Mathematica Pannonica 18/2 (2007), 169–187

ON THE STANDARD FORM OF THE SOLUTION OF THE TRANSLATION EQUATION IN RINGS OF FORMAL POWER SERIES

Wojciech Jabłoński

Department of Mathematics, University of Rzeszow, Rejtana 16 A, 35-310 Rzeszów, Poland

Ludwig Reich

Institute of Mathematics, Karl-Franzens-University Graz, Heinrichstrasse 36, A-8010 Graz, Austria

Received: August 2007

MSC 2000: Primary 39 B 72, 13 F 25; Secondary 13 J 05, 13 H 05

Keywords: Formal power series, translation equation.

Abstract: The aim of the paper is to find a general form of homomorphisms $\Theta: G \to \Gamma, \Theta(t)(X) = \sum_{k=1}^{\infty} c_k(t) X^k$, from an abelian group (G, +) into the group (Γ, \circ) of invertible formal power series with coefficients in $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, under the condition that c_1 takes infinitely many values. This is equivalent to determine all the solutions $F(t, X) = \sum_{k=1}^{\infty} c_k(t) X^k$ of the translation equation F(s+t, X) = F(s, F(t, X)) for $s, t \in G$.

We will show, using simultaneous conjugation, that in this case the solution of the translation equation in rings of formal power series has the standard form $F(t, X) = S^{-1}(c_1(t)S(X))$ well known for the solutions of the translation equation for real functions. All these results will be proved also in the ring of *s*-truncated formal power series.

 $[\]label{eq:entropy} \ensuremath{\textit{E-mail addresses: wojciech@univ.rzeszow.pl, ludwig.reich@kfunigraz.ac.at}$

1. Introduction

By $\mathbb{K}[X]$ we denote the ring of all formal power series $\sum_{k=0}^{\infty} c_k X^k$ with coefficients $c_k \in \mathbb{K}$, where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ is a field of real or complex numbers. For a formal power series $f(X) = \sum_{k=0}^{\infty} c_k X^k$, where $c_k \neq 0$ for some $k \in \mathbb{N} \cup \{0\}$ (\mathbb{N} stands here for the set of all positive integers), we define

 $\operatorname{ord} f(X) := \min\{i \in \mathbb{N} \cup \{0\} : c_i \neq 0\}.$

assuming additionally $\operatorname{ord}\left(\sum_{i=1}^{\infty} 0X^{i}\right) = \infty$. It is known that the set $\Gamma = \{f(X) \in \mathbb{K}[X] : \operatorname{ord} f(X) = 1\}$ with the substitution \circ as a binary operation is a group. Moreover, the set $\Gamma_{1} = \{f(X) = \sum_{k=1}^{\infty} c_{k}X^{k} \in \Gamma : c_{1} = 1\}$ is a subgroup of Γ . A very good reference for this topic is [1].

With every $f(X) = \sum_{i=0}^{\infty} c_i X^i \in \mathbb{K}[X]$, we may associate the *s*-truncation of f(X) defined by

$$f^{[s]}(X) := \sum_{i=0}^{s} c_i X^i \in \mathbb{K}[\![X]\!]_s \subset \mathbb{K}[\![X]\!].$$

In the set $\mathbb{K}[\![X]\!]_s$ of all s-truncated formal power series $f(X) = \sum_{i=0}^s c_i X^i$ $(\mathbb{K}[\![X]\!]_s$ may be treated as a set of all polynomials of degree at most s) we introduce, in a natural way, an addition of truncated formal power series. It appears that a multiplication and a substitution must be defined in a specific way that $\mathbb{K}[\![X]\!]_s$ should be closed under them. Let for $f(X), g(X) \in \mathbb{K}[\![X]\!]_s$,

$$(fg)(X) := (fg)^{[s]}(X),$$

and, in the case when $\operatorname{ord} g(X) \ge 1$,

$$(f \circ g)(X) := (f \circ g)^{[s]}(X).$$

Then $(\mathbb{K}[\![X]\!]_s, +, \cdot)$ is a ring, the set $\Gamma^s := \{p(X) \in \mathbb{K}[\![X]\!]_s : \text{ ord } p(X) = = 1\}$ is a group under substitution and $\Gamma_1^s = \{f(X) = \sum_{k=1}^s c_k X^k \in \Gamma^s : c_1 = 1\}$ is a subgroup. To unify notation, from now on by Γ^{∞} and Γ_1^{∞} we will mean Γ and Γ_1 .

Definition 1. Let s be a positive integer or $s = \infty$. By a one-parameter group of formal power series we understand every homomorphism of a group (G, +) into (Γ^s, \circ) , i.e. each function $\Theta_G : G \to \Gamma^s$ which satisfies the equation

(1) $\Theta_G(t_1 + t_2) = \Theta_G(t_1) \circ \Theta_G(t_2) \quad \text{for } t_1, t_2 \in G.$

Let $F_t(X) = F(t, X) = \Theta_G(t)(X) \in \Gamma$. In the case when Θ_G is a one-parameter group of formal power series we will also say that the family $(F_t(X))_{t\in G} = (F(t, X))_{t\in G}$ forms a one-parameter group of formal

power series. From (1) we then obtain, as an equivalent formulation, the so called translation equation (in the case $s = \infty$)

(2) $F(t_1 + t_2, X) = F(t_1, F(t_2, X))$ for $t_1, t_2 \in G$,

in a ring of formal power series, and (in the case $s < \infty$),

(3) $F(t_1 + t_2, X) = F(t_1, F(t_2, X)) \mod X^{s+1}$ for $t_1, t_2 \in G$,

in the ring of s-truncated formal power series. Then (2) and (3) may jointly be written in the form

(4)
$$F_{t_1+t_2}(X) = (F_{t_1} \circ F_{t_2})(X)$$
 for $t_1, t_2 \in G$.

We recall some basic facts about solutions of the translation equation in $\mathbb{K}[X]$, which will be needed in what follows. For integers $k \leq l$, by |k, l| we denote the set of all integers n with $k \leq n \leq l$, whereas by $|k, \infty|$ we will mean the set of all $n \geq k$. If k > l, then we assume that $|k, l| = \emptyset$. Moreover, $\sum_{t \in \emptyset} a_0 = 0$ and $\prod_{t \in \emptyset} a_t = 1$.

