$$

from which we get

$$
\left\{\begin{array}{l}
\sigma_{2}=-v_{2}=: \sigma_{2}\left(v_{2}\right), \tag{18}\\
\sigma_{3}=-v_{3}-2 v_{2} \sigma_{2}=-v_{3}+2 v_{2}^{2}=: \sigma_{3}\left(v_{2}, v_{3}\right), \\
\sigma_{n}=-v_{n}-\sum_{k=2}^{n-1} \sigma_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=2}^{n-k+1} v_{j}^{u_{j}}=: \sigma_{n}\left(v_{2}, \ldots, v_{n}\right), n \in|4, s| .
\end{array}\right.
$$

Conversely, define for $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k}$ the polynomials $\sigma_{n}\left(v_{2}, \ldots, v_{n}\right)$ by (18). Then, for $S^{\prime}(X)=X+\sum_{k=2}^{s} \sigma_{k}\left(v_{2}, \ldots, v_{k}\right) X^{k}$, we get $\left(S^{\prime} \circ S\right)(X)=X$. Since Γ_{1}^{s} is a group, so also $\left(S \circ S^{\prime}\right)(X)=X$. This means that $S^{\prime}=S^{-1} . \diamond$
Lemma 2. Let X and Y be independent indeterminates over \mathbb{K}. For every $\left(\lambda_{k}\right)_{k \geq 2}$ there exists a unique sequence $\left(v_{k}\right)_{k \geq 2}$ such that
(19) $Y X+\sum_{k=2}^{\infty}\left(\lambda_{k}\left(Y^{k}-Y\right)+Y P_{k}\left(Y ; \lambda_{2}, \ldots, \lambda_{k-1}\right) X^{k}=S^{-1}(Y S(X))\right.$,
where $S(X)=X+\sum_{k=2}^{\infty} v_{k} X^{k}$, and conversely, for each $\left(v_{k}\right)_{k \geq 2}$ there exists a unique sequence $\left(\lambda_{k}\right)_{k \geq 2}$ satisfying (19).

Proof. Assume that $s=\infty,(G,+)=(\mathbb{K},+)$ and let us consider a regular solution $F(t, X)=e^{t} X+\sum_{k=2}^{\infty} c_{k}(t) X^{k}$ of (2). From Th. 2 we know that for every $n \geq 2$ we have $c_{n}(t)=\lambda_{n}\left(e^{n t}-e^{t}\right)+e^{t} P_{n}\left(e^{t} ; \lambda_{2}, \ldots, \lambda_{n-1}\right)$, and the sequence $\left(\lambda_{n}\right)_{n \geq 2}$ determines $F(t, X)$ uniquely. On the other hand, by Th. 3, there exists a unique formal power series $S(X)=$ $=X+\sum_{k=2}^{\infty} v_{k} X^{k} \in \Gamma_{1}^{\infty}$ such that $F(t, X)=S^{-1}\left(e^{t} S(X)\right)$. Then, on account of Lemma 1, we obtain

$$
\begin{aligned}
& e^{t} X+\sum_{k=2}^{\infty}\left(\lambda_{k}\left(e^{k t}-e^{t}\right)+e^{t} P_{k}\left(e^{t} ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right) X^{k}=F(t, X)=S^{-1}\left(e^{t} S(X)\right) \\
& =e^{t}\left(X+\sum_{k=2}^{\infty} v_{k} X^{k}\right)+\sum_{l=2}^{\infty} \sigma_{l}\left(v_{2}, \ldots, v_{l}\right)\left(e^{t}\left(X+\sum_{k=2}^{\infty} v_{k} X^{k}\right)\right)^{l} \\
& =e^{t} X+\sum_{k=2}^{\infty} Q_{k}\left(e^{t} ; v_{2}, \ldots, v_{k}\right) X^{k}
\end{aligned}
$$

for every $t \in \mathbb{K}$, where $\left(Q_{k}\left(X ; v_{2}, \ldots, v_{k}\right)\right)_{k \geq 2}$ is a sequence of polynomials. This implies
$\lambda_{k}\left(e^{k t}-e^{t}\right)+e^{t} P_{k}\left(e^{t} ; \lambda_{2}, \ldots, \lambda_{k-1}\right)=Q_{k}\left(e^{t} ; v_{2}, \ldots, v_{k}\right)$ for $k \geq 2$ and $t \in \mathbb{K}$. Since e^{t} runs through infinitely many values, we obtain the polynomial identities

$$
\lambda_{k}\left(Y^{k}-Y\right)+Y P_{k}\left(Y ; \lambda_{2}, \ldots, \lambda_{k-1}\right)=Q_{k}\left(Y ; v_{2}, \ldots, v_{k}\right) \quad \text { for } k \geq 2
$$

