Mathematica Pannonica

18/1 (2007), 135-147

A FAMILY OF LIMIT DISTRIBUTIONS IN THE METRICAL THEORY OF CONTINUED FRACTIONS

Gabriela Ileana Sebe
Department of Mathematics I, University Politehnica of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania

Received: March 2006
MSC 2000: 11 K 50 , 60 J 10
Keywords: Continued fraction, incomplete quotients, convergence rate.

Abstract

We give a generalization of Th. 2.5.8 from [6], namely, we derive the asymptotic behaviour of $\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right)$ as $n \rightarrow \infty$ for any $a, x, y \in I$ and $m \in \mathbb{N}_{+}$. We also derive corresponding upper and lower bounds which are of order $O\left(g^{2 n}\right)$ as $n \rightarrow \infty$, too.

1. Introduction

Let Ω denote the collection of irrational numbers in the unit interval $I=[0,1]$. Given $\omega \in \Omega$, let $a_{1}(\omega), a_{2}(\omega), \ldots$ be the sequence of the incomplete quotients of the continued fraction expansion of ω. That is, defining the continued fraction transformation $\tau: \Omega \rightarrow \Omega$ by $\tau(\omega)=\frac{1}{\omega}$ $(\bmod 1)=$ fractionary part of $\frac{1}{\omega}, \omega \in \Omega$, we have $a_{n+1}(\omega)=a_{1}\left(\tau^{n}(\omega)\right)$, $n \in \mathbb{N}_{+}=\{1,2, \ldots\}$, with $a_{1}(\omega)=$ integer part of $\frac{1}{\omega}$. Here τ^{n} denotes the nth iterate of τ. Then, by the very definition,

E-mail address: gisebe@mathem.pub.ro

$$
\omega=\frac{1}{a_{1}(\omega)+\tau(\omega)}=\frac{1}{a_{1}(\omega)+\frac{1}{a_{2}(\omega)+\ddots+\frac{1}{a_{n}(\omega)+\tau^{n}(\omega)}}}, \quad n \geq 2
$$

and we have

$$
\omega=\lim _{n \rightarrow \infty} \frac{p_{n}(\omega)}{q_{n}(\omega)}:=\left[a_{1}(\omega), a_{2}(\omega), \ldots\right], \omega \in \Omega
$$

where

$$
\frac{p_{n}(\omega)}{q_{n}(\omega)}=\frac{1}{a_{1}(\omega)+\frac{1}{a_{2}(\omega)+\ddots+\frac{1}{a_{n}(\omega)}}}
$$

with g.c.d. $\left(p_{n}(\omega), q_{n}(\omega)\right)=1, \omega \in \Omega, n \in \mathbb{N}_{+}$.
Clearly, the $a_{n}, n \in \mathbb{N}_{+}$, can be viewed as random variables on $\left(I, \mathcal{B}_{I}\right)$, where \mathcal{B}_{I} is the collection of Borel subsets of I, that are defined almost surely with respect to any probability measure on \mathcal{B}_{I} assigning measure 0 to the set of rationals in I. Such a probability measure is Lebesgue measure λ, but a more important one in the present context is the Gauss measure γ defined by

$$
\gamma(A)=\frac{1}{\log 2} \int_{A} \frac{d x}{x+1}, \quad A \in \mathcal{B}_{I}
$$

We have $\gamma=\gamma \tau^{-1}$, that is, $\gamma(A)=\gamma\left(\tau^{-1}(A)\right), A \in \mathcal{B}_{I}$. Therefore, by its very definition, $\left(a_{n}\right)_{n \in \mathbb{N}_{+}}$is a strictly stationary sequence on $\left(I, \mathcal{B}_{I}, \gamma\right)$. Note that

$$
G(x):=\gamma([0, x])=\int_{0}^{1} \gamma_{a}([0, x]) \gamma(d a), x \in I
$$

where $\left(\gamma_{a}\right)_{a \in I}$ is the family of probability measures on \mathcal{B}_{I} defined by their distribution functions

$$
\gamma_{a}([0, x])=\frac{(a+1) x}{a x+1}, \quad x \in I, a \in I
$$

In particular, we have $\gamma_{0}=\lambda$, the Lebesgue measure on \mathcal{B}_{I}. For any $a \in I$ and $n \in \mathbb{N}_{+}$we have

$$
\gamma_{a}\left(\tau^{n}<x \mid a_{1}, \ldots, a_{n}\right)=\frac{\left(s_{n}^{a}+1\right) x}{s_{n}^{a} x+1}, \quad x \in I
$$