Let s be a positive integer or $s = \infty$ and let $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$, where $c_1 : G \to \mathbb{K} \setminus \{0\}, c_k : G \to \mathbb{K}$ for $k \in [2, s]$. Then from (2) we get

(5)
$$\sum_{k=1}^{\infty} c_k (t_1 + t_2) X^k = \sum_{l=1}^{\infty} c_l (t_1) \left(\sum_{j=1}^{\infty} c_j (t_2) X^j \right)^l, \quad t_1, t_2 \in G.$$

Analogously, from (3) we obtain

(6)
$$\sum_{k=1}^{s} c_k(t_1+t_2)X^k = \sum_{l=1}^{s} c_l(t_1) \left(\sum_{j=1}^{s} c_j(t_2)X^j\right)^l \mod X^{s+1}, t_1, t_2 \in G.$$

It is known (cf. [3]) that if either

It is known (cf. [3]) that if either

$$\sum_{k=1}^{\infty} a_k \left(\sum_{l=1}^{\infty} b_l X^l \right)^k = \sum_{n=1}^{\infty} d_n X^n,$$

or

$$\sum_{k=1}^{s} a_k \left(\sum_{l=1}^{s} b_l X^l \right)^k = \sum_{n=1}^{s} d_n X^n \mod X^{s+1},$$

then

(7)
$$d_n = \sum_{k=1}^n a_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=1}^n b_j^{u_j} \quad \text{for } n \in |1,s|,$$

where

$$U_{n,k} := \left\{ \overline{u}_n := (u_1, \dots, u_n) \in |0, k|^n : \sum_{j=1}^n u_j = k \land \sum_{j=1}^n j u_j = n \right\},$$

$$B_{\overline{u}_n} := \frac{k!}{\prod\limits_{j=1}^n u_j!}$$

As examples of (7) we quote

(8)
$$d_{1} = a_{1}b_{1}, \\ d_{2} = a_{1}b_{2} + a_{2}b_{1}^{2}, \\ d_{3} = a_{1}b_{3} + 2a_{2}b_{1}b_{2} + a_{3}b_{1}^{3}.$$

Moreover, for every $n \ge 2$, we have (see [3, Cor. 2])

(9)
$$d_n = a_1 b_n + \sum_{k=2}^{n-1} a_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=1}^{n-k+1} b_j^{u_j} + a_n b_1^n$$

Then, from (5) and (6), on account of (8) and (9), by comparing coefficients we obtain the system of functional equations

$$(10) \begin{cases} c_1(t_1+t_2) = c_1(t_1)c_1(t_2) \\ c_2(t_1+t_2) = c_1(t_1)c_2(t_2) + c_2(t_1)c_1(t_2)^2 \\ c_3(t_1+t_2) = c_1(t_1)c_3(t_2) + 2c_2(t_1)c_1(t_2)c_2(t_2) + c_3(t_1)c_1(t_2)^3 \\ c_n(t_1+t_2) = c_1(t_1)c_n(t_2) \\ + \sum_{k=2}^{n-1} c_k(t_1) \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=1}^{n-1} c_j(t_2)^{u_j} + c_n(t_1)c_1(t_2)^n, \ n \in [4, s], \end{cases}$$

for $t_1, t_2 \in G$. Note that c_1 must be a generalized exponential function.

The main results of our paper are Theorems 3, 4 and 5. In Th. 4 we state for a solution $F(t, X)_{t \in G}$, $F(t, X) = \sum_{i=1}^{s} c_i(t)X^i$ of (4), where s is a positive integer or $s = \infty$ and (G, +) is an abelian group such that the generalized exponential function c_1 takes infinitely many values that there exists a unique $S(X) \in \Gamma_1^s$ for which

$$F(t,X) = \left(S^{-1} \circ L_{c_1(t)} \circ S\right)(X) \quad \text{for all } t \in G$$

holds, the so called standard form of the solution of the translation equation. Here $L_{\rho}(X) = \rho X$. Th. 4 is based upon Th. 3, where we show the same representation for solutions $F(t, X)_{t \in \mathbb{K}}$, $F(t, X) = \sum_{i=1}^{\infty} c_i(t)X^i$ of (2) with regular (C^{∞} or entire) coefficient functions, under the assumption $c_1 \neq 1$. Th. 5 deals with the situation where $F(t, X)_{t \in G}$ is a finite one-parameter group of formal power series (then clearly im c_1 is also finite). We obtain here the standard form for $F(t, X)_{t \in G}$, too. Our method of proof uses certain semicanonical forms of formal power series with respect to conjugation, when the multiplier of the series is a (complex) root of 1.

In the following we use the standard notation

$$\frac{\partial F(t,X)}{\partial X} := \sum_{k=1}^{\infty} kc_k(t) X^{k-1},$$

and, in the case when $G = \mathbb{K}$ and the coefficient functions are differentiable,

$$\frac{\partial F(t,X)}{\partial t} := \sum_{k=1}^{\infty} c'_k(t) X^k.$$

For $G = \mathbb{K}$ the following theorem describes the general regular solution of the translation equation (2) in the ring of formal power series, which means that the coefficient functions are analytic when $\mathbb{K} = \mathbb{C}$, or C^{∞} , when $\mathbb{K} = \mathbb{R}$.

Theorem 1 (cf. [10]). (i) If a family $(F(t, X))_{t \in \mathbb{K}}$ is a regular one-parameter group of formal power series, then there exists a formal power series $H(X) \in \mathbb{K}[\![X]\!]$ such that

(11)
$$\begin{cases} \frac{\partial F(t,X)}{\partial t} = H(F(t,X)) & \text{for } t \in \mathbb{K}, \\ F(0,X) = X. \end{cases}$$

(ii) For each formal power series $H(X) \in \mathbb{K}[X]$ with $\operatorname{ord} H \geq 1$, the family $(F(t,X))_{t\in\mathbb{K}}$ defined by (11) is a regular one-parameter group of formal power series.

(iii) The series H is uniquely determined by $(F(t,X))_{t\in\mathbb{K}}$. It is given by the formula $H(X) := \frac{\partial F(t,X)}{\partial t}|_{t=0}$. In particular, $\operatorname{ord} H \ge 1$.

Remark 1. Condition (iii) establishes a 1 - 1-correspondence between regular one-parameter groups and formal series H with ord $H \ge 1$.

The general solution of the system of equations (2) under some assumptions on c_1 is described in the following

Theorem 2 (cf. [5, Th. 6]). Let s be a positive integer or $s = \infty$. Assume that (G, +) is an abelian group which admits a generalized exponential function from G into $\mathbb{K} \setminus \{0\}$ with infinite image. Then there exists a sequence of polynomials $(P_n)_{n\geq 2}$ defined by

$$\begin{cases} P_2(X) = 0; \quad R_2(X; \lambda_2) = \lambda_2 X - \lambda_2 \\ P_n(X; \lambda_2, \dots, \lambda_{n-1}) \\ = \sum_{k=2}^{n-1} ((k-1)\lambda_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \int_1^X t^{k-2} \prod_{j=2}^{n-k+1} (R_j(t; \lambda_2, \dots, \lambda_j))^{u_j} dt \\ R_n(X; \lambda_2, \dots, \lambda_n) = \lambda_n (X^{n-1} - 1) + P_n(X; \lambda_2, \dots, \lambda_{n-1}), \end{cases}$$

such that for every solution $(c_n)_{n\in[1,s]}$ of the system of functional equations (10) (that is for every solution $F(t, X)_{g\in G}$, $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$ of the translation equation (4)) with a generalized exponential function c_1 taking infinitely many values, there exists a unique sequence of constants $(\lambda_n)_{n\in[2,s]}$ such that

 $c_n(t) = \lambda_n(c_1(t)^n - c_1(t)) + c_1(t)P_n(c_1(t); \lambda_2, \dots, \lambda_{n-1}), t \in G, n \in [2, s].$ Conversely, for every exponential function c_1 and for each sequence $(\lambda_n)_{n \in [2,s]}$, the sequence $(c_n)_{n \in [2,s]}$ defined by (12) is a solution of the system (10).