with an indeterminant Y. By the meaning of W_{k} and Q_{k} we get (19).
Conversely, it is known that $F(t, X)=S^{-1}\left(e^{t} S(X)\right)$ is a regular solution of (2) for every $S(X)=X+\sum_{k=2}^{\infty} v_{k} X^{k} \in \Gamma_{1}^{\infty}$. Then, by Th. 2, there exists a unique sequence $\left(v_{k}\right)_{k \geq 2}$ satisfying
$S^{-1}\left(e^{t} S(X)\right)=F(t, x)=e^{t} X+\sum_{k=2}^{\infty}\left(\lambda_{k}\left(e^{k t}-e^{t}\right)+e^{t} P_{k}\left(e^{t} ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right) X^{k}$, and similarly as above we obtain (19). \diamond
Corollary 1. Let $s \geq 2$ be an integer. For every sequence $\left(\lambda_{k}\right)_{k \in|2, s|}$ there exists a unique $\left(v_{k}\right)_{k \in|2, s|}$ such that
$Y X+\sum_{k=2}^{s}\left[\lambda_{k}\left(Y^{k}-Y\right)+Y P_{k}\left(Y ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right] X^{k}=\left(S^{-1} \circ L_{Y} \circ S\right)(X)$ and conversely (here $\left.L_{Y}(X)=Y X\right)$.
Proposition 1. Let $s \geq 2$ be an integer or $s=\infty$. Assume that $(G,+)$ is an abelian group and let $c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}$ be a generalized exponential function.
(i) For every sequence $\left(\lambda_{k}\right)_{k \in|2, s|}$,
$F(t, X)=c_{1}(t) X+\sum_{k=1}^{s}\left[\lambda_{k}\left(c_{1}(t)^{k}-c_{1}(t)\right)+c_{1}(t) P_{k}\left(c_{1}(t) ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right] X^{k}$
is a solution of the translation equation (4).
(ii) Every solution (20) of the translation equation (4) has a representation

$$
\begin{equation*}
F(t, X)=\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X) \quad \text { for } t \in G \tag{21}
\end{equation*}
$$

with some $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$.
(iii) Conversely, each $F(t, X)$ given by (21) is a solution of (4) and has a representation (20) with some sequence $\left(\lambda_{k}\right)_{k \in|2, s|}$.
(iv) If c_{1} takes infinitely many values, then (20) and (21) yield the general solution of (4) (with unique sequences $\left(\lambda_{k}\right)_{k \in|2, s|}$ and $\left.\left(v_{k}\right)_{k \in|2, s|}\right)$.
Proof. (i) is just a part of Th. 2. Let $F(t, X)=c_{1}(t) X+\sum_{k=2}^{s} c_{k}(t) X^{k}$ be a solution of the translation equation (4). Then, by Lemma 2 if $s=\infty$, and from Cor. 1 for $s<\infty$, replacing Y by $c_{1}(t)$, we get

$$
\begin{aligned}
F(t, X) & =c_{1}(t) X+\sum_{k=2}^{s}\left[\lambda_{k}\left(c_{1}(t)^{k}-c_{1}(t)\right)+c_{1}(t) P_{k}\left(c_{1}(t) ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right] X^{k} \\
& =\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X)
\end{aligned}
$$

Further, (21) is a solution of (4), and the representation (20) may be proved as above in (iii). Finally, (iv) is a consequence of Th. 2, conditions (ii) and (iii), and uniqueness in Th. 2, Lemma 2 and Cor. $1 . \diamond$

Remark 2. The formal power series $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$ such that $F(t, X)=\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X)$, which exists on account of Prop. 1, need not be unique, because we do not assume that a sequence $\left(\lambda_{n}\right)_{n \in|2, s|}$ uniquely determines
$F(t, X)=c_{1}(t) X+\sum_{k=1}^{s}\left[\lambda_{k}\left(c_{1}(t)^{k}-c_{1}(t)\right)+c_{1}(t) P_{k}\left(c_{1}(t) ; \lambda_{2}, \ldots, \lambda_{k-1}\right)\right] X^{k}$.
If it is the case, then $S(X)$ is unique (cf. Lemma 2 and Cor. 1).
From Th. 2 and Prop. 1 we obtain the main result of the section.
Theorem 4. Let $s \geq 2$ be an integer or $s=\infty$. Let $(G,+)$ be an abelian group which admits a generalized exponential function from G into $\mathbb{K} \backslash\{0\}$ having infinitely many values. Assume that $(F(t, X))_{t \in G}$, $F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$, is a solution of the translation equation (4) with a generalized exponential function c_{1} taking infinitely many values. Then there exists a unique formal power series $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$ such that

$$
F(t, X)=\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X) \quad \text { for } t \in G
$$

Conversely, for each generalized exponential function $c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}$ and for every $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$, the family $F(t, X)=$ $=\left(S^{-1} \circ L_{c_{1}(t)} \circ S\right)(X)$ is a solution of the translation equation (4).