(see Prop. 1.3 .8 in [6]) where the s_{n}^{a} are defined recursively by $s_{0}^{a}=a$ and

$$
s_{n+1}^{a}=\frac{1}{a_{n+1}+s_{n}^{a}}, \quad a \in I, n \in \mathbb{N} .
$$

Since $\tau^{n}(\omega)=\left[a_{n+1}(\omega), a_{n+2}(\omega), \ldots\right], n \in \mathbb{N}, \omega \in \Omega$, it follows that

$$
\begin{aligned}
\gamma_{a}\left(a_{n+1}=i \mid a_{1}, \ldots, a_{n}\right) & =\gamma_{a}\left(\left.\frac{1}{i+1}<\tau^{n}<\frac{1}{i} \right\rvert\, a_{1}, \ldots, a_{n}\right) \\
& =\frac{s_{n}^{a}+1}{\left(s_{n}^{a}+i\right)\left(s_{n}^{a}+i+1\right)}:=P_{i}\left(s_{n}^{a}\right)
\end{aligned}
$$

for any $a \in I$ and $i, n \in \mathbb{N}_{+}$. Hence for any $a \in I$ the sequence $\left(s_{n}^{a}\right)_{n \in \mathbb{N}}$ on $\left(I, \mathcal{B}_{I}, \gamma_{a}\right)$, with $\mathbb{N}=\{0\} \cup \mathbb{N}_{+}$, is an I-valued Markov chain which starts at $s_{0}^{a}=a$ and has the following transition mechanism: from state $s \in I$ the possible transitions are to any state $1 /(s+i)$ with corresponding transition probability $(s+1) /(s+i)(s+i+1), i \in \mathbb{N}_{+}$.

In a series of papers (see [2], [3], [4], [5]) explicit lower and upper bounds are derived for the convergence rate of the distribution function of s_{n}^{a} to its limit, the Gauss distribution function $G(x)=\frac{1}{\log 2} \log (x+1)$, $0 \leq x \leq 1$, as $n \rightarrow \infty$. A survey of this subject is presented in Sec. 2.5.3 of the monograph [6].

We recall Th. 2.5.5 from [6] according to which

$$
\begin{equation*}
\frac{a+1}{2\left(F_{n}+a F_{n-1}\right)\left(F_{n+1}+a F_{n}\right)} \leq \sup _{x \in I}\left|\gamma_{a}\left(s_{n}^{a} \leq x\right)-G(x)\right| \leq \frac{k_{0}}{F_{n} F_{n+1}} \tag{1}
\end{equation*}
$$

for any $a \in I$ and $n \in \mathbb{N}$, where k_{0} is a constant not exceeding 14.8 and $F_{n}, n \in \mathbb{N}$, are the Fibonacci numbers defined by $F_{0}=F_{1}=1$, $F_{n}=F_{n-1}+F_{n-2}, n \geq 2$. Both lower and upper bounds in (1) are $O\left(g^{2 n}\right)$ as $n \rightarrow \infty$ with $g=(\sqrt{5}-1) / 2, g^{2}=(3-\sqrt{5}) / 2=0.38196 \ldots$, thus yielding the optimal convergence rate.

Inequalities (1) allow a quick derivation of the asymptotic behaviour of

$$
\gamma_{a}\left(\tau^{n} \leq x, s_{n}^{a} \leq y\right)
$$

as $n \rightarrow \infty$ for any $a, x, y \in I$, and of the optimal convergence rate, the same as above. Generalizing the main result in [1], Th. 2.5.8 from [6] establishes that

$$
\begin{aligned}
\frac{a+1}{2\left(F_{n}+a F_{n-1}\right)\left(F_{n+1}+a F_{n}\right)} & \leq \sup _{x, y \in I}\left|\gamma_{a}\left(\tau^{n} \leq x, s_{n}^{a} \leq y\right)-\frac{\log (x y+1)}{\log 2}\right| \leq \\
& \leq \frac{k_{0}}{F_{n} F_{n+1}}
\end{aligned}
$$

for any $a \in I$ and $n \in \mathbb{N}$.
In this paper Th. 2.5.8 from [6] is generalized. We derive the asymptotic behaviour of

$$
\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right)
$$

as $n \rightarrow \infty$ for any $a, x, y \in I$ and $m \in \mathbb{N}_{+}$. We also derive upper and lower bounds which are of order $O\left(g^{2 n}\right)$ as $n \rightarrow \infty$, too. In the last section we derive the asymptotic behaviour as both n and $m \rightarrow \infty$.

2. A few prerequisites

The transition operator U of the Markov chain $\left(s_{n}^{a}\right)_{n \in \mathbb{N}_{+}}$is

$$
U f(x)=\sum_{i \in \mathbb{N}_{+}} P_{i}(x) f\left(u_{i}(x)\right), x \in I, f \in B(I)
$$

where $B(I)$ denotes the collection of all bounded measurable functions $f: I \rightarrow \mathbf{C}$, and where the functions u_{i} and $P_{i}, i \in \mathbb{N}_{+}$, are defined by

$$
u_{i}(x)=\frac{1}{x+i}, P_{i}(x)=\frac{x+1}{(x+i)(x+i+1)}, x \in I
$$

Let us consider for any $x \in I$ and $m \geq 2$ the functions

$$
\begin{gather*}
u_{i_{m} \ldots i_{1}}=u_{i_{m}} \circ \ldots \circ u_{i_{1}} \tag{2}\\
P_{i_{1} \ldots i_{m}}(x)=P_{i_{1}}(x) P_{i_{2}}\left(u_{i_{1}}(x)\right) \ldots P_{i_{m}}\left(u_{i_{m-1}} \ldots i_{1}(x)\right) .
\end{gather*}
$$