2. The standard form of the general regular solution of the translation equation with $c_1 \neq 1$

Now we will give, using simultaneous conjugation, another form of the solution $(F(t, x))_{t \in \mathbb{K}}$ of the translation equation in a ring of formal power series, which is familiar for representations of solutions of the translation equation satisfying some regularity conditions (cf. [7] and [8]). **Theorem 3.** Let $(F(t, X))_{t \in \mathbb{K}}$, $F(t, X) = \sum_{k=1}^{\infty} c_k(t) X^k$, $c_1 : \mathbb{K} \to \mathbb{K} \setminus \{0\}$, $c_k : \mathbb{K} \to \mathbb{K}$ for $k \ge 2$, be a regular solution of the translation equation (2) with an exponential function $c_1 \ne 1$. Then there exists a unique formal power series $S(X) = X + \sum_{k=2}^{\infty} v_k X^k \in \Gamma_1$ such that $F(t, X) = S^{-1}(c_1(t)S(X))$ for $t \in \mathbb{K}$.

Conversely, for every generalized exponential function $c_1: \mathbb{K} \to \mathbb{K} \setminus \{0\}$ and for an arbitrary $S(X) = X + \sum_{k=2}^{\infty} v_k X^k \in \Gamma_1$, the function F(t, X) = $= S^{-1}(c_1(t)S(X))$ is a solution of the translation equation (2).

Proof. Let $F(t, X) = \sum_{k=1}^{\infty} c_k(t) X^k$ be a regular solution of the translation equation (2) with an exponential function $c_1 \neq 1$. Then, in virtue of Th. 1, there exists a formal power series $H(X) \in \Gamma$ such that

$$\frac{\partial F(t,X)}{\partial t} = H(F(t,X)) \quad \text{for } t \in \mathbb{K},$$

and *H* is given by the formula $H(X) = \frac{\partial F(t,X)}{\partial t}|_{t=0}$. Let $\lambda_1 \neq 0$ and put $H(X) = \lambda_1 \left(X + \sum_{k=2}^{\infty} (k-1)\lambda_k X^k \right)$. Then $c_1(t) = e^{\lambda_1 t}$ for $t \in \mathbb{K}$.

First, suppose that there is a formal power series $S(X) = X + \sum_{k=2}^{\infty} v_k X^k \in \Gamma_1$ such that

(13)
$$S(F(t,X)) = e^{\lambda_1 t} S(X) \quad \text{for } t \in \mathbb{K}.$$

Differentiating (13) with respect to t we get

$$\left. \frac{dS}{dX} \right|_{F(t,X)} \cdot \frac{\partial}{\partial t} F(t,X) = \lambda_1 e^{\lambda_1 t} S(X).$$

Put t = 0. Then, since F(0, X) = X and $H(X) = \frac{\partial F(t, X)}{\partial t}|_{t=0}$, we obtain

(14)
$$\frac{dS}{dX} \cdot H(X) = \lambda_1 S(X)$$

from which we get

$$\left(1+\sum_{k=2}^{\infty}kv_kX^{k-1}\right)\lambda_1\left(X+\sum_{k=2}^{\infty}(k-1)\lambda_kX^k\right)=\lambda_1\left(X+\sum_{k=2}^{\infty}v_kX^k\right),$$

or, which is the same,

(15)
$$\left(1+\sum_{k=1}^{\infty}(k+1)v_{k+1}X^k\right)\left(1+\sum_{k=1}^{\infty}k\lambda_{k+1}X^k\right) = 1+\sum_{k=1}^{\infty}v_{k+1}X^k,$$

Equality (15) is equivalent to the system of equations

Equality (15) is equivalent to the system of equations

$$\lambda_{2} + 2v_{2} = v_{2},$$

$$2\lambda_{3} + 2v_{2}\lambda_{2} + 3v_{3} = v_{3},$$

$$(n-1)\lambda_{n} + \sum_{k=2}^{n-1} k(n-k)v_{k}\lambda_{n+1-k} + nv_{n} = v_{n}, \quad n \ge 4,$$

from which one can derive

(16)
$$\begin{cases} v_2 = -\lambda_2, \\ v_3 = -\lambda_3 - v_2\lambda_2 = -\lambda_3 + \lambda_2^2, \\ v_n = -\lambda_n - \sum_{k=2}^{n-1} \frac{k(n-k)}{n-1} v_k \lambda_{n+1-k}, & n \ge 4. \end{cases}$$

This means that a power series S(X) satisfying (13), if it exists, is determined uniquely.

Now, let us take a power series $S(X) = X + \sum_{k=2}^{\infty} v_k X^k$ satisfying condition (16). Hence also (14) is satisfied. Replace in (14) X by F(t, X). Then we obtain

$$\left. \frac{dS}{dX} \right|_{F(t,X)} \cdot H(F(t,X)) = \lambda_1 S(F(t,X))$$

and, since $H(F(t, X)) = \frac{\partial F}{\partial t}(t, X)$, so we get $\frac{dS}{dX}(F(t, X))\frac{\partial}{\partial t}F(t, X) = \lambda_1 S(F(t, X))$ or, equivalently, $\frac{\partial}{\partial t}S(F(t,X)) = \lambda_1 S(F(t,X))$. Put R(t,X) = S(F(t,X)). Then

(17)
$$\frac{\partial}{\partial t}R(t,X) = \lambda_1 R(t,X)$$

with the initial condition R(0, X) = S(X). Since $e^{\lambda_1 t}S(X)$ is also a solution of (17) satisfying the same initial condition, from the uniqueness theorem for systems of the form (17), we obtain $S(F(t, X)) = e^{\lambda_1 t}S(X)$ for every $t \in \mathbb{K}$. Conversely, let $F(t, X) = S^{-1}(e^{\lambda_1 t}S(X))$. This is the standard form of a solution of the translation equation, and hence satisfies (2). \diamond

3. The standard form of the general solution of the translation equation with infinite im c_1

Now we are going to generalize the result from the previous section to the general case $(F(t, X))_{t \in G}$ with infinite im c_1 . We will show that, in fact, also the same formulas hold as for the general regular solution. This will be done jointly for finite and infinite s. By E_m we denote the set of all roots of 1 of order m in the field K.

We begin with a crucial property of the sequence of polynomials $(P_n)_{n\geq 2}$ from Th. 2. This property we deduce using regular solutions of the translation equation (2). To do this, we need

Lemma 1. Let $s \geq 2$ be an integer or $s = \infty$. For every $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$ there exist polynomials $\sigma_k(v_2, \ldots, v_k) \in \mathbb{Q}[v_2, \ldots, v_k]$ such that $\Gamma_1^s \ni S^{-1}(X) = X + \sum_{k=2}^{s} \sigma_k(v_2, \ldots, v_k) X^k$. **Proof.** Since Γ_1^s is a group, let $S^{-1}(X) = X + \sum_{k=2}^{s} \sigma_k X^k$. Then

Proof. Since Γ_1^s is a group, let $S^{-1}(X) = X + \sum_{k=2}^s \sigma_k X^k$. Then $(S^{-1} \circ S)(X) = X$, which is equivalent (cf. (8) and (9)) to the system of equalities

$$\begin{cases} v_2 + \sigma_2 = 0, \\ v_3 + 2v_2\sigma_2 + \sigma_3 = 0, \\ v_n + \sum_{k=2}^{n-1} \sigma_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=2}^{n-k+1} v_j^{u_j} + \sigma_n = 0, \ n \in |4, s|, \end{cases}$$

from which we get

(18)
$$\begin{cases} \sigma_2 = -v_2 =: \sigma_2(v_2), \\ \sigma_3 = -v_3 - 2v_2\sigma_2 = -v_3 + 2v_2^2 =: \sigma_3(v_2, v_3), \\ \sigma_n = -v_n - \sum_{k=2}^{n-1} \sigma_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=2}^{n-k+1} v_j^{u_j} =: \sigma_n(v_2, ..., v_n), n \in [4, s]. \end{cases}$$

Conversely, define for $S(X) = X + \sum_{k=2}^{s} v_k X^k$ the polynomials $\sigma_n(v_2, \ldots, v_n)$ by (18). Then, for $S'(X) = X + \sum_{k=2}^{s} \sigma_k(v_2, \ldots, v_k) X^k$, we get $(S' \circ S)(X) = X$. Since Γ_1^s is a group, so also $(S \circ S')(X) = X$. This means that $S' = S^{-1}$.