From Th. 4 we obtain nice formulas for coefficients functions of the solution of the translation equation (4) in the considered case.
Corollary 2. Let $s \geq 2$ be an integer or $s=\infty$. The general solution $(F(t, X))_{t \in G}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$, of the translation equation (4) with a generalized exponential function c_{1} taking infinitely many values is given by

$$
\begin{equation*}
c_{n}(t)=v_{n}\left(c_{1}(t)^{n}-c_{1}(t)\right)-\sum_{k=2}^{n-1} c_{k}(t) \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=2}^{n-k+1} v_{j}^{u_{j}} \text { for } t \in G, \tag{22}
\end{equation*}
$$

for $n \in|2, s|$, where $\left(v_{k}\right)_{k \in|2, s|}$ are arbitrary constants.
Proof. Since for every $S(X)=X+\sum_{j=2}^{s} v_{j} X^{j} \in \Gamma_{1}^{s}$ also $S^{-1}(X) \in \Gamma_{1}^{s}$, we derive from Th. 4 that the general solution $F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}$ of the translation equation (4) with a generalized exponential function c_{1} taking infinitely many values, may be given by the formula

$$
F(t, X)=\left(S \circ L_{c_{1}(t)} \circ S^{-1}\right)(X)
$$

where $S(X)=X+\sum_{k=2}^{s} v_{k} X^{k} \in \Gamma_{1}^{s}$ is an arbitrary formal power series. Thus, substituting $S(X)$ for X, we obtain $\left(F_{t} \circ S\right)(X)=S\left(c_{1}(t) X\right)$ for every $t \in G$, which is equivalent to the equality

$$
\sum_{k=1}^{s} c_{k}(t)\left(X+\sum_{l=2}^{s} v_{l} X^{l}\right)^{k}=c_{1}(t) X+\sum_{l=2}^{s} v_{l} c_{1}(t)^{l} X^{l} \quad \bmod X^{s+1}
$$

Thus, using the formulas (9), for every $n \in|2, s|$ we obtain (put $v_{1}=1$)

$$
c_{1}(t) v_{n}+\sum_{k=2}^{n-1} c_{k}(t) \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=2}^{n-k+1} v_{j}^{u_{j}}+c_{n}(t)=s_{n} c_{1}(t)^{n}
$$

from which we get (22). \diamond

4. The standard form of the solution of the translation equation for finite set $\{F(t, X): t \in G\}$

We are going to study one-parameter groups of formal power series $F(t, X)_{t \in G}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$, where s is a positive integer or $s=\infty$, under the assumption that the set $\{F(t, X): t \in G\}$ is finite. Note that then also im c_{1} must be finite. We will need some properties of (7). In [3] we considered a natural isomorphism between the groups $\left(\Gamma^{\infty}, \circ\right)$ and $\left(Z_{\infty}, \cdot\right)=L_{\infty}^{1}$, namely $\Psi: Z_{\infty} \rightarrow \Gamma^{\infty}$,

$$
\Psi\left(x_{1}, x_{2}, \ldots\right)(X)=\sum_{k=1}^{\infty} \frac{x_{k}}{k!} X^{k}
$$

Furthermore, in [2] are proved some properties of the group operation in L_{s}^{1}, which are also valid for the group L_{∞}^{1}. Using the isomorphism Ψ and these properties one can derive the following lemma.
Lemma 3 (cf. [2, Lemma 2]). Let p, q be integers such that $1 \leq p \leq q$. If $a_{j}=0$ for all $j \in|2, q|$ and $b_{j}=0$ for all $j \in|2, p|$, then d_{n} given by (7) are of the form

1) $d_{1}=a_{1} b_{1}$,
2) $d_{n}=0 \quad$ for $n \in|2, p|$,
3) $d_{n}=a_{1} b_{n} \quad$ for $n \in|p+1, q|$,
4) $d_{n}=a_{1} b_{n}+a_{n} b_{1}^{n} \quad$ for $\quad n \in|q+1, p+q|$.

From now on, if it will not be another stated, $s \geq 2$ is an integer or $s=\infty$. We begin with
Lemma 4. If $U(X)=X+\sum_{k=2}^{s} u_{k} X^{k} \in \Gamma_{1}^{s}$ and $u_{l} \neq 0$ for some $l \in$ $\in|2, s|$, then for every $n \in \mathbb{N}, n \geq 2$ we have $U^{n}(X) \neq X$. Moreover, for every $m, n \in \mathbb{N}$, $m \neq n$ we have $U^{m}(X) \neq U^{n}(X)$.

