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Abstract: We give a generalization of Th. 2.5.8 from [6], namely, we de-
rive the asymptotic behaviour of v, (7"1t™ < 2,52 < y) as n — oo for any
a,z,y € I and m € Ni. We also derive corresponding upper and lower bounds
which are of order O(g?") as n — oo, too.

1. Introduction

Let ©2 denote the collection of irrational numbers in the unit inter-
val I =[0,1]. Given w € §, let a1(w),az(w), ... be the sequence of the
incomplete quotients of the continued fraction expansion of w. That is,

gl

defining the continued fraction transformation 7 : Q2 — Q by 7(w) =
1
(mod 1) = fractionary part of —, w € €2, we have a,1(w) = a1(7"(w)),
w
1
n e Ny ={1,2,...}, with a;(w) = integer part of —. Here 7" denotes
w

the nth iterate of 7. Then, by the very definition,
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and we have

w = lim Pa(w) = |a1(w), as(w w
nl_wo (@) [a1(w), az(w),...], w € Q,
where
pn(w) _ 1
@) g w) + ,1 1
as(w) + -+ (@)

with g.c.d. (pr(w),qn(w)) =1, w € Q, n € N,

Clearly, the a,, n € N, can be viewed as random variables on
(I,Br), where Bj is the collection of Borel subsets of I, that are defined
almost surely with respect to any probability measure on B; assigning
measure 0 to the set of rationals in I. Such a probability measure is
Lebesgue measure A, but a more important one in the present context
is the Gauss measure v defined by

1 dx
v(4) = logQ/Ax—f—l’ Acbr.
We have v = 771, that is, v(4) = v(771(A)), A € B;. Therefore,
by its very definition, (an)nen, is a strictly stationary sequence on
(I,Br,7v). Note that

G(a) = ([0, 2]) = / 7a((0, 2]y (da), z € 1T,

where (74)aer is the family of probability measures on B; defined by
their distribution functions
(a+ 1)z

Ye((0,2]) = ar +1"

In particular, we have 79 = A, the Lebesgue measure on B;. For any
a € I and n € Ny we have

zel, ael.

(sp + D
s¢x +1
(see Prop. 1.3.8 in [6]) where the s¢ are defined recursively by s§ = a

and

Ya(T" < Zlay, ... ay) = , xel,
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1

——— acl, neN.
Apy1 + 8%

a —
$n+1 -

Since 7" (w) = [an4+1 (W), Gnt2(w),...], n € N, w € Q, it follows that

1 +1
a1
_ Sl pey)
(52 +)(s2 +i+1)

for any a € I and i,n € N;. Hence for any a € I the sequence (s%)nen
on (I,Br1,7,), with N = {0} UN,, is an I-valued Markov chain which
starts at s§ = a and has the following transition mechanism: from
state s € I the possible transitions are to any state 1/(s + ¢) with
corresponding transition probability (s +1)/(s+1)(s+i+ 1), i € N4.

In a series of papers (see [2],[3], [4],[5]) explicit lower and upper
bounds are derived for the convergence rate of the distribution function

] 1
o 2 og(x+1),

0 <z <1,asn — oco. A survey of this subject is presented in Sec. 2.5.3
of the monograph [6].
We recall Th. 2.5.5 from [6] according to which
(1)
1 k
o < sup (s < 2) — G(a)] <

2(Fn +aFn71)<Fn+1 +aFn> zel FnFnJrl

for any @ € I and n € N, where ky is a constant not exceeding 14.8
and F,,, n € N, are the Fibonacci numbers defined by Fy = F} = 1,
F, = F,_1 + F,_2, n > 2. Both lower and upper bounds in (1) are
O(g?") as n — oo with g = (v/5—1)/2, > = (3—+/5)/2 = 0.38196... .,
thus yielding the optimal convergence rate.

Inequalities (1) allow a quick derivation of the asymptotic be-
haviour of

. 1 1
Yalnt1 =ilar, ... ,an) =7 | — < T <€\a1,...,an

of s¢ to its limit, the Gauss distribution function G(z)=

Yo" < 1,5, < y)
as n — oo for any a,x,y € I, and of the optimal convergence rate, the

same as above. Generalizing the main result in [1], Th. 2.5.8 from [6]
establishes that

a+1 log(zy+1)
< su (T <z, 80 <y)— ———| <
2(FutaFn1)(FrsrtaFn) ~ayer|’ ("< Y~ g2
ko
<
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for any a € I and n € N.
In this paper Th. 2.5.8 from [6] is generalized. We derive the
asymptotic behaviour of

Yo (T <z, s% <)

as n — oo for any a,z,y € I and m € N;. We also derive upper and
lower bounds which are of order O(g?") as n — oo, too. In the last
section we derive the asymptotic behaviour as both n and m — oc.

