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Abstract: We give a generalization of Th. 2.5.8 from [6], namely, we de-

rive the asymptotic behaviour of γa(τn+m ≤ x, sa

n
≤ y) as n → ∞ for any

a, x, y ∈ I and m ∈ N+. We also derive corresponding upper and lower bounds
which are of order O(g2n) as n → ∞, too.

1. Introduction

Let Ω denote the collection of irrational numbers in the unit inter-
val I = [0, 1]. Given ω ∈ Ω, let a1(ω), a2(ω), . . . be the sequence of the
incomplete quotients of the continued fraction expansion of ω. That is,

defining the continued fraction transformation τ : Ω → Ω by τ(ω) =
1

ω

(mod 1) = fractionary part of
1

ω
, ω ∈ Ω, we have an+1(ω) = a1(τ

n(ω)),

n ∈ N+ = {1, 2, . . . }, with a1(ω) = integer part of
1

ω
. Here τn denotes

the nth iterate of τ . Then, by the very definition,
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ω =
1

a1(ω) + τ(ω)
=

1

a1(ω) +
1

a2(ω) +
. . . +

1

an(ω) + τn(ω)

, n ≥ 2,

and we have

ω = lim
n→∞

pn(ω)

qn(ω)
:= [a1(ω), a2(ω), . . . ], ω ∈ Ω,

where
pn(ω)

qn(ω)
=

1

a1(ω) +
1

a2(ω) +
. . . +

1

an(ω)

,

with g.c.d. (pn(ω), qn(ω)) = 1, ω ∈ Ω, n ∈ N+.
Clearly, the an, n ∈ N+, can be viewed as random variables on

(I,BI), where BI is the collection of Borel subsets of I, that are defined
almost surely with respect to any probability measure on BI assigning
measure 0 to the set of rationals in I. Such a probability measure is
Lebesgue measure λ, but a more important one in the present context
is the Gauss measure γ defined by

γ(A) =
1

log 2

∫

A

dx

x + 1
, A ∈ BI .

We have γ = γτ−1, that is, γ(A) = γ(τ−1(A)), A ∈ BI . Therefore,
by its very definition, (an)n∈N+

is a strictly stationary sequence on
(I,BI , γ). Note that

G(x) := γ([0, x]) =

∫ 1

0

γa([0, x])γ(da), x ∈ I,

where (γa)a∈I is the family of probability measures on BI defined by
their distribution functions

γa([0, x]) =
(a + 1)x

ax + 1
, x ∈ I, a ∈ I.

In particular, we have γ0 = λ, the Lebesgue measure on BI . For any
a ∈ I and n ∈ N+ we have

γa(τn < x|a1, . . . , an) =
(sa

n + 1)x

sa
nx + 1

, x ∈ I,

(see Prop. 1.3.8 in [6]) where the sa
n are defined recursively by sa

0 = a
and
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sa
n+1 =

1

an+1 + sa
n

, a ∈ I, n ∈ N.

Since τn(ω) = [an+1(ω), an+2(ω), . . . ], n ∈ N, ω ∈ Ω, it follows that

γa(an+1 = i|a1, . . . , an) = γa

(

1

i + 1
< τn <

1

i
|a1, . . . , an

)

=
sa

n + 1

(sa
n + i)(sa

n + i + 1)
:= Pi(s

a
n)

for any a ∈ I and i, n ∈ N+. Hence for any a ∈ I the sequence (sa
n)n∈N

on (I,BI , γa), with N = {0} ∪ N+, is an I-valued Markov chain which
starts at sa

0 = a and has the following transition mechanism: from
state s ∈ I the possible transitions are to any state 1/(s + i) with
corresponding transition probability (s + 1)/(s + i)(s + i + 1), i ∈ N+.

In a series of papers (see [2], [3], [4], [5]) explicit lower and upper
bounds are derived for the convergence rate of the distribution function

of sa
n to its limit, the Gauss distribution function G(x)=

1

log 2
log(x+1),

0 ≤ x ≤ 1, as n → ∞. A survey of this subject is presented in Sec. 2.5.3
of the monograph [6].