Proof. The proof is by induction on n. Let $n=2$. Put $l:=\min \{k \in$ $\left.\in|2, s|: u_{k} \neq 0\right\}$. Then $U(X)=X+u_{l} X^{l}+\sum_{k=l+1}^{s} u_{k} X^{k}$. Using Lemma $3(p=q=l-1)$ we obtain that $U^{2}(X)=(U \circ U)(X)=X+$ $+2 u_{l} X^{l}+\sum_{k=l+1}^{s} u_{k}^{\prime} X^{k}$ with some $u_{l+1}^{\prime}, \ldots, u_{s}^{\prime}$, and, since $u_{l} \neq 0$, so $U^{2}(X) \neq X$.

Assume now that for some $n \in|3, s|$ we have $U^{n-1}(X) \neq X$, and if

$$
U^{n-1}(X)=X+\sum_{k=2}^{s} v_{k} X^{k}
$$

then for $m:=\min \left\{k \in|2, s|: v_{k} \neq 0\right\}$ we have $m=l$ and $v_{l}=(n-1) u_{l}$ (cf. the case $n=2$). On account of Lemma 3 we get

$$
U^{n}(X)=\left(U^{n-1} \circ U\right)(X)=X+n u_{l} X^{l}+\sum_{k=l+1}^{s} v_{k}^{\prime} X^{k}
$$

with some $v_{l+1}^{\prime}, \ldots, v_{s}^{\prime}$. Finally, for $m, n \in \mathbb{N}, m \neq n$, we have
$U^{m}(X)=X+m u_{l} X^{l}+\sum_{k=l+1}^{s} w_{k} X^{k} \neq X+n u_{l} X^{l}+\sum_{k=l+1}^{s} w_{k}^{\prime} X^{k}=U^{n}(X)$,
which finishes the proof. \diamond
Lemma 5. Let $F(t, X)_{t \in G}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}$, $c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$, be a solution of the translation equation (4) (i.e. $\Theta_{G}^{s}: G \rightarrow \Gamma^{s}, \Theta_{G}^{s}(t)(X)=F(t, X)$ is a homomorphism) such that the set $\{F(t, X): t \in G\}=\Theta_{G}^{s}(G)$ is a finite group. Then $\operatorname{ker} c_{1}=\operatorname{ker} \Theta_{G}^{s}$.
Proof. Clearly, $\operatorname{ker} \Theta_{G} \subset \operatorname{ker} c_{1}$. For the proof by a contradiction let us suppose that for some $t_{0} \in \operatorname{ker} c_{1}, t_{0} \neq 0$, we have $\Theta_{G}\left(t_{0}\right)(X)=$ $=\sum_{k=1}^{s} c_{k}\left(t_{0}\right) X^{k}=X+\sum_{k=2}^{s} d_{k} X^{k}$, where $d_{l} \neq 0$ for some $l \in|2, s|$. Then $\Theta_{G}^{s}\left(n t_{0}\right)(X)=\left(\left(\Theta_{g}^{s}\left(t_{0}\right)\right)^{n}\right)(X)$ for every $n \in \mathbb{N}$, which jointly with Lemma 4 means that the image $\operatorname{im} \Theta_{G}^{s}$ is infinite. This contradiction proves $\operatorname{ker} c_{1}=\operatorname{ker} \Theta_{G}^{s}$. \diamond
Lemma 6. Let $F(X)=d_{1} X+\sum_{k=2}^{s} d_{k} X^{k} \in \Gamma^{s}$, where $d_{1} \in E_{m} \backslash\{1\}$ is a primitive root of the order m. Then there exists a formal power series $U(x)=X+\sum_{k=2}^{s} u_{k} X^{k} \in \Gamma_{1}^{s}$ and a sequence of constante $\left(\delta_{l m+1}\right)_{l \in|1, r|}$ such that

$$
\left(U \circ F \circ U^{-1}\right)(X)=d_{1} X+\sum_{l=1}^{r} \delta_{l m+1} X^{l m+1}=: N_{m}(X) \in \Gamma^{s},
$$

where r is the greatest positive integer such that $r m+1 \leq s$ if $s<\infty$ and $r=\infty$ otherwise $\left(N_{m}(X)\right.$ is called semicanonical form of $F(X)$, $c f .[9,11])$.

Proof. Let $F(X)=d_{1} X+\sum_{k=2}^{s} d_{k} X^{k} \in \Gamma^{s}$, where $d_{1} \in E_{m} \backslash\{1\}$ is a primitive root of unit of order m. We find $U(x)=X+\sum_{k=2}^{s} u_{k} X^{k} \in$ $\in \Gamma_{1}^{s}$ and $N_{m}(X)=d_{1} X+\sum_{l=1}^{r} \delta_{l m+1} X^{l m+1}=d_{1} X+\sum_{k=2}^{s} \delta_{k} X^{k}$, where r is the greatest positive integer such that $r m+1 \leq s$ if $s<\infty$ and $r=\infty$ otherwise, $\delta_{k}=0$ for $k \in|2, s|$ with $k \not \equiv 1 \bmod m$, such that $(U \circ F)(X)=\left(N_{m} \circ U\right)(X)$, i.e. the system