2. A few prerequisites

The transition operator U of the Markov chain (s%)nen, is
Uf(x) =Y Pi(a)f(u(x)), z €1, f € B(I),
1€ENL
where B(I) denotes the collection of all bounded measurable functions
f I — C, and where the functions u; and P;, « € N, are defined by
1 x+1
ui @) x+1i (z) (x+i)(x+i+1) *

Let us consider for any x € I and m > 2 the functions

Ui,y — U4, © -0 o O Uy,

m

@ @)= PPy (s, (2) . P (s i ().

Let us put
o (i) = ! N I
(3) Sy (1 )_im—i- ,n,meNy, a€l,
|
11 + 8%
where i(™ = (iy,... ,in) € NT.

Proposition 1. For any a € I and n,m € Ny we have

(4)

%L(T

n+m

Z x(sz+m(i(m)) b P . i (sp)

sa, (im)z +1 n

n+m

<zxlat, ... an) =

$1,..0,0m ENG

Proof. For any a € I and n,m € N, we have
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()

n—+m _
Ya (T <zlay,...,an) =
_ n+m o . .
= E Ya(T < Tylpy1 =11, o yAppm = Im|a1, ... ,Gn) =
il,...,imeN+
— n+m o .
= E Ya(T L XAyt Uy Q] =01y e e vy Qppn, = G X
il,...,im€N+
X’ya(an—‘rm:imv"' 7a’n+1:i1’a17"' 7an)~

Using (3), it follows from the generalized Brodén—Borel-Lévy for-
mula (Prop. 1.3.8 in [6]) that

n+m o . o
’Va(T < x‘ala--- yOns Gn+1 = U5 - -« 5 Gndm = Zm) =

(6) _ (s (@) +1)

Csp ()1
By Cor. 1.3.9 in [6], we have
(7) Ya(Alay, ... ,an) =ysa (1"(A)), a € I, n € Ny,
for any set A belonging to the o-algebra generated by the random
variables a,41,ap42,... .

Now, using (7) and equation (2.5.4) in [6], i.e.,
Py, (@) = 7a(I(E™)),

where I(i"™) = (w € Q : ay(w) = i1,... ,am(w) = i) is the funda-
mental interval of rank m, m € N, we obtain

(8) Ya(@nim = Gmy - sapy1 = i1|a1, ... ,an) = Py, i (s%).

From (5), (6) and (8), equation (4) follows. ¢
Now, by (1.2.4) in [6], I(i™) is the collection of irrationals in the
interval with end-points p,, /¢ and (py + Pm—1)/(¢m + ¢m—1)- Since

1
= m=1
Pm .. . . 11
— = [i1,.-. ,im] = 1
m : . : . —, m>1
11 +pm—1(7'27 "'7Zm)/Qm—1(7'27 "'7Zm)
and
1
pm‘}_pmfl: Z.1+1, m:1:
dm +Qm—1

[il,... ,Z'mfl,im—f—l], m > 1



140 G. I. Sebe

1

) i+ 1 m=1
1
St polins i D gy
we have
Py i, ()= (z+1)x , : 1 : — X
Gm-1(i2, ... yim) (@ +41) + Pm-1(i2, ... ,im)
1

X

Qm(i% s 7im7 1)(:1" + Zl) +pm(7/27 s 77:m7 ]-)

for any m > 2, i(™) ¢ N and x € I.
Finally, note that u;, ; (z) can be written as

) — Pm—1T +pm

10 s, .. i, (T
( ) ! m( dm—-1T + dm

,xel, meN,,

with pg =0, qo = 1.
In the sequel we also need the well-known equation

m+1

(11) Pmdm—1 — Pm—-19m = (_1) , M & N.

3. The main result

We are now in a position to prove our main result which reads as
follows.
Theorem 1. For anya € I, n € N and m € N, we have

a+1 <
2(F, +aF,_1)(Fpq1 +aFy) —

(12)

< sup |y (7" <@, st <y) — Hi(z,y)| < ,
z,yel FnFn+1

where

)y (—™
Hulo) = o8 1 (”( T >) ’

T1yeee yim Qm—1$+qm)(pmy+qm

x,y € l.