Lemma 2. Let X and Y be independent indeterminates over \mathbb{K} . For every $(\lambda_k)_{k\geq 2}$ there exists a unique sequence $(v_k)_{k\geq 2}$ such that

(19)
$$YX + \sum_{k=2}^{\infty} (\lambda_k (Y^k - Y) + YP_k(Y; \lambda_2, ..., \lambda_{k-1}) X^k = S^{-1}(YS(X)),$$

where $S(X) = X + \sum_{k=2}^{\infty} v_k X^k$, and conversely, for each $(v_k)_{k\geq 2}$ there exists a unique sequence $(\lambda_k)_{k\geq 2}$ satisfying (19).

Proof. Assume that $s = \infty$, $(G, +) = (\mathbb{K}, +)$ and let us consider a regular solution $F(t, X) = e^t X + \sum_{k=2}^{\infty} c_k(t) X^k$ of (2). From Th. 2 we know that for every $n \ge 2$ we have $c_n(t) = \lambda_n(e^{nt} - e^t) + e^t P_n(e^t; \lambda_2, \dots, \lambda_{n-1})$, and the sequence $(\lambda_n)_{n\ge 2}$ determines F(t, X) uniquely. On the other hand, by Th. 3, there exists a unique formal power series $S(X) = X + \sum_{k=2}^{\infty} v_k X^k \in \Gamma_1^{\infty}$ such that $F(t, X) = S^{-1}(e^t S(X))$. Then, on account of Lemma 1, we obtain

$$e^{t}X + \sum_{k=2}^{\infty} (\lambda_{k}(e^{kt} - e^{t}) + e^{t}P_{k}(e^{t}; \lambda_{2}, ..., \lambda_{k-1}))X^{k} = F(t, X) = S^{-1}(e^{t}S(X))$$
$$= e^{t} \left(X + \sum_{k=2}^{\infty} v_{k}X^{k}\right) + \sum_{l=2}^{\infty} \sigma_{l}(v_{2}, ..., v_{l}) \left(e^{t} \left(X + \sum_{k=2}^{\infty} v_{k}X^{k}\right)\right)^{l}$$
$$= e^{t}X + \sum_{k=2}^{\infty} Q_{k}(e^{t}; v_{2}, ..., v_{k})X^{k},$$

for every $t \in \mathbb{K}$, where $(Q_k(X; v_2, \ldots, v_k))_{k \geq 2}$ is a sequence of polynomials. This implies

 $\lambda_k(e^{kt} - e^t) + e^t P_k(e^t; \lambda_2, ..., \lambda_{k-1}) = Q_k(e^t; v_2, ..., v_k)$ for $k \ge 2$ and $t \in \mathbb{K}$. Since e^t runs through infinitely many values, we obtain the polynomial identities

 $\lambda_k(Y^k - Y) + YP_k(Y; \lambda_2, \dots, \lambda_{k-1}) = Q_k(Y; v_2, \dots, v_k)$ for $k \ge 2$ with an indeterminant Y. By the meaning of W_k and Q_k we get (19).

Conversely, it is known that $F(t, X) = S^{-1}(e^t S(X))$ is a regular solution of (2) for every $S(X) = X + \sum_{k=2}^{\infty} v_k X^k \in \Gamma_1^{\infty}$. Then, by Th. 2, there exists a unique sequence $(v_k)_{k\geq 2}$ satisfying

$$S^{-1}(e^{t}S(X)) = F(t, x) = e^{t}X + \sum_{k=2}^{\infty} \left(\lambda_{k}(e^{kt} - e^{t}) + e^{t}P_{k}(e^{t}; \lambda_{2}, ..., \lambda_{k-1})\right) X^{k}$$

and similarly as above we obtain (19). \Diamond

Corollary 1. Let $s \geq 2$ be an integer. For every sequence $(\lambda_k)_{k \in [2,s]}$ there exists a unique $(v_k)_{k \in [2,s]}$ such that

$$YX + \sum_{k=2}^{\circ} \left[\lambda_k (Y^k - Y) + YP_k(Y; \lambda_2, \dots, \lambda_{k-1}) \right] X^k = \left(S^{-1} \circ L_Y \circ S \right) (X)$$

and conversely (here $L_Y(X) = YX$).

Proposition 1. Let $s \ge 2$ be an integer or $s = \infty$. Assume that (G, +) is an abelian group and let $c_1 : G \to \mathbb{K} \setminus \{0\}$ be a generalized exponential function.

(i) For every sequence $(\lambda_k)_{k \in [2,s]}$,

$$F(t,X) = c_1(t)X + \sum_{k=1}^{s} \left[\lambda_k(c_1(t)^k - c_1(t)) + c_1(t)P_k(c_1(t);\lambda_2,...,\lambda_{k-1})\right]X^k$$

is a solution of the translation equation (4).

(ii) Every solution (20) of the translation equation (4) has a representation

(21)
$$F(t,X) = \left(S^{-1} \circ L_{c_1(t)} \circ S\right)(X) \quad \text{for } t \in G,$$

with some $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$.

(iii) Conversely, each F(t, X) given by (21) is a solution of (4) and has a representation (20) with some sequence $(\lambda_k)_{k \in [2,s]}$.

(iv) If c_1 takes infinitely many values, then (20) and (21) yield the general solution of (4) (with unique sequences $(\lambda_k)_{k\in[2,s]}$ and $(v_k)_{k\in[2,s]}$). **Proof.** (i) is just a part of Th. 2. Let $F(t, X) = c_1(t)X + \sum_{k=2}^{s} c_k(t)X^k$ be a solution of the translation equation (4). Then, by Lemma 2 if $s = \infty$, and from Cor. 1 for $s < \infty$, replacing Y by $c_1(t)$, we get

$$F(t,X) = c_1(t)X + \sum_{k=2}^{s} \left[\lambda_k (c_1(t)^k - c_1(t)) + c_1(t) P_k (c_1(t); \lambda_2, ..., \lambda_{k-1}) \right] X^k$$

= $\left(S^{-1} \circ L_{c_1(t)} \circ S \right) (X).$

Further, (21) is a solution of (4), and the representation (20) may be proved as above in (iii). Finally, (iv) is a consequence of Th. 2, conditions (ii) and (iii), and uniqueness in Th. 2, Lemma 2 and Cor. 1. \diamond

Remark 2. The formal power series $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$ such that $F(t, X) = (S^{-1} \circ L_{c_1(t)} \circ S)(X)$, which exists on account of Prop. 1, need not be unique, because we do not assume that a sequence $(\lambda_n)_{n \in [2,s]}$ uniquely determines

$$F(t,X) = c_1(t)X + \sum_{k=1}^{3} \left[\lambda_k (c_1(t)^k - c_1(t)) + c_1(t) P_k (c_1(t); \lambda_2, ..., \lambda_{k-1}) \right] X^k$$

If it is the case, then S(X) is unique (cf. Lemma 2 and Cor. 1).