$$
\left\{\begin{array}{l}
d_{2}+u_{2} d_{1}^{2}=d_{1} u_{2}, \\
d_{n}+\sum_{k=2}^{n-1} u_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}+u_{n} d_{1}^{n}=d_{1} u_{n} \text { for } n \in|3, m|, \\
d_{m+1}+\sum_{k=2}^{m} u_{k} \sum_{\bar{u}_{m+1} \in U_{m+1, k}} B_{\bar{u}_{m+1}} \prod_{j=1}^{m-k+2} d_{j}^{u_{j}}+u_{m+1} d_{1}^{m+1} \\
=d_{1} u_{m+1}+\delta_{m+1} \text { if } m+1 \leq s, \\
d_{n}+\sum_{k=2}^{n-1} u_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}+u_{n} d_{1}^{n}= \\
d_{1} u_{n}+\sum_{k=2}^{n-1} \delta_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}}+\delta_{n} \text { for } n \in|m+2, s|
\end{array}\right.
$$

is satisfied with $\delta_{k}=0$ for $k \geq 2$ with $k \not \equiv 1 \bmod m$. This is equivalent to the system of equalities

As it is easy to see, we can find a (not unique) solution $\left(u_{k}\right)_{k \in|2, s|}$, $\left(\delta_{l m+1}\right)_{l \in|1, r|}$ (here l is the greatest integer such that $r m+1 \leq s$ if $s<\infty$ and $r=\infty$ otherwise) of this system. Indeed, we find

$$
\left\{\begin{array}{l}
u_{2}=\left(d_{1}^{2}-d_{1}\right)^{-1}-d_{2}, \\
u_{n}=\left(d_{1}^{n}-d_{1}\right)^{-1}\left(-d_{n}-\sum_{k=2}^{n-1} u_{k} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}\right) \text { for } n \in|3, m| \\
\delta_{m+1}=d_{m+1}+\sum_{k=2}^{m} u_{k} \sum_{\bar{u}_{m+1} \in U_{m+1, k}} B_{\bar{u}_{m+1}} \prod_{j=1}^{m-k+2} d_{j}^{u_{j}}
\end{array}\right.
$$

and we fix u_{m+1} arbitrarily. Finally, consider for some $n \in|m+2, s|$ the equation
$u_{n}\left(d_{1}^{n}-d_{1}\right)-\delta_{n}=-d_{n}+\sum_{k=2}^{n-1} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}}\left(\delta_{k} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}}-u_{k} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}\right)$.
Not that the sum $\sum_{k=2}^{n-1} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}}\left(\delta_{k} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}}-u_{k} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}\right)$ contains only terms with indices less than n. If $n \not \equiv 1 \bmod m$, then $\delta_{n}=0$ and
$u_{n}=\left(d_{1}^{n}-d_{1}\right)^{-1}\left(-d_{n}+\sum_{k=2}^{n-1} \sum_{\bar{u}_{n} \in U_{n, k}} B_{\bar{u}_{n}}\left(\delta_{k} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}}-u_{k} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}}\right)\right)$.
Otherwise we fix $u_{l m+1}$ arbitrarily and we find

$$
\delta_{l m+1}=d_{l m+1}-\sum_{k=2}^{l m} \sum_{\bar{u}_{l m+1} \in U_{l m+1, k}} B_{\bar{u}_{l m+1}}\left(\delta_{k} \prod_{j=2}^{l m-k+2} u_{j}^{u_{j}}-u_{k} \prod_{j=1}^{l m-k+2} d_{j}^{u_{j}}\right) .
$$

Thus we find $U(X)$ and $N_{m}(X)$ satisfying $(U \circ F)(X)=\left(N_{m} \circ U\right)(X)$. \diamond
Lemma 7. Let $N_{m}(X)=d_{1} X+\sum_{l=1}^{r} \delta_{l m+1} X^{l m+1}$, where $d_{1} \in E_{m} \backslash\{1\}$ is a primitive root of order m, r is the greatest positive integer such that $r m+1 \leq s$ if $s<\infty$ and $r=\infty$ otherwise, $\delta_{l m+1} \neq 0$ for some $l \in|1, r|$. Then, for every $p, q \in \mathbb{N}, p \neq q$, we have $N_{m}^{p}(X) \neq N_{m}^{q}(X)$.
Proof. Let $\nu:=\min \left\{l \in|1, r|: \delta_{l m+1} \neq 0\right\}$. Then

$$
N_{m}(X)=d_{1} X+\delta_{\nu m+1} X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1} X^{k m+1}
$$