Let us put

$$
\begin{gather*}
s_{n+m}^{a}\left(i^{(m)}\right)=\frac{1}{i_{m}+} \begin{array}{l}
\ddots \\
\\
\\
\quad+\frac{1}{i_{1}+s_{n}^{a}}
\end{array}, n, m \in \mathbb{N}_{+}, a \in I \tag{3}
\end{gather*}
$$

where $i^{(m)}=\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}_{+}^{m}$.
Proposition 1. For any $a \in I$ and $n, m \in \mathbb{N}_{+}$we have

$$
\begin{equation*}
\gamma_{a}\left(\tau^{n+m}<x \mid a_{1}, \ldots, a_{n}\right)=\sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \frac{x\left(s_{n+m}^{a}\left(i^{(m)}\right)+1\right)}{s_{n+m}^{a}\left(i^{(m)}\right) x+1} P_{i_{1} \ldots i_{m}}\left(s_{n}^{a}\right) \tag{4}
\end{equation*}
$$

Proof. For any $a \in I$ and $n, m \in \mathbb{N}_{+}$we have

$$
\begin{align*}
& \gamma_{a}\left(\tau^{n+m}<x \mid a_{1}, \ldots, a_{n}\right)= \tag{5}\\
& =\sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \gamma_{a}\left(\tau^{n+m}<x, a_{n+1}=i_{1}, \ldots, a_{n+m}=i_{m} \mid a_{1}, \ldots, a_{n}\right)= \\
& =\sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \gamma_{a}\left(\tau^{n+m}<x \mid a_{1}, \ldots, a_{n}, a_{n+1}=i_{1}, \ldots, a_{n+m}=i_{m}\right) \times \\
& \quad \times \gamma_{a}\left(a_{n+m}=i_{m}, \ldots, a_{n+1}=i_{1} \mid a_{1}, \ldots, a_{n}\right) .
\end{align*}
$$

Using (3), it follows from the generalized Brodén-Borel-Lévy formula (Prop. 1.3.8 in [6]) that

$$
\begin{align*}
& \gamma_{a}\left(\tau^{n+m}<x \mid a_{1}, \ldots, a_{n}, a_{n+1}=i_{1}, \ldots, a_{n+m}=i_{m}\right)= \\
& =\frac{x\left(s_{n+m}^{a}\left(i^{(m)}\right)+1\right)}{s_{n+m}^{a}\left(i^{(m)}\right) x+1} . \tag{6}
\end{align*}
$$

By Cor. 1.3.9 in [6], we have

$$
\begin{equation*}
\gamma_{a}\left(A \mid a_{1}, \ldots, a_{n}\right)=\gamma_{s_{n}^{a}}\left(\tau^{n}(A)\right), a \in I, n \in \mathbb{N}_{+}, \tag{7}
\end{equation*}
$$

for any set A belonging to the σ-algebra generated by the random variables a_{n+1}, a_{n+2}, \ldots.

Now, using (7) and equation (2.5.4) in [6], i.e.,

$$
P_{i_{1} \ldots i_{m}}(a)=\gamma_{a}\left(I\left(i^{(m)}\right)\right),
$$

where $I\left(i^{(m)}\right)=\left(\omega \in \Omega: a_{1}(\omega)=i_{1}, \ldots, a_{m}(\omega)=i_{m}\right)$ is the fundamental interval of rank $m, m \in \mathbb{N}_{+}$, we obtain

$$
\begin{equation*}
\gamma_{a}\left(a_{n+m}=i_{m}, \ldots, a_{n+1}=i_{1} \mid a_{1}, \ldots, a_{n}\right)=P_{i_{1} \ldots i_{m}}\left(s_{n}^{a}\right) . \tag{8}
\end{equation*}
$$

From (5), (6) and (8), equation (4) follows. \diamond
Now, by (1.2.4) in [6], $I\left(i^{(m)}\right)$ is the collection of irrationals in the interval with end-points p_{m} / q_{m} and $\left(p_{m}+p_{m-1}\right) /\left(q_{m}+q_{m-1}\right)$. Since

$$
\frac{p_{m}}{q_{m}}=\left[i_{1}, \ldots, i_{m}\right]= \begin{cases}\frac{1}{i_{1}}, & m=1 \\ \frac{1}{i_{1}+p_{m-1}\left(i_{2}, \ldots, i_{m}\right) / q_{m-1}\left(i_{2}, \ldots, i_{m}\right)}, & m>1\end{cases}
$$

and

$$
\frac{p_{m}+p_{m-1}}{q_{m}+q_{m-1}}=\left\{\begin{array}{ll}
\frac{1}{i_{1}+1}, & m=1 \\
{\left[i_{1}, \ldots, i_{m-1}, i_{m}+1\right],} & m>1
\end{array}=\right.
$$