From Th. 2 and Prop. 1 we obtain the main result of the section. **Theorem 4.** Let $s \ge 2$ be an integer or $s = \infty$. Let (G, +) be an abelian group which admits a generalized exponential function from Ginto $\mathbb{K} \setminus \{0\}$ having infinitely many values. Assume that $(F(t, X))_{t\in G}$, $F(t, X) = \sum_{k=1}^{s} c_k(t)X^k$, $c_1 : G \to \mathbb{K} \setminus \{0\}$, $c_k : G \to \mathbb{K}$ for $k \in [2, s]$, is a solution of the translation equation (4) with a generalized exponential function c_1 taking infinitely many values. Then there exists a unique formal power series $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$ such that

$$F(t,X) = \left(S^{-1} \circ L_{c_1(t)} \circ S\right)(X) \quad \text{for } t \in G.$$

Conversely, for each generalized exponential function $c_1 : G \to \mathbb{K} \setminus \{0\}$ and for every $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$, the family $F(t, X) = (S^{-1} \circ L_{c_1(t)} \circ S)(X)$ is a solution of the translation equation (4).

From Th. 4 we obtain nice formulas for coefficients functions of the solution of the translation equation (4) in the considered case.

Corollary 2. Let $s \ge 2$ be an integer or $s = \infty$. The general solution $(F(t,X))_{t\in G}, F(t,X) = \sum_{k=1}^{s} c_k(t)X^k, c_1 : G \to \mathbb{K} \setminus \{0\}, c_k : G \to \mathbb{K}$ for $k \in [2,s]$, of the translation equation (4) with a generalized exponential function c_1 taking infinitely many values is given by

(22)
$$c_n(t) = v_n(c_1(t)^n - c_1(t)) - \sum_{k=2}^{n-1} c_k(t) \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=2}^{n-k+1} v_j^{u_j} \text{ for } t \in G,$$

for $n \in [2, s]$, where $(v_k)_{k \in [2, s]}$ are arbitrary constants.

Proof. Since for every $S(X) = X + \sum_{j=2}^{s} v_j X^j \in \Gamma_1^s$ also $S^{-1}(X) \in \Gamma_1^s$, we derive from Th. 4 that the general solution $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$ of the translation equation (4) with a generalized exponential function c_1 taking infinitely many values, may be given by the formula

$$F(t,X) = \left(S \circ L_{c_1(t)} \circ S^{-1}\right)(X)$$

where $S(X) = X + \sum_{k=2}^{s} v_k X^k \in \Gamma_1^s$ is an arbitrary formal power series. Thus, substituting S(X) for X, we obtain $(F_t \circ S)(X) = S(c_1(t)X)$ for every $t \in G$, which is equivalent to the equality

$$\sum_{k=1}^{s} c_k(t) \left(X + \sum_{l=2}^{s} v_l X^l \right)^k = c_1(t) X + \sum_{l=2}^{s} v_l c_1(t)^l X^l \mod X^{s+1}.$$

Thus, using the formulas (9), for every $n \in [2, s]$ we obtain (put $v_1 = 1$)

$$c_1(t)v_n + \sum_{k=2}^{n-1} c_k(t) \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=2}^{n-n+1} v_j^{u_j} + c_n(t) = s_n c_1(t)^n$$

from which we get (22). \Diamond

4. The standard form of the solution of the translation equation for finite set $\{F(t, X) : t \in G\}$

We are going to study one-parameter groups of formal power series $F(t,X)_{t\in G}, \ \widetilde{F}(t,\widetilde{X}) = \sum_{k=1}^{s} c_k(t) X^k, \ c_1: G \to \mathbb{K} \setminus \{0\}, \ c_k: G \to \mathbb{K}$ for $k \in [2, s]$, where s is a positive integer or $s = \infty$, under the assumption that the set $\{F(t, X) : t \in G\}$ is finite. Note that then also im c_1 must be finite. We will need some properties of (7). In [3] we considered a natural isomorphism between the groups (Γ^{∞}, \circ) and $(Z_{\infty}, \cdot) = L^{1}_{\infty}$, namely $\Psi: Z_{\infty} \to \Gamma^{\infty}$,

$$\Psi(x_1, x_2, \ldots)(X) = \sum_{k=1}^{\infty} \frac{x_k}{k!} X^k.$$

Furthermore, in [2] are proved some properties of the group operation in L_s^1 , which are also valid for the group L_{∞}^1 . Using the isomorphism Ψ and these properties one can derive the following lemma.

Lemma 3 (cf. [2, Lemma 2]). Let p, q be integers such that $1 \le p \le q$. If $a_j = 0$ for all $j \in [2,q]$ and $b_j = 0$ for all $j \in [2,p]$, then d_n given by (7) are of the form

1) $d_1 = a_1 b_1$,

2)
$$d_n = 0$$
 for $n \in |2, p|$,

- 3) $d_n = a_1 b_n$ for $n \in |p+1, q|$, 4) $d_n = a_1 b_n + a_n b_1^n$ for $n \in |q+1, p+q|$.

From now on, if it will not be another stated, $s \ge 2$ is an integer or $s = \infty$. We begin with

Lemma 4. If $U(X) = X + \sum_{k=2}^{s} u_k X^k \in \Gamma_1^s$ and $u_l \neq 0$ for some $l \in (2, s]$, then for every $n \in \mathbb{N}$, $n \geq 2$ we have $U^n(X) \neq X$. Moreover, for every $m, n \in \mathbb{N}$, $m \neq n$ we have $U^m(X) \neq U^n(X)$.

Proof. The proof is by induction on n. Let n = 2. Put $l := \min\{k \in [2, s] : u_k \neq 0\}$. Then $U(X) = X + u_l X^l + \sum_{k=l+1}^s u_k X^k$. Using Lemma 3 (p = q = l - 1) we obtain that $U^2(X) = (U \circ U)(X) = X + 2u_l X^l + \sum_{k=l+1}^s u'_k X^k$ with some u'_{l+1}, \ldots, u'_s , and, since $u_l \neq 0$, so $U^2(X) \neq X$.

Assume now that for some $n \in [3, s]$ we have $U^{n-1}(X) \neq X$, and if

$$U^{n-1}(X) = X + \sum_{k=2}^{s} v_k X^k,$$

then for $m := \min\{k \in |2, s| : v_k \neq 0\}$ we have m = l and $v_l = (n-1)u_l$ (cf. the case n = 2). On account of Lemma 3 we get

$$U^{n}(X) = (U^{n-1} \circ U)(X) = X + nu_{l}X^{l} + \sum_{k=l+1}^{\circ} v'_{k}X^{k}$$

with some v'_{l+1}, \ldots, v'_s . Finally, for $m, n \in \mathbb{N}, m \neq n$, we have

$$U^{m}(X) = X + mu_{l}X^{l} + \sum_{k=l+1}^{s} w_{k}X^{k} \neq X + nu_{l}X^{l} + \sum_{k=l+1}^{s} w'_{k}X^{k} = U^{n}(X),$$

which finishes the proof. \Diamond

Lemma 5. Let $F(t, X)_{t \in G}$, $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$, $c_1 : G \to \mathbb{K} \setminus \{0\}$, $c_k : G \to \mathbb{K}$ for $k \in [2, s]$, be a solution of the translation equation (4) (i.e. $\Theta_G^s : G \to \Gamma^s$, $\Theta_G^s(t)(X) = F(t, X)$ is a homomorphism) such that the set $\{F(t, X) : t \in G\} = \Theta_G^s(G)$ is a finite group. Then ker $c_1 = \ker \Theta_G^s$.