The probability density of the limiting distribution H,, is
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1 1
hm(z,y) = , x,y e 1.
m(2,Y) log 2 . Z (Pm—12Y + Gm—1T + Py + qm)? Y

Proof. Set G} (y) = (s, < y),Hy(y) = Go(y) — G(y), a,y € 1,
n € N. By (1) we have

(13) |Hy (y)| < ,a,yel, neN,

ko
FnFn+1

where kg is a constant not exceeding 14.8.
By Prop. 1 and equations (2) and (3), for any a,z,y € I and
n € N, m € Ny, we have

Yy
Bl < <) = [ (< alst = 2dG(2) =
0

:/Oy Z x(uzm“(z) + 1)Pi1...im (z)dGZ(Z)

oen, zu;, g, (2) +1

When applying Prop. 1 we used the fact that the o-algebras gen-
erated by (a1, ... ,a,) and by s¢ are identical for any a € I and n € N;..
Using equation (9), the right-hand member above can be written

1 Y x(u; . (2)+1 1
log2/0 . Z :iuzm:EZ; +1) . Q1 (2 +i1) + 0,4 x
Q15eee 50m ENG m m m
y dz n
g’ (z+1i1) +pl,

y o

+/ x(u;, i (2) +1) ‘ z -l— 1 / y

0 . Z Ui, (2) F 1 g, (z4d1) +
21,...,1,m€N+

as

dH?(z)
(2 +i1) + o’

where, to simplify notation, we put

mel(i% BRI 7'Lm) = q;n—17pm71(i27 s :Zm) :p;n—la
iz, im, 1) = ¢ Dmlin, ... im, 1) =pl.

Also, using elementary properties of s and ¢,, we have
. qm_l(z + il,iQ, ...,’im_l) . qm_l(im_l, ...,’ig, z+ ’ll) .
Ui, ..y (2) = — : = : : : =
Gm(z + 11,102, ooyim) G (T ooy 124 ooy T
) gme T m—3(iz, - im—1) (240109 + P

(z4+141)q,_1 + @m—2(ig, ... im) - (z+141)q,_1 + Db
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hence
(14)
z(ui,,..i, (2) +1) r((2 +11) G, + D)

TUi,.i (2) + 1 wlgn oz + i) +ply o] + @1 (2 + 1) + Pl y

(i) The upper bound. We start with computing
1 Y P 1 1
Sl — / Z SC(Uzm...n (Z) + ) % - : / %
log 2 A xu;,, i, (2)+1 g, _1(z+1i1)+p,_4
dz
X : .
ql’ (z+11) + p,
Using (10), (11) and (14), it is easy to check that

1 Y 1
= —1 m -
51 log 2 ; Z (=1) /0 (Z + i1+ Uiy, 4, ()

yeeestm

.....

1
— dz =
z+ il + Uis ..o, (O))

= Z (—=1)™ [log(z + i1 + iy, (x))—

115-+-5tm

z=y

—log(z + i1 + w4, (0))]

z

=0
1 lo H (y + il -+ Wi, i, ((,C) . il —+ WUig. . iy, (Oi (=™

Y+i1+ Uiy 4, (0) i1+ Uiy 4, (T

Vlyeee slm

1 m— m m— m
_ log H (y—i—(Q 1%+ qm)/ (Pm—12 + pm)
Y+ Gm/Pm

Qm/pm )(_1) _
(melx + Qm)/(pmflx +pm)

i1y i Qm—1$+qm)(pmy—|—qm




A family of limit distributions 143

g _/y Z x(wi,, i, (2) +1) y z+1 y
B e S Y © R NN R )
()
@ (z+10)+pl

Using again (10) and (14), we obtain

R = e Ex= e
Z+21 —l—pm 2/qm 2 2+Zl+uzg zm(o)

(g2 + qpa)
z 441 + Uiy, i, (T)

} x dHO(2).

Integrating by part now yields

Sy = Z (y+1)/dm—s [ 1/qm—1 _
i1, yim y+®1 +p,rn—2/Q£n—2 y+l1 +u12~-im (0)

1/ (gm—2® + q)

Y+ i1+ Uiy iy, (T)

_ /Oy(_1)md% [(z +1) (z i+ iiz...im(fv) -

40+ zlbiQ...im (0))} HS(Z)dZ}'

|-

Next, put
Y d 1
S3 = -nm [ — 1 _
’ uzz( ) /O dz <Z+ )(Z+i1+ui2~~-im(x)

I )]Hg(z)dz:

z+ 11 + Uis..dm, (0)

= 2 " / [J:ilu +u’”(xi <_x>1>2 -

o i F Uiy, (0)—-1 a B
T uh...im<o>>2] Hy(2)dz =
=3 /0 [(A(2)—B(2))(1— (24 1)(A() + B(2)))| HA (2)dz,
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1 1
and B(z) =

Alz) = .
(2) z 441 + uiy. 4, (2) z2 411 + Ui,..i,,(0)

Using (13), since |1—(z+1)(A(2)+B(2))| < 1 and A(z)—B(z) preserves
a constant sign, for any fixed m € N, and any 71,... ,%, € N we have

|'7a(7_n+m <z, s; < y) - Hm(ac,y)| <

3 (y+1)/qm—s 1/dm—1 B
Y +i1+ 0, o/ LY+ i1+ Uiy, (0)

1/ (gm—pr + q;n—l):|
Y+ i1+ Uiy, (2)

.....