$$
= \begin{cases}\frac{1}{i_{1}+1}, & m=1 \\ \frac{1}{i_{1}+p_{m}\left(i_{2}, \ldots, i_{m}, 1\right) / q_{m}\left(i_{2}, \ldots, i_{m}, 1\right)}, & m>1\end{cases}
$$

we have
(9)

$$
\begin{aligned}
P_{i_{1} \ldots i_{m}}(x)=(x+1) & \times \frac{1}{q_{m-1}\left(i_{2}, \ldots, i_{m}\right)\left(x+i_{1}\right)+p_{m-1}\left(i_{2}, \ldots, i_{m}\right)} \times \\
& \times \frac{1}{q_{m}\left(i_{2}, \ldots, i_{m}, 1\right)\left(x+i_{1}\right)+p_{m}\left(i_{2}, \ldots, i_{m}, 1\right)}
\end{aligned}
$$

for any $m \geq 2, i^{(m)} \in \mathbb{N}_{+}^{m}$ and $x \in I$.
Finally, note that $u_{i_{1} \ldots i_{m}}(x)$ can be written as

$$
\begin{equation*}
u_{i_{1} \ldots i_{m}}(x)=\frac{p_{m-1} x+p_{m}}{q_{m-1} x+q_{m}}, x \in I, m \in \mathbb{N}_{+}, \tag{10}
\end{equation*}
$$

with $p_{0}=0, q_{0}=1$.
In the sequel we also need the well-known equation

$$
\begin{equation*}
p_{m} q_{m-1}-p_{m-1} q_{m}=(-1)^{m+1}, m \in \mathbb{N} . \tag{11}
\end{equation*}
$$

3. The main result

We are now in a position to prove our main result which reads as follows.
Theorem 1. For any $a \in I, n \in \mathbb{N}$ and $m \in \mathbb{N}_{+}$we have

$$
\begin{align*}
& \frac{a+1}{2\left(F_{n}+a F_{n-1}\right)\left(F_{n+1}+a F_{n}\right)} \leq \\
& \leq \sup _{x, y \in I}\left|\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right)-H_{m}(x, y)\right| \leq \frac{6 k_{0}}{F_{n} F_{n+1}}, \tag{12}
\end{align*}
$$

where

$$
\begin{gathered}
H_{m}(x, y)=\frac{1}{\log 2} \log \prod_{i_{1}, \ldots, i_{m}}\left(1+\frac{(-1)^{m} x y}{\left(q_{m-1} x+q_{m}\right)\left(p_{m} y+q_{m}\right)}\right)^{(-1)^{m}}, \\
x, y \in I
\end{gathered}
$$

The probability density of the limiting distribution H_{m} is

$$
h_{m}(x, y)=\frac{1}{\log 2} \sum_{i_{1}, \ldots, i_{m}} \frac{1}{\left(p_{m-1} x y+q_{m-1} x+p_{m} y+q_{m}\right)^{2}}, x, y \in I
$$

Proof. Set $G_{n}^{a}(y)=\gamma_{a}\left(s_{n}^{a} \leq y\right), H_{n}^{a}(y)=G_{n}^{a}(y)-G(y), a, y \in I$, $n \in \mathbb{N}$. By (1) we have

$$
\begin{equation*}
\left|H_{n}^{a}(y)\right| \leq \frac{k_{0}}{F_{n} F_{n+1}}, a, y \in I, n \in \mathbb{N} \tag{13}
\end{equation*}
$$

where k_{0} is a constant not exceeding 14.8.
By Prop. 1 and equations (2) and (3), for any $a, x, y \in I$ and $n \in \mathbb{N}, m \in \mathbb{N}_{+}$, we have

$$
\begin{aligned}
\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right) & =\int_{0}^{y} \gamma_{a}\left(\tau^{n+m} \leq x \mid s_{n}^{a}=z\right) d G_{n}^{a}(z)= \\
& =\int_{0}^{y} \sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1} P_{i_{1} \ldots i_{m}}(z) d G_{a}^{n}(z) .
\end{aligned}
$$

When applying Prop. 1 we used the fact that the σ-algebras generated by $\left(a_{1}, \ldots, a_{n}\right)$ and by s_{n}^{a} are identical for any $a \in I$ and $n \in \mathbb{N}_{+}$.