We prove by induction on n that

$$
N_{m}^{n}(X)=d_{1}^{n} X+n d_{1}^{n-1} \delta_{\nu m+1} X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime} X^{k m+1}
$$

with some $\left(\delta_{l m+1}\right)_{l \in|\nu+1, r|}$ Put $n=2$. Then, on account of Lemma 3, we get

$$
\begin{aligned}
N_{m}^{2}(X) & =d_{1}^{2} X+\left(d_{1} \delta_{\nu m+1}+\delta_{\nu m+1} d_{1}^{\nu m+1}\right) X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime \prime} X^{k m+1} \\
& =d_{1}^{2} X+2 d_{1} \delta_{\nu m+1} X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime \prime} X^{k m+1}
\end{aligned}
$$

Assuming now that for some $n \geq 3$ we have

$$
N_{m}^{n-1}(X)=d_{1}^{n-1}+(n-1) d_{1}^{n-2} \delta_{\nu m+1} X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime \prime} X^{k m+1}
$$

we obtain, on account of Lemma 3,

$$
\begin{aligned}
& N_{m}^{n}(X)=\left(N_{m}^{n-1} \circ N_{m}\right)(X) \\
& =d_{1}^{n} X+\left(d_{1}^{n-1} \delta_{\nu m+1}+(n-1) \delta_{\nu m+1} d_{1}^{n-2} d_{1}^{\nu m+1}\right) X^{\nu m+1} \\
& +\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime} X^{k m+1}=d_{1}^{n} X+n d_{1}^{n-1} \delta_{\nu m+1} X^{\nu m+1}+\sum_{k=\nu+1}^{r} \delta_{k m+1}^{\prime} X^{k m+1} .
\end{aligned}
$$

Since $p d_{1}^{p-1} \delta_{\nu m+1} \neq q d_{1}^{q-1} \delta_{\nu m+1}$ for every $p \neq q$, so $N_{m}^{p}(X) \neq N_{m}^{q}(X)$. \diamond Now we are in a position to prove the main result of this section.
We begin with the simple case when $G=E_{m}$ for some integer $m \geq 2$. We prove
Proposition 2. A family $F(t, X)_{t \in E_{m}}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}$: $: E_{m} \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: E_{m} \rightarrow \mathbb{K}$ for $k \in|2, s|$, is a solution of the translation equation

$$
\begin{equation*}
F_{z_{1} \cdot z_{2}}(X)=\left(F_{z_{1}} \circ F_{z_{2}}\right)(X) \quad \text { for } z_{1}, z_{2} \in E_{m} \tag{24}
\end{equation*}
$$

such that c_{1} is a multiplicative function with $\operatorname{im} c_{1}=E_{m}$ if and only if there exists a power series $U(X) \in \Gamma_{1}^{s}$ such that

$$
\begin{equation*}
F_{z}(X)=\left(U^{-1} \circ L_{c_{1}(z)} \circ U\right)(X) \quad \text { for every } z \in E_{m} \tag{25}
\end{equation*}
$$

Proof. Clearly, the family $(F(z, X))_{z \in E_{m}}$ defined by (25) is a solution of the translation equation (24).

Now, let $F(t, X)_{t \in E_{m}}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: E_{m} \rightarrow \mathbb{K} \backslash\{0\}$, $c_{k}: E_{m} \rightarrow \mathbb{K}$ for $k \in|2, s|$, be a solution of (24). Clearly $c_{1}\left(z_{0}\right)$, where $z_{0}=e^{\frac{2 \pi}{m} i}$, is a primitive root of the unit of order m. Then, from Lemma 6, for $F\left(z_{0}, X\right)=c_{1}\left(z_{0}\right) X+\sum_{k=2}^{s} c_{k}\left(z_{0}\right) X^{k}$ there exists a formal power series $U(x)=X+\sum_{k=2}^{s} u_{k} X^{k} \in \Gamma_{1}^{s}$ such that

$$
\left(U \circ F_{z_{0}} \circ U^{-1}\right)(X)=c_{1}\left(z_{0}\right) X+\sum_{l=1}^{r} \delta_{l m+1} X^{l m+1}
$$

with some $\left(\delta_{l m+1}\right)_{l \in \mathbb{N}}$, where r is the greatest integer such that $r m+1 \leq s$ if $s<\infty$ and $r=\infty$ otherwise. We will show that $\delta_{l m+1}=0$ for every
$l \in|1, r|$. If not then, on account of Lemma 7 , for $p, q \in \mathbb{N}, p \neq q$, we obtain

$$
\left(U \circ F_{z_{0}} \circ U^{-1}\right)^{p}(X) \neq\left(U \circ F_{z_{0}} \circ U^{-1}\right)^{q}(X),
$$

or, equivalently, $\left(F_{z_{0}}\right)^{p}(X) \neq\left(F_{z_{0}}\right)^{q}(X)$. In particular, we have

$$
F_{z_{0}}(X)=F_{z_{0}^{m+1}}(X)=\left(F_{z_{0}}\right)^{m+1}(X) \neq\left(F_{z_{0}}\right)^{1}(X)=F_{z_{0}}(X) .
$$