Proof. Clearly, ker $\Theta_G \subset$ ker c_1 . For the proof by a contradiction let us suppose that for some $t_0 \in$ ker c_1 , $t_0 \neq 0$, we have $\Theta_G(t_0)(X) =$ $= \sum_{k=1}^{s} c_k(t_0) X^k = X + \sum_{k=2}^{s} d_k X^k$, where $d_l \neq 0$ for some $l \in [2, s]$. Then $\Theta_G^s(nt_0)(X) = ((\Theta_g^s(t_0))^n)(X)$ for every $n \in \mathbb{N}$, which jointly with Lemma 4 means that the image im Θ_G^s is infinite. This contradiction proves ker $c_1 =$ ker Θ_G^s . \diamond

Lemma 6. Let $F(X) = d_1 X + \sum_{k=2}^{s} d_k X^k \in \Gamma^s$, where $d_1 \in E_m \setminus \{1\}$ is a primitive root of the order m. Then there exists a formal power series $U(x) = X + \sum_{k=2}^{s} u_k X^k \in \Gamma_1^s$ and a sequence of constante $(\delta_{lm+1})_{l \in [1,r]}$ such that

$$(U \circ F \circ U^{-1})(X) = d_1 X + \sum_{l=1}^r \delta_{lm+1} X^{lm+1} =: N_m(X) \in \Gamma^s,$$

where r is the greatest positive integer such that $rm + 1 \leq s$ if $s < \infty$ and $r = \infty$ otherwise $(N_m(X)$ is called semicanonical form of F(X), cf. [9, 11]). **Proof.** Let $F(X) = d_1 X + \sum_{k=2}^{s} d_k X^k \in \Gamma^s$, where $d_1 \in E_m \setminus \{1\}$ is a primitive root of unit of order m. We find $U(x) = X + \sum_{k=2}^{s} u_k X^k \in \Gamma_1^s$ and $N_m(X) = d_1 X + \sum_{l=1}^{r} \delta_{lm+1} X^{lm+1} = d_1 X + \sum_{k=2}^{s} \delta_k X^k$, where r is the greatest positive integer such that $rm + 1 \leq s$ if $s < \infty$ and $r = \infty$ otherwise, $\delta_k = 0$ for $k \in [2, s]$ with $k \not\equiv 1 \mod m$, such that $(U \circ F)(X) = (N_m \circ U)(X)$, i.e. the system

$$\begin{cases} d_{2} + u_{2}d_{1}^{2} = d_{1}u_{2}, \\ d_{n} + \sum_{k=2}^{n-1} u_{k} \sum_{\overline{u}_{n} \in U_{n,k}} B_{\overline{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}} + u_{n}d_{1}^{n} = d_{1}u_{n} \text{ for } n \in [3, m], \\ d_{m+1} + \sum_{k=2}^{m} u_{k} \sum_{\overline{u}_{n} \in U_{m+1,k}} B_{\overline{u}_{m+1}} \prod_{j=1}^{m-k+2} d_{j}^{u_{j}} + u_{m+1}d_{1}^{m+1} \\ = d_{1}u_{m+1} + \delta_{m+1} \text{ if } m+1 \leq s, \\ d_{n} + \sum_{k=2}^{n-1} u_{k} \sum_{\overline{u}_{n} \in U_{n,k}} B_{\overline{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}} + u_{n}d_{1}^{n} = \\ d_{1}u_{n} + \sum_{k=2}^{n-1} \delta_{k} \sum_{\overline{u}_{n} \in U_{n,k}} B_{\overline{u}_{n}} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}} + \delta_{n} \text{ for } n \in [m+2, s] \end{cases}$$

is satisfied with $\delta_k = 0$ for $k \ge 2$ with $k \not\equiv 1 \mod m$. This is equivalent to the system of equalities

$$\begin{cases} u_{2}(d_{1}^{2}-d_{1}) = -d_{2}, \\ u_{n}(d_{1}^{n}-d_{1}) = -d_{n} - \sum_{k=2}^{n-1} u_{k} \sum_{\overline{u}_{n} \in U_{n,k}} B_{\overline{u}_{n}} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}} \text{ for } n \in [3,m], \\ \delta_{m+1} = d_{m+1} + \sum_{k=2}^{m} u_{k} \sum_{\overline{u}_{m+1} \in U_{m+1,k}} B_{\overline{u}_{m+1}} \prod_{j=1}^{m-k+2} d_{j}^{u_{j}} \text{ if } m+1 \leq s, \\ u_{n}(d_{1}^{n}-d_{1}) - \delta_{n} = -d_{n} + \sum_{k=2}^{n-1} \sum_{\overline{u}_{n} \in U_{n,k}} \\ B_{\overline{u}_{n}} \left(\delta_{k} \prod_{j=2}^{n-k+1} u_{j}^{u_{j}} - u_{k} \prod_{j=1}^{n-k+1} d_{j}^{u_{j}} \right) \text{ for } n \in [m+2,s]. \end{cases}$$

As it is easy to see, we can find a (not unique) solution $(u_k)_{k\in[2,s]}$, $(\delta_{lm+1})_{l\in[1,r]}$ (here *l* is the greatest integer such that $rm+1 \leq s$ if $s < \infty$ and $r = \infty$ otherwise) of this system. Indeed, we find

$$\begin{cases} u_2 = (d_1^2 - d_1)^{-1} - d_2, \\ u_n = (d_1^n - d_1)^{-1} \left(-d_n - \sum_{k=2}^{n-1} u_k \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \prod_{j=1}^{n-k+1} d_j^{u_j} \right) & \text{for } n \in [3, m], \\ \delta_{m+1} = d_{m+1} + \sum_{k=2}^m u_k \sum_{\overline{u}_{m+1} \in U_{m+1,k}} B_{\overline{u}_{m+1}} \prod_{j=1}^{m-k+2} d_j^{u_j}, \end{cases}$$

and we fix u_{m+1} arbitrarily. Finally, consider for some $n \in |m+2, s|$ the equation

$$u_n(d_1^n - d_1) - \delta_n = -d_n + \sum_{k=2}^{n-1} \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \left(\delta_k \prod_{j=2}^{n-k+1} u_j^{u_j} - u_k \prod_{j=1}^{n-k+1} d_j^{u_j} \right).$$

Not that the sum $\sum_{k=2}^{n-1} \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \left(\delta_k \prod_{j=2}^{n-k+1} u_j^{u_j} - u_k \prod_{j=1}^{n-k+1} d_j^{u_j} \right)$ contains only terms with indices less than n. If $n \not\equiv 1 \mod m$, then $\delta_n = 0$ and

$$u_n = (d_1^n - d_1)^{-1} \left(-d_n + \sum_{k=2}^{n-1} \sum_{\overline{u}_n \in U_{n,k}} B_{\overline{u}_n} \left(\delta_k \prod_{j=2}^{n-k+1} u_j^{u_j} - u_k \prod_{j=1}^{n-k+1} d_j^{u_j} \right) \right)$$