Using equation (9), the right-hand member above can be written as

$$
\begin{aligned}
\frac{1}{\log 2} \int_{0}^{y} \sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1} & \times \frac{1}{q_{m-1}^{\prime}\left(z+i_{1}\right)+p_{m-1}^{\prime}} \times \\
& \times \frac{d z}{q_{m}^{\prime \prime}\left(z+i_{1}\right)+p_{m}^{\prime \prime}}+ \\
+\int_{0}^{y} \sum_{i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}} \frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1} & \times \frac{z+1}{q_{m-1}^{\prime}\left(z+i_{1}\right)+p_{m-1}^{\prime}} \times \\
& \times \frac{d H_{n}^{a}(z)}{q_{m}^{\prime \prime}\left(z+i_{1}\right)+p_{m}^{\prime \prime}},
\end{aligned}
$$

where, to simplify notation, we put

$$
\begin{aligned}
& q_{m-1}\left(i_{2}, \ldots, i_{m}\right)=q_{m-1}^{\prime}, p_{m-1}\left(i_{2}, \ldots, i_{m}\right)=p_{m-1}^{\prime}, \\
& q_{m}\left(i_{2}, \ldots, i_{m}, 1\right)=q_{m}^{\prime \prime}, \quad p_{m}\left(i_{2}, \ldots, i_{m}, 1\right)=p_{m}^{\prime \prime} .
\end{aligned}
$$

Also, using elementary properties of s_{n}^{a} and q_{n}, we have

$$
\begin{aligned}
u_{i_{m} \ldots i_{1}}(z) & =\frac{q_{m-1}\left(z+i_{1}, i_{2}, \ldots, i_{m-1}\right)}{q_{m}\left(z+i_{1}, i_{2}, \ldots, i_{m}\right)}=\frac{q_{m-1}\left(i_{m-1}, \ldots, i_{2}, z+i_{1}\right)}{q_{m}\left(i_{m}, \ldots, i_{2}, \ldots, i_{m}\right)}= \\
& =\frac{\left(z+i_{1}\right) q_{m-2}^{\prime}+q_{m-3}\left(i_{3}, \ldots, i_{m-1}\right)}{\left(z+i_{1}\right) q_{m-1}^{\prime}+q_{m-2}\left(i_{3}, \ldots, i_{m}\right)}=\frac{\left(z+i_{1}\right) q_{m-2}^{\prime}+p_{m-2}^{\prime}}{\left(z+i_{1}\right) q_{m-1}^{\prime}+p_{m-1}^{\prime}}
\end{aligned}
$$

hence
(14)

$$
\frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1}=\frac{x\left(\left(z+i_{1}\right) q_{m}^{\prime \prime}+p_{m}^{\prime \prime}\right)}{x\left[q_{m-2}^{\prime}\left(z+i_{1}\right)+p_{m-2}^{\prime}\right]+q_{m-1}^{\prime}\left(z+i_{1}\right)+p_{m-1}^{\prime}}
$$

(i) The upper bound. We start with computing

$$
\begin{aligned}
S_{1}:=\frac{1}{\log 2} \int_{0}^{y} \sum_{i_{1}, \ldots, i_{m}} \frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1} & \times \frac{1}{q_{m-1}^{\prime}\left(z+i_{1}\right)+p_{m-1}^{\prime}} \times \\
& \times \frac{d z}{q_{m}^{\prime \prime}\left(z+i_{1}\right)+p_{m}^{\prime \prime}} .
\end{aligned}
$$

Using (10), (11) and (14), it is easy to check that

$$
\begin{aligned}
S_{1}= & \frac{1}{\log 2} \sum_{i_{1}, \ldots, i_{m}}(-1)^{m} \int_{0}^{y}\left(\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(x)}-\right. \\
& \left.-\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(0)}\right) d z= \\
= & \frac{1}{\log 2} \sum_{i_{1}, \ldots, i_{m}}(-1)^{m}\left[\log \left(z+i_{1}+u_{i_{2} \ldots i_{m}}(x)\right)-\right.
\end{aligned}
$$

$$
\left.-\log \left(z+i_{1}+u_{i_{2} \ldots i_{m}}(0)\right)\right]\left.\right|_{z=0} ^{z=y}=
$$

$$
=\frac{1}{\log 2} \log \prod_{i_{1}, \ldots, i_{m}}\left(\frac{y+i_{1}+u_{i_{2} \ldots i_{m}}(x)}{y+i_{1}+u_{i_{2} \ldots i_{m}}(0)} \cdot \frac{i_{1}+u_{i_{2} \ldots i_{m}}(0)}{i_{1}+u_{i_{2} \ldots i_{m}}(x)}\right)^{(-1)^{m}}=
$$

$$
=\frac{1}{\log 2} \log \prod_{i_{1}, \ldots, i_{m}}\left(\frac{y+\left(q_{m-1} x+q_{m}\right) /\left(p_{m-1} x+p_{m}\right)}{y+q_{m} / p_{m}} .\right.
$$

$$
\left.\cdot \frac{q_{m} / p_{m}}{\left(q_{m-1} x+q_{m}\right) /\left(p_{m-1} x+p_{m}\right)}\right)^{(-1)^{m}}=
$$

$$
=\frac{1}{\log 2} \log \prod_{i_{1}, \ldots, i_{m}}\left(1+\frac{(-1)^{m} x y}{\left(q_{m-1} x+q_{m}\right)\left(p_{m} y+q_{m}\right)}\right)^{(-1)^{m}}=
$$

$$
=H_{m}(x, y)
$$

Now, put

$$
\begin{aligned}
S_{2}=\int_{0}^{y} \sum_{i_{1}, \ldots, i_{m}} \frac{x\left(u_{i_{m} \ldots i_{1}}(z)+1\right)}{x u_{i_{m} \ldots i_{1}}(z)+1} & \times \frac{z+1}{q_{m-1}^{\prime}\left(z+i_{1}\right)+p_{m-1}^{\prime}} \times \\
& \times \frac{d H_{n}^{a}(z)}{q_{m}^{\prime \prime}\left(z+i_{1}\right)+p_{m}^{\prime \prime}} .
\end{aligned}
$$