This contradiction proves that $\delta_{l m+1}=0$ for every $l \in|1, r|$. Thus we have

$$
\left(U \circ F_{z_{0}} \circ U^{-1}\right)(X)=c_{1}\left(z_{0}\right) X
$$

Then, for arbitrary $E_{m} \ni z=e^{\frac{2 \pi i k}{m}}$ with $0 \leq k \leq m-1$, we have $z=z_{0}^{k}$, and

$$
\begin{aligned}
& \left(U \circ F_{z} \circ U^{-1}\right)(X)=\left(U \circ F_{z_{0}^{k}} \circ U^{-1}\right)(X)=\left(U \circ\left(F_{z_{0}}\right)^{k} \circ U^{-1}\right)(X) \\
= & \left(U \circ F_{z_{0}} \circ U^{-1}\right)^{k}(X)=\left(c_{1}\left(z_{0}\right)\right)^{k} X=c_{1}\left(z_{0}^{k}\right) X=c_{1}(z) X=L_{c_{1}(z)}(X)
\end{aligned}
$$ which means that (25) holds. \diamond

Theorem 5. Let $(G,+)$ be an abelian group. To each $F(t, X)_{t \in G}$, $F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in$ $\in|2, s|$, being a solution of the translation equation (4) such that the set $\{F(t, X): t \in G\}$ is finite, there exists a power series $U(X) \in \Gamma_{1}^{s}$ such that

$$
\begin{equation*}
F_{t}(X)=\left(U^{-1} \circ L_{c_{1}(t)} \circ U\right)(X) \quad \text { for every } t \in G \tag{26}
\end{equation*}
$$

Conversely, a family $F(t, X)_{t \in G}$ defined by (26) is a solution of the translation equation (4).
Proof. Assume that $F(t, X)_{t \in G}, F(t, X)=\sum_{k=1}^{s} c_{k}(t) X^{k}, c_{1}: G \rightarrow$ $\rightarrow \mathbb{K} \backslash\{0\}, c_{k}: G \rightarrow \mathbb{K}$ for $k \in|2, s|$, is a solution of the translation equation (4) such that the set $\{F(t, X): t \in G\}$ is finite. We know that c_{1} is a generalized exponential function, i.e. it is a homomorphism. Then, for the homomorphism $\Theta_{G}: G \rightarrow \Gamma^{s}, \Theta_{G}(t)(X)=F(t, X)$, on account of Lemma $5, \operatorname{ker} c_{1}=\operatorname{ker} \Theta_{G}$. Thus, by the first isomorphism theorem (cf. [6, p. 16]), $\{F(t, X): t \in G\}=\operatorname{im} \Theta_{G} \cong G / \operatorname{ker} \Theta_{G}=G /$ $/ \operatorname{ker} c_{1} \cong \operatorname{im} c_{1}$ (which means that also $\operatorname{im} c_{1}$ is finite). So assume that $\operatorname{card}\{F(t, X): t \in G\}=\operatorname{cardim} \Theta_{G}=\operatorname{cardim} c_{1}=: m$ with a positive integer m. This means that $\operatorname{im} c_{1} \cong E_{m}$ and there exists a canonical homomorphism $\kappa: G \rightarrow G / \operatorname{ker} c_{1} \cong E_{m}$. Then the homomorphism Θ_{G} must be of the form $\Theta_{G}=\Theta_{E_{m}} \circ \kappa$, where $\Theta_{E_{m}}: E_{m} \rightarrow \Gamma^{s}$ and κ : $: G \rightarrow E_{m}$ are homomorphisms such that $\Theta_{E_{m}}(t)(X)=\sum_{k=1}^{s} \bar{c}_{k}(t) X^{k}$, $\bar{c}_{1}: E_{m} \rightarrow E_{m}$ is a multiplicative function such that $\operatorname{im} \bar{c}_{1}=E_{m}, \bar{c}_{1} \circ \kappa=$ $=c_{1}$, and $\bar{c}_{k}: E_{m} \rightarrow \mathbb{K}$ for $k \in|2, s|$. Hence $F(t, X)=\bar{F}(\kappa(t), X)$, where $\bar{F}(z, X)=\Theta_{E_{m}}(t)(X)$.