Otherwise we fix u_{lm+1} arbitrarily and we find

$$\delta_{lm+1} = d_{lm+1} - \sum_{k=2}^{lm} \sum_{\overline{u}_{lm+1} \in U_{lm+1,k}} B_{\overline{u}_{lm+1}} \left(\delta_k \prod_{j=2}^{lm-k+2} u_j^{u_j} - u_k \prod_{j=1}^{lm-k+2} d_j^{u_j} \right).$$

Thus we find U(X) and $N_m(X)$ satisfying $(U \circ F)(X) = (N_m \circ U)(X)$. **Lemma 7.** Let $N_m(X) = d_1X + \sum_{l=1}^r \delta_{lm+1}X^{lm+1}$, where $d_1 \in E_m \setminus \{1\}$ is a primitive root of order m, r is the greatest positive integer such that $rm+1 \leq s$ if $s < \infty$ and $r = \infty$ otherwise, $\delta_{lm+1} \neq 0$ for some $l \in [1, r]$. Then, for every $p, q \in \mathbb{N}, p \neq q$, we have $N_m^p(X) \neq N_m^q(X)$.

Proof. Let $\nu := \min\{l \in |1, r| : \delta_{lm+1} \neq 0\}$. Then

$$N_m(X) = d_1 X + \delta_{\nu m+1} X^{\nu m+1} + \sum_{k=\nu+1}^{\prime} \delta_{km+1} X^{km+1}$$

We prove by induction on n that

$$N_m^n(X) = d_1^n X + n d_1^{n-1} \delta_{\nu m+1} X^{\nu m+1} + \sum_{k=\nu+1}^r \delta'_{km+1} X^{km+1}$$

with some $(\delta_{lm+1})_{l \in |\nu+1,r|}$ Put n = 2. Then, on account of Lemma 3, we get

$$N_m^2(X) = d_1^2 X + (d_1 \delta_{\nu m+1} + \delta_{\nu m+1} d_1^{\nu m+1}) X^{\nu m+1} + \sum_{k=\nu+1}^r \delta_{km+1}'' X^{km+1}$$
$$= d_1^2 X + 2d_1 \delta_{\nu m+1} X^{\nu m+1} + \sum_{k=\nu+1}^r \delta_{km+1}'' X^{km+1}.$$

Assuming now that for some $n \ge 3$ we have

$$N_m^{n-1}(X) = d_1^{n-1} + (n-1)d_1^{n-2}\delta_{\nu m+1}X^{\nu m+1} + \sum_{k=\nu+1}^{'}\delta_{km+1}''X^{km+1},$$

we obtain, on account of Lemma 3,

$$N_m^n(X) = (N_m^{n-1} \circ N_m)(X)$$

= $d_1^n X + (d_1^{n-1} \delta_{\nu m+1} + (n-1) \delta_{\nu m+1} d_1^{n-2} d_1^{\nu m+1}) X^{\nu m+1}$
+ $\sum_{k=\nu+1}^r \delta'_{km+1} X^{km+1} = d_1^n X + n d_1^{n-1} \delta_{\nu m+1} X^{\nu m+1} + \sum_{k=\nu+1}^r \delta'_{km+1} X^{km+1}.$

Since $pd_1^{p-1}\delta_{\nu m+1} \neq qd_1^{q-1}\delta_{\nu m+1}$ for every $p \neq q$, so $N_m^p(X) \neq N_m^q(X)$.

Now we are in a position to prove the main result of this section. We begin with the simple case when $G = E_m$ for some integer $m \ge 2$. We prove

Proposition 2. A family $F(t, X)_{t \in E_m}$, $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$, $c_1 : E_m \to \mathbb{K} \setminus \{0\}, c_k : E_m \to \mathbb{K}$ for $k \in [2, s]$, is a solution of the translation equation

(24) $F_{z_1 \cdot z_2}(X) = (F_{z_1} \circ F_{z_2})(X) \quad for \ z_1, z_2 \in E_m,$

such that c_1 is a multiplicative function with $\operatorname{im} c_1 = E_m$ if and only if there exists a power series $U(X) \in \Gamma_1^s$ such that

(25)
$$F_z(X) = \left(U^{-1} \circ L_{c_1(z)} \circ U\right)(X) \quad \text{for every } z \in E_m.$$

Proof. Clearly, the family $(F(z, X))_{z \in E_m}$ defined by (25) is a solution of the translation equation (24).

Now, let $F(t, X)_{t \in E_m}$, $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$, $c_1 \colon E_m \to \mathbb{K} \setminus \{0\}$, $c_k \colon E_m \to \mathbb{K}$ for $k \in [2, s]$, be a solution of (24). Clearly $c_1(z_0)$, where $z_0 = e^{\frac{2\pi}{m}i}$, is a primitive root of the unit of order m. Then, from Lemma 6, for $F(z_0, X) = c_1(z_0) X + \sum_{k=2}^{s} c_k(z_0) X^k$ there exists a formal power series $U(x) = X + \sum_{k=2}^{s} u_k X^k \in \Gamma_1^s$ such that

$$(U \circ F_{z_0} \circ U^{-1})(X) = c_1(z_0)X + \sum_{l=1}^r \delta_{lm+1}X^{lm+1}$$

with some $(\delta_{lm+1})_{l\in\mathbb{N}}$, where r is the greatest integer such that $rm+1 \leq s$ if $s < \infty$ and $r = \infty$ otherwise. We will show that $\delta_{lm+1} = 0$ for every

 $l \in [1,r].$ If not then, on account of Lemma 7, for $p,q \in \mathbb{N}, \, p \neq q,$ we obtain

 $(U \circ F_{z_0} \circ U^{-1})^p(X) \neq (U \circ F_{z_0} \circ U^{-1})^q(X),$ or, equivalently, $(F_{z_0})^p(X) \neq (F_{z_0})^q(X)$. In particular, we have

$$F_{z_0}(X) = F_{z_0}^{m+1}(X) = (F_{z_0})^{m+1}(X) \neq (F_{z_0})^1(X) = F_{z_0}(X).$$

This contradiction proves that $\delta_{lm+1} = 0$ for every $l \in [1, r]$. Thus we have

$$\left(U \circ F_{z_0} \circ U^{-1}\right)(X) = c_1(z_0)X.$$

Then, for arbitrary $E_m \ni z = e^{\frac{2\pi i k}{m}}$ with $0 \le k \le m-1$, we have $z = z_0^k$, and

$$(U \circ F_z \circ U^{-1}) (X) = (U \circ F_{z_0^k} \circ U^{-1}) (X) = (U \circ (F_{z_0})^k \circ U^{-1}) (X)$$

= $(U \circ F_{z_0} \circ U^{-1})^k (X) = (c_1(z_0))^k X = c_1(z_0^k) X = c_1(z) X = L_{c_1(z)}(X),$
which means that (25) holds. \diamond

Theorem 5. Let (G, +) be an abelian group. To each $F(t, X)_{t \in G}$, $F(t, X) = \sum_{k=1}^{s} c_k(t) X^k$, $c_1 : G \to \mathbb{K} \setminus \{0\}$, $c_k : G \to \mathbb{K}$ for $k \in [2, s]$, being a solution of the translation equation (4) such that the set $\{F(t, X) : t \in G\}$ is finite, there exists a power series $U(X) \in \Gamma_1^s$ such that

(26)
$$F_t(X) = \left(U^{-1} \circ L_{c_1(t)} \circ U\right)(X) \quad \text{for every } t \in G.$$

Conversely, a family $F(t, X)_{t \in G}$ defined by (26) is a solution of the translation equation (4).