Using again (10) and (14), we obtain

$$
\begin{aligned}
S_{2}=\int_{0}^{y} \sum_{i_{1}, \ldots, i_{m}} \frac{(z+1) / q_{m-2}^{\prime}}{z+i_{1}+p_{m-2}^{\prime} / q_{m-2}^{\prime}} & {\left[\frac{1 / q_{m-1}^{\prime}}{z+i_{1}+u_{i_{2} \ldots i_{m}}(0)}-\right.} \\
& \left.-\frac{1 /\left(q_{m-2}^{\prime} x+q_{m-1}^{\prime}\right)}{z+i_{1}+u_{i_{2} \ldots i_{m}}(x)}\right] \times d H_{n}^{a}(z) .
\end{aligned}
$$

Integrating by part now yields

$$
\begin{aligned}
& S_{2}= \sum_{i_{1}, \ldots, i_{m}}\left\{\frac { (y + 1) / q _ { m - 2 } ^ { \prime } } { y + i _ { 1 } + p _ { m - 2 } ^ { \prime } / q _ { m - 2 } ^ { \prime } } \left[\frac{1 / q_{m-1}^{\prime}}{y+i_{1}+u_{i_{2} \ldots i_{m}}(0)}-\right.\right. \\
&\left.-\frac{1 /\left(q_{m-2}^{\prime} x+q_{m-1}^{\prime}\right)}{y+i_{1}+u_{i_{2} \ldots i_{m}}(x)}\right] H_{n}^{a}(y)- \\
&-\int_{0}^{y}(-1)^{m} \frac{d}{d z}\left[(z + 1) \left(\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(x)}-\right.\right. \\
&\left.\left.\left.-\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(0)}\right)\right] H_{n}^{a}(z) d z\right\}
\end{aligned}
$$

Next, put

$$
\begin{aligned}
& S_{3}= \sum_{i_{1}, \ldots, i_{m}}(-1)^{m} \int_{0}^{y} \frac{d}{d z}\left[(z + 1) \left(\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(x)}-\right.\right. \\
&\left.\left.-\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(0)}\right)\right] H_{n}^{a}(z) d z= \\
&=\sum_{i_{1}, \ldots, i_{m}}(-1)^{m} \int_{0}^{y}\left[\frac{i_{1}+u_{i_{2} \ldots i_{m}}(x)-1}{\left(z+i_{1}+u_{i_{2} \ldots i_{m}}(x)\right)^{2}}-\right. \\
&\left.-\frac{i_{1}+u_{i_{2} \ldots i_{m}}(0)-1}{\left(z+i_{1}+u_{i_{2} \ldots i_{m}}(0)\right)^{2}}\right] H_{n}^{a}(z) d z= \\
&= \sum_{i_{1}, \ldots, i_{m}}(-1)^{m} \int_{0}^{y}[(A(z)-B(z))(1-(z+1)(A(z)+B(z)))] H_{n}^{a}(z) d z
\end{aligned}
$$

where

$$
A(z)=\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(x)} \quad \text { and } \quad B(z)=\frac{1}{z+i_{1}+u_{i_{2} \ldots i_{m}}(0)}
$$

Using (13), since $|1-(z+1)(A(z)+B(z))| \leq 1$ and $A(z)-B(z)$ preserves a constant sign, for any fixed $m \in \mathbb{N}_{+}$and any $i_{1}, \ldots, i_{m} \in \mathbb{N}_{+}$we have