_|_

log ¥ + i1+ Uiy, (T) log + i1+ Uiy, (0) ) _
i1+ Uiy, (T) i1+ Uiy, (0)
B FnFn+1 .

T1yee- ,’I:m

> <—1>m<y+1>[ ! -

y+i1+u, 4 (T)

1
- — +
y+in+ uig,..im(o)]

Uiy i, (T) — Uiy 4 (0))
log( 1+ e . —
og( Y+ i1+ Uiy 4, (0)

) 10g<1 . uw;ﬂ(fi;?:(ol)mm)) D —

p>

P10 yim

B FnFn+1

(|S4| + 55)7

where S; and S5 are the two series occurring on the right-hand side

1
above. Since
i sz qm(Qm—l + Qm)

[Sul<2 ) 'y+( 1 1

— <
01,0 i qm—lx_|'(]m)/(pm—13j ‘|’pm) y+qm/pm -

<2 ) g : <

P17 + Pm)Y + Gn-1Z + @] (PmY + qm)

=1, it follows that

21,0 5lm
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<2 Z —<4 Z = 4.

,...,zm e

log (1 N uzzzm(x) — Uz‘Q...z‘m(O)) <
y+i1+ uiy. 4, (0)

- Qm/pm+y
x 1

— <
(pm,1I + pm)(pmy + Qm> a pm(pmfl +pm)
for all z,y € I it follows that

Since

1
S5 <2 = 2.
pm(pm—l +pm)

i1y im
Thus the upper bound announced follows from |Sy| + S5 < 4+ 2 = 6.
(ii) The lower bound. 1t follows from the result just established that

1
H,(1,y) = Gly) = 1 1), N,, yel
(1,y) = G(y) oz 2 og(y+1), meNy, ye
(This can be also checked by direct computation.) Then, for any a € I,
n € N and m € Ny we have

Yo (T <z, 88 < y) — Hm(w,y)' >

sup
z,yel
>sup| Ya(m"T < 1,80 <y) — Hm(l,y)‘z
yel
a-+1
= sup |[va (s < > O
yel;lv( y) —G(y)| > SF T aF ) (Fams T aF)

Remark. The upper and lower bounds in (12) are of order O(g?") as
n — oo.

4. Approximating the limiting distribution

Using some mixing properties of the sequence (a,)nen, under 7q,
a € I, we shall now provide an approximation of the limiting distribu-
tion H,,, see Th. 1. We use the notation in Subsec. 1.3.6 from [6].

For any k € N, let BY = o(ay, ... ,ax) and B = o(ak, agi1,---)
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denote the o-algebras generated by the random variables aq,... ,ax,
respectively, ai, agy1,... -
For any ~,, a € I, consider the ¢-mixing coefficients

Ya(AN B)
Va(A)7a(B)
where the supremum is taken over all A € Bf and B € BS,, such that
Ya(A)Va(B) # 0, and k € N

By Prop. 2.3.7 from [6], the sequence (ay, )nen, is ¥-mixing under
any 7., a € I, that is, lim v, (n) = 0. For any a € I we have

Y, (1) <0.61231... and

(15) . (n) = sup ~1|, neN.,

20 2(1+ Xo)
1-— 82)\8_1
where 5 = 0.14018... and )y = 0.30363300289873265859 . . . .

We first notice that putting A = {s¢ < y} € B} and B =
= {rtm < g} e B, by (15) we have

> 2

7n—7

(16) . (n) <

n+m

(17) Ya(AN B) = 7a(A)7a(B)] < ¢y, (m)Va(A)7a(B)
for any a € I and n,m € N,. Recall (see Sec. 3) that

. B _ log(y +1)
(18) A Ya(A) =([0.9]) = = 5= ey €1

Also, by Th. 1.3.12 from [6] we have

, B _ log(z +1)

(19) Jim . (B) = ~([0,2]) = gz VT € I.

Finally, notice that
(20) Ya(ANB) =7 (T < @, 57 < )
for any a,z,y € I and n,m € N,. Now, by (18), (19), (20) and Th. 1,
letting n — oo in (17) yields
_log(z +1)log(y + 1) log(z + 1)log(y + 1)
(log 2)? (log 2)?
for any m € N; and a,z,y € I. In conjunction with (15), the last

inequality provides a good approximation of H,,(x,y) for moderately
large values of m € N,

Hm(x7y) S %a (m)
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