Proof. Assume that $F(t,X)_{t\in G}$, $F(t,X) = \sum_{k=1}^{s} c_k(t)X^k$, $c_1 : G \to G$ $\rightarrow \mathbb{K} \setminus \{0\}, c_k : G \rightarrow \mathbb{K}$ for $k \in [2, s]$, is a solution of the translation equation (4) such that the set $\{F(t,X) : t \in G\}$ is finite. We know that c_1 is a generalized exponential function, i.e. it is a homomorphism. Then, for the homomorphism $\Theta_G : G \to \Gamma^s, \ \Theta_G(t)(X) = F(t,X),$ on account of Lemma 5, ker $c_1 = \ker \Theta_G$. Thus, by the first isomorphism theorem (cf. [6, p. 16]), $\{F(t, X) : t \in G\} = \operatorname{im} \Theta_G \cong G/\ker \Theta_G = G/$ $/\ker c_1 \cong \operatorname{im} c_1$ (which means that also $\operatorname{im} c_1$ is finite). So assume that $\operatorname{card} \{F(t, X) : t \in G\} = \operatorname{cardim} \Theta_G = \operatorname{cardim} c_1 =: m \text{ with a positive}$ integer m. This means that $\operatorname{im} c_1 \cong E_m$ and there exists a canonical homomorphism $\kappa: G \to G/\ker c_1 \cong E_m$. Then the homomorphism Θ_G must be of the form $\Theta_G = \Theta_{E_m} \circ \kappa$, where $\Theta_{E_m} : E_m \to \Gamma^s$ and κ : : $G \to E_m$ are homomorphisms such that $\Theta_{E_m}(t)(X) = \sum_{k=1}^s \overline{c}_k(t) X^k$, $\overline{c}_1: E_m \to E_m$ is a multiplicative function such that im $\overline{c}_1 = E_m, \overline{c}_1 \circ \kappa =$ $= c_1$, and $\overline{c}_k : E_m \to \mathbb{K}$ for $k \in [2, s]$. Hence $F(t, X) = \overline{F}(\kappa(t), X)$, where $F(z, X) = \Theta_{E_m}(t)(X).$

If m = 1 then clearly $c_1 = 1$, F(t, X) = X for every $t \in G$, so with every $U(X) \in \Gamma_1^s$ we have $(U \circ F_t \circ U^{-1})(X)) = (U \circ U^{-1})(X) = X$ for $t \in G$. Thus assume that $m \ge 2$. Then, from Prop. 2, we get $(U \circ F_t \circ U^{-1})(X) = (U \circ \overline{F}_{\kappa(t)} \circ U^{-1})(X) = \overline{c}_1(\kappa(t))X = c_1(t)X = L_{c_1(t)}(X)$, which completes the proof. \Diamond

Remark 3. Note that a power series $U(X) = X + \sum_{k=2}^{s} u_k X^k$, which determines a particular solution $(F(t, X))_{t \in G}$ of the translation equation (4) in the case considered here is not unique. This comes from the fact that the solution $(u_k)_{k \in [2,s]}$ of the system (23) is not unique. Moreover, if a power series $U(X) \in \Gamma_1^s$ determines a solution of the translation equation (4), then also any power series $W(X) \in \Gamma_1^s$, $W(X) = (V \circ U)(X)$ determines the same solution, where $V(X) = X + \sum_{l=1}^{r} v_{lm+1} X^{lm+1}$ with arbitrary sequence $(v_{lm+1})_{l \in [1,r]}$, where $r = \infty$ if $s = \infty$ and r is the greatest integer such that $rm + 1 \leq s$ provided s is finite. Indeed,

 $(U^{-1} \circ L_{c_1(t)} \circ U)(X) = \Theta_G(t)(X) = (W^{-1} \circ L_{c_1(t)} \circ W)(X) \text{ for } t \in G,$ then $c_1(t)X = ((W \circ U^{-1})^{-1} \circ L_{c_1(t)} \circ (W \circ U^{-1}))(X)$, so with $V = W \circ \circ U^{-1}$ we have $(V^{-1} \circ L_{c_1(t)} \circ V)(X) = c_1(t)X$, or, which is the same $V(c_1(t)X) = c_1(t)V(X)$ for each $t \in G$. Since $U(X), W(X) \in \Gamma_1^s$, so also $V(X) \in \Gamma_1^s$. Put $V(X) = X + \sum_{k=2}^s v_k X^k$. Then we get

$$c_1(t)X + \sum_{k=1}^{5} v_k c_1(t)^k X^k = c_1(t)X + \sum_{k=1}^{5} c_1(t) v_k X^k,$$

and hence $v_k(c_1(t)^k - c_1(t)) = 0$ for $t \in G$ and $k \in [2, s]$. Using the fact that im $c_1 = E_m$, we get $v_k = 0$ if $k \not\equiv 1 \mod m$ and v_{lm+1} is arbitrary for $l \in [1, r]$. Thus we have $W(X) = (V \circ U)(X)$, where $V(X) = X + \sum_{l=1}^r v_{lm+1} X^{lm+1}$.

References

- HENRICI, P.: Applied and computational complex analysis, Vol. I, Power series

 integration conformal mapping location of zeros, John Wiley & Sons, New York–London–Sydney–Toronto, 1974.
- [2] JABŁOŃSKI, W.: On some subsemigroups of the group L¹_s, Rocznik Nauk.-Dydak. WSP w Krakowie 14/189 (1997), 101–119.
- [3] JABŁOŃSKI, W. and REICH L.: On the solutions of the translation equation in rings of formal power series, Abh. Math. Sem. Univ. Hamburg 75 (2005), 179–201.
- [4] JABŁOŃSKI, W. and REICH L.: On the form of homomorphisms into the differential group L_s^1 and their extensibility, *Result. Math.* 47 (2005), 61–68.

- [5] JABLOŃSKI, W. and REICH L.: On homomorphisms of an abelian group into the group of invertible formal power series (manuscript).
- [6] LANG, S.: Algebra, Addison-Wesley Publishing Co., 1965.
- [7] MIDURA S.: Sur les solutions de l'équation de translation, Aequationes Math. 1 (1968), 77–84.
- [8] MOSZNER Z.: Une généralisation d'un résultat de J. Aczél et M. Hosszú sur l'équation de translation, Aequationes Math. 37 (1989), 267–278.
- [9] REICH, L.: On power series transformations in one indeterminate having iterative roots of given order and with given multiplier, in: *European Conference on Iteration Theory (ECIT 91) (Lisbon, 1991)*, 210–216, World Sci. Publ., River Edge, NJ, 1992.
- [10] REICH L. und SCHWAIGER J.: Über einen Satz von Shl. Sternberg in der Theorie der analytischen Iterationen, Monatshefte für Mathematik 83 (1977), 207–221.
- [11] REICH, L. und SCHWAIGER, J.: Linearisierung formal-biholomorpher Abbildungen und Iterationsprobleme, Aequationes Math. 20 (1980), 224–243.