$$
\begin{aligned}
& \left|\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right)-H_{m}(x, y)\right| \leq \\
& \leq \frac{k_{0}}{F_{n} F_{n+1}}\left(\left\lvert\, \sum_{i_{1}, \ldots, i_{m}} \frac{(y+1) / q_{m-2}^{\prime}}{y+i_{1}+p_{m-2}^{\prime} / q_{m-2}^{\prime}}\left[\frac{1 / q_{m-1}^{\prime}}{y+i_{1}+u_{i_{2} \ldots i_{m}}(0)}-\right.\right.\right. \\
& \left.\quad-\frac{1 /\left(q_{m-2}^{\prime} x+q_{m-1}^{\prime}\right)}{y+i_{1}+u_{i_{2} \ldots i_{m}}(x)}\right] \mid+ \\
& \left.\quad+\sum_{i_{1}, \ldots, i_{m}}\left|\log \frac{y+i_{1}+u_{i_{2} \ldots i_{m}}(x)}{i_{1}+u_{i_{2} \ldots i_{m}}(x)}-\log \frac{y+i_{1}+u_{i_{2} \ldots i_{m}}(0)}{i_{1}+u_{i_{2} \ldots i_{m}}(0)}\right|\right)= \\
& \left.=\frac{-\frac{k_{0}}{F_{n} F_{n+1}}\left(\left\lvert\, \sum_{i_{1}, \ldots, i_{m}}(-1)^{m}(y+1)\left[\frac{1}{y+i_{1}+u_{i_{2} \ldots i_{m}}(x)}-\right.\right.\right.}{y+u_{i_{2} \ldots i_{m}}(0)}\right] \mid+ \\
& \quad+\sum_{i_{1}, \ldots, i_{m}} \left\lvert\, \log \left(1+\frac{u_{i_{2} \ldots i_{m}}(x)-u_{i_{2} \ldots i_{m}}(0)}{y+i_{1}+u_{i_{2} \ldots i_{m}(0)}(0)-}\right.\right. \\
& = \\
& =\frac{k_{0}}{F_{n} F_{n+1}}\left(\left|S_{4}\right|+S_{5}\right), \quad
\end{aligned}
$$

where S_{4} and S_{5} are the two series occurring on the right-hand side above. Since $\sum_{i_{1}, \ldots, i_{m}} \frac{1}{q_{m}\left(q_{m-1}+q_{m}\right)}=1$, it follows that

$$
\begin{aligned}
\left|S_{4}\right| & \leq 2 \sum_{i_{1}, \ldots, i_{m}}\left|\frac{1}{y+\left(q_{m-1} x+q_{m}\right) /\left(p_{m-1} x+p_{m}\right)}-\frac{1}{y+q_{m} / p_{m}}\right| \leq \\
& \leq 2 \sum_{i_{1}, \ldots, i_{m}} \frac{1}{\left[\left(p_{m-1} x+p_{m}\right) y+q_{m-1} x+q_{m}\right]\left(p_{m} y+q_{m}\right)} \leq
\end{aligned}
$$

$$
\leq 2 \sum_{i_{1}, \ldots, i_{m}} \frac{1}{q_{m}^{2}} \leq 4 \sum_{i_{1}, \ldots, i_{m}} \frac{1}{q_{m}\left(q_{m-1}+q_{m}\right)}=4
$$

Since

$$
\begin{aligned}
& \log \left(1+\frac{u_{i_{2} \ldots i_{m}}(x)-u_{i_{2} \ldots i_{m}}(0)}{y+i_{1}+u_{i_{2} \ldots i_{m}}(0)}\right) \leq \\
& \leq \frac{\left|\left(q_{m-1} x+q_{m}\right) /\left(p_{m-1} x+p_{m}\right)-q_{m} / p_{m}\right|}{q_{m} / p_{m}+y}= \\
& =\frac{x}{\left(p_{m-1} x+p_{m}\right)\left(p_{m} y+q_{m}\right)} \leq \frac{1}{p_{m}\left(p_{m-1}+p_{m}\right)}
\end{aligned}
$$

for all $x, y \in I$ it follows that

$$
S_{5} \leq 2 \sum_{i_{1}, \ldots, i_{m}} \frac{1}{p_{m}\left(p_{m-1}+p_{m}\right)}=2
$$

Thus the upper bound announced follows from $\left|S_{4}\right|+S_{5} \leq 4+2=6$.
(ii) The lower bound. It follows from the result just established that

$$
H_{m}(1, y)=G(y)=\frac{1}{\log 2} \log (y+1), m \in \mathbb{N}_{+}, y \in I
$$

(This can be also checked by direct computation.) Then, for any $a \in I$, $n \in \mathbb{N}$ and $m \in \mathbb{N}_{+}$we have

$$
\begin{aligned}
& \sup _{x, y \in I}\left|\quad \gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right)-H_{m}(x, y)\right| \geq \\
& \geq \sup _{y \in I}\left|\quad \gamma_{a}\left(\tau^{n+m} \leq 1, s_{n}^{a} \leq y\right)-H_{m}(1, y)\right|= \\
& =\sup _{y \in I}\left|\gamma_{a}\left(s_{n}^{a} \leq y\right)-G(y)\right| \geq \frac{a+1}{2\left(F_{n}+a F_{n-1}\right)\left(F_{n+1}+a F_{n}\right)} .
\end{aligned}
$$

Remark. The upper and lower bounds in (12) are of order $O\left(g^{2 n}\right)$ as $n \rightarrow \infty$.

4. Approximating the limiting distribution

Using some mixing properties of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}_{+}}$under γ_{a}, $a \in I$, we shall now provide an approximation of the limiting distribution H_{m}, see Th. 1. We use the notation in Subsec.1.3.6 from [6].