If $m=1$ then clearly $c_{1}=1, F(t, X)=X$ for every $t \in G$, so with every $U(X) \in \Gamma_{1}^{s}$ we have $\left.\left(U \circ F_{t} \circ U^{-1}\right)(X)\right)=\left(U \circ U^{-1}\right)(X)=X$ for $t \in G$. Thus assume that $m \geq 2$. Then, from Prop. 2, we get $\left(U \circ F_{t} \circ U^{-1}\right)(X)=\left(U \circ \bar{F}_{\kappa(t)} \circ U^{-1}\right)(X)=\bar{c}_{1}(\kappa(t)) X=c_{1}(t) X=L_{c_{1}(t)}(X)$, which completes the proof. \diamond
Remark 3. Note that a power series $U(X)=X+\sum_{k=2}^{s} u_{k} X^{k}$, which determines a particular solution $(F(t, X))_{t \in G}$ of the translation equation (4) in the case considered here is not unique. This comes from the fact that the solution $\left(u_{k}\right)_{k \in|2, s|}$ of the system (23) is not unique. Moreover, if a power series $U(X) \in \Gamma_{1}^{s}$ determines a solution of the translation equation (4), then also any power series $W(X) \in \Gamma_{1}^{s}, W(X)=(V \circ U)(X)$ determines the same solution, where $V(X)=X+\sum_{l=1}^{r} v_{l m+1} X^{l m+1}$ with arbitrary sequence $\left(v_{l m+1}\right)_{l \in|1, r|}$, where $r=\infty$ if $s=\infty$ and r is the greatest integer such that $r m+1 \leq s$ provided s is finite. Indeed, $\left(U^{-1} \circ L_{c_{1}(t)} \circ U\right)(X)=\Theta_{G}(t)(X)=\left(W^{-1} \circ L_{c_{1}(t)} \circ W\right)(X) \quad$ for $t \in G$, then $c_{1}(t) X=\left(\left(W \circ U^{-1}\right)^{-1} \circ L_{c_{1}(t)} \circ\left(W \circ U^{-1}\right)\right)(X)$, so with $V=W \circ$ $\circ U^{-1}$ we have $\left(V^{-1} \circ L_{c_{1}(t)} \circ V\right)(X)=c_{1}(t) X$, or, which is the same $V\left(c_{1}(t) X\right)=c_{1}(t) V(X)$ for each $t \in G$. Since $U(X), W(X) \in \Gamma_{1}^{s}$, so also $V(X) \in \Gamma_{1}^{s}$. Put $V(X)=X+\sum_{k=2}^{s} v_{k} X^{k}$. Then we get

$$
c_{1}(t) X+\sum_{k=1}^{s} v_{k} c_{1}(t)^{k} X^{k}=c_{1}(t) X+\sum_{k=1}^{s} c_{1}(t) v_{k} X^{k}
$$

and hence $v_{k}\left(c_{1}(t)^{k}-c_{1}(t)\right)=0$ for $t \in G$ and $k \in|2, s|$. Using the fact that $\operatorname{im} c_{1}=E_{m}$, we get $v_{k}=0$ if $k \not \equiv 1 \bmod m$ and $v_{l m+1}$ is arbitrary for $l \in|1, r|$. Thus we have $W(X)=(V \circ U)(X)$, where $V(X)=X+$ $+\sum_{l=1}^{r} v_{l m+1} X^{l m+1}$.

References

[1] HENRICI, P.: Applied and computational complex analysis, Vol. I, Power series - integration - conformal mapping - location of zeros, John Wiley \& Sons, New York-London-Sydney-Toronto, 1974.
[2] JABŁOŃSKI, W.: On some subsemigroups of the group L_{s}^{1}, Rocznik Nauk.Dydak. WSP w Krakowie 14/189 (1997), 101-119.
[3] JABŁOŃSKI, W. and REICH L.: On the solutions of the translation equation in rings of formal power series, Abh. Math. Sem. Univ. Hamburg 75 (2005), 179-201.
[4] JABEOŃSKI, W. and REICH L.: On the form of homomorphisms into the differential group L_{s}^{1} and their extensibility, Result. Math. 47 (2005), 61-68.
[5] JABEOŃSKI, W. and REICH L.: On homomorphisms of an abelian group into the group of invertible formal power series (manuscript).
[6] LANG, S.: Algebra, Addison-Wesley Publishing Co., 1965.
[7] MIDURA S.: Sur les solutions de l'équation de translation, Aequationes Math. 1 (1968), 77-84.
[8] MOSZNER Z.: Une généralisation d'un résultat de J. Aczél et M. Hosszú sur l'équation de translation, Aequationes Math. 37 (1989), 267-278.
[9] REICH, L.: On power series transformations in one indeterminate having iterative roots of given order and with given multiplier, in: European Conference on Iteration Theory (ECIT 91) (Lisbon, 1991), 210-216, World Sci. Publ., River Edge, NJ, 1992.
[10] REICH L. und SCHWAIGER J.: Über einen Satz von Shl. Sternberg in der Theorie der analytischen Iterationen, Monatshefte für Mathematik 83 (1977), 207-221.
[11] REICH, L. und SCHWAIGER, J.: Linearisierung formal-biholomorpher Abbildungen und Iterationsprobleme, Aequationes Math. 20 (1980), 224-243.

[^0]: E-mail addresses: wojciech@univ.rzeszow.pl, ludwig.reich@kfunigraz.ac.at