For any $k \in \mathbb{N}_{+}$, let $\mathcal{B}_{1}^{k}=\sigma\left(a_{1}, \ldots, a_{k}\right)$ and $\mathcal{B}_{k}^{\infty}=\sigma\left(a_{k}, a_{k+1}, \ldots\right)$
denote the σ-algebras generated by the random variables a_{1}, \ldots, a_{k}, respectively, a_{k}, a_{k+1}, \ldots.

For any $\gamma_{a}, a \in I$, consider the ψ-mixing coefficients

$$
\begin{equation*}
\psi_{\gamma_{a}}(n)=\sup \left|\frac{\gamma_{a}(A \cap B)}{\gamma_{a}(A) \gamma_{a}(B)}-1\right|, n \in \mathbb{N}_{+} \tag{15}
\end{equation*}
$$

where the supremum is taken over all $A \in \mathcal{B}_{1}^{k}$ and $B \in \mathcal{B}_{k+n}^{\infty}$ such that $\gamma_{a}(A) \gamma_{a}(B) \neq 0$, and $k \in \mathbb{N}_{+}$.

By Prop. 2.3.7 from [6], the sequence $\left(a_{n}\right)_{n \in \mathbb{N}_{+}}$is ψ-mixing under any $\gamma_{a}, a \in I$, that is, $\lim _{n \rightarrow \infty} \psi_{\gamma_{a}}(n)=0$. For any $a \in I$ we have $\psi_{\gamma_{a}}(1) \leq 0.61231 \ldots$ and

$$
\begin{equation*}
\psi_{\gamma_{a}}(n) \leq \frac{\varepsilon_{2} \lambda_{0}^{n-2}\left(1+\lambda_{0}\right)}{1-\varepsilon_{2} \lambda_{0}^{n-1}}, n \geq 2 \tag{16}
\end{equation*}
$$

where $\varepsilon_{2}=0.14018 \ldots$ and $\lambda_{0}=0.30363300289873265859 \ldots$.
We first notice that putting $A=\left\{s_{n}^{a} \leq y\right\} \in \mathcal{B}_{1}^{n}$ and $B=$ $=\left\{\tau^{n+m} \leq x\right\} \in \mathcal{B}_{n+m}^{\infty}$ by (15) we have

$$
\begin{equation*}
\left|\gamma_{a}(A \cap B)-\gamma_{a}(A) \gamma_{a}(B)\right| \leq \psi_{\gamma_{a}}(m) \gamma_{a}(A) \gamma_{a}(B) \tag{17}
\end{equation*}
$$

for any $a \in I$ and $n, m \in \mathbb{N}_{+}$. Recall (see Sec. 3) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma_{a}(A)=\gamma([0, y])=\frac{\log (y+1)}{\log 2}, a, y \in I \tag{18}
\end{equation*}
$$

Also, by Th. 1.3.12 from [6] we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma_{a}(B)=\gamma([0, x])=\frac{\log (x+1)}{\log 2}, a, x \in I \tag{19}
\end{equation*}
$$

Finally, notice that

$$
\begin{equation*}
\gamma_{a}(A \cap B)=\gamma_{a}\left(\tau^{n+m} \leq x, s_{n}^{a} \leq y\right) \tag{20}
\end{equation*}
$$

for any $a, x, y \in I$ and $n, m \in \mathbb{N}_{+}$. Now, by (18), (19), (20) and Th. 1, letting $n \rightarrow \infty$ in (17) yields

$$
\left|H_{m}(x, y)-\frac{\log (x+1) \log (y+1)}{(\log 2)^{2}}\right| \leq \psi_{\gamma_{a}}(m) \frac{\log (x+1) \log (y+1)}{(\log 2)^{2}}
$$

for any $m \in \mathbb{N}_{+}$and $a, x, y \in I$. In conjunction with (15), the last inequality provides a good approximation of $H_{m}(x, y)$ for moderately large values of $m \in \mathbb{N}_{+}$.

Acknowledgement. Thanks are due to an anonymous referee for suggestions that led to a better presentation of the paper.

References

[1] DAJANI, K. and KRAAIKAMP, C.: Generalization of a theorem of Kuzmin, Monatsh. Math. 118 (1994), 55-73
[2] IOSIFESCU, M.: A very simple proof of a generalization of the Gauss-KuzminLévy theorem on continued fractions, and related questions, Rev. Roumaine Math. Pures Appl. 37 (1992), 901-914.
[3] IOSIFESCU, M.: On the Gauss-Kuzmin-Lévy theorem I, Rev. Roumaine Math. Pures Appl. 39 (1994), 97-117.
[4] IOSIFESCU, M.: On the Gauss-Kuzmin-Lévy theorem II, Rev. Roumaine Math. Pures Appl. 40 (1995), 91-105.
[5] IOSIFESCU, M.: On the Gauss-Kuzmin-Lévy theorem III, Rev. Roumaine Math. Pures Appl. 42 (1997), 71-88.
[6] IOSIFESCU, M. and KRAAIKAMP, C.: Metrical Theory of Continued Fractions, Kluwer, Dordrecht, 2002.