We recall Th. 2.5.5 from [6] according to which
(1)

a + 1

2(Fn + aFn−1)(Fn+1 + aFn)
≤ sup

x∈I

|γa(sa
n ≤ x) − G(x)| ≤ k0

FnFn+1

for any a ∈ I and n ∈ N, where k0 is a constant not exceeding 14.8
and Fn, n ∈ N, are the Fibonacci numbers defined by F0 = F1 = 1,
Fn = Fn−1 + Fn−2, n ≥ 2. Both lower and upper bounds in (1) are

O(g2n) as n → ∞ with g = (
√

5− 1)/2, g2 = (3−
√

5)/2 = 0.38196 . . . ,
thus yielding the optimal convergence rate.

Inequalities (1) allow a quick derivation of the asymptotic be-
haviour of

γa(τn ≤ x, sa
n ≤ y)

as n → ∞ for any a, x, y ∈ I, and of the optimal convergence rate, the
same as above. Generalizing the main result in [1], Th. 2.5.8 from [6]
establishes that

a + 1

2(Fn+aFn−1)(Fn+1+aFn)
≤ sup

x,y∈I

∣

∣

∣

∣

γa(τn≤x, sa
n≤y)− log(xy+1)

log 2

∣

∣

∣

∣

≤

≤ k0

FnFn+1
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for any a ∈ I and n ∈ N.

In this paper Th. 2.5.8 from [6] is generalized. We derive the
asymptotic behaviour of

γa(τn+m ≤ x, sa
n ≤ y)

as n → ∞ for any a, x, y ∈ I and m ∈ N+. We also derive upper and
lower bounds which are of order O(g2n) as n → ∞, too. In the last
section we derive the asymptotic behaviour as both n and m → ∞.

2. A few prerequisites

The transition operator U of the Markov chain (sa
n)n∈N+

is

Uf(x) =
∑

i∈N+

Pi(x)f(ui(x)), x ∈ I, f ∈ B(I),

where B(I) denotes the collection of all bounded measurable functions
f : I → C, and where the functions ui and Pi, i ∈ N+, are defined by

ui(x) =
1

x + i
, Pi(x) =

x + 1

(x + i)(x + i + 1)
, x ∈ I.

Let us consider for any x ∈ I and m ≥ 2 the functions

(2)
uim...i1 = uim

◦ . . . ◦ ui1 ,

Pi1...im
(x) = Pi1(x)Pi2(ui1(x)) . . . Pim

(uim−1
. . . i1(x)).

Let us put

(3) sa
n+m(i(m)) =

1

im+
.. .

+
1

i1 + sa
n

, n,m ∈ N+, a ∈ I,

where i(m) = (i1, . . . , im) ∈ N
m
+ .

Proposition 1. For any a ∈ I and n,m ∈ N+ we have
(4)

γa(τn+m < x|a1, . . . , an) =
∑

i1,... ,im∈N+

x(sa
n+m(i(m)) + 1)

sa
n+m(i(m))x + 1

Pi1...im
(sa

n).

Proof. For any a ∈ I and n,m ∈ N+ we have
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(5)
γa(τn+m < x|a1, . . . , an) =

=
∑

i1,... ,im∈N+

γa(τn+m < x, an+1 = i1, . . . , an+m = im|a1, . . . , an) =

=
∑

i1,... ,im∈N+

γa(τn+m < x|a1, . . . , an, an+1 = i1, . . . , an+m = im)×

× γa(an+m = im, . . . , an+1 = i1|a1, . . . , an).

Using (3), it follows from the generalized Brodén–Borel–Lévy for-
mula (Prop. 1.3.8 in [6]) that

(6)

γa(τn+m < x|a1, . . . , an, an+1 = i1, . . . , an+m = im) =

=
x(sa

n+m(i(m)) + 1)

sa
n+m(i(m))x + 1

.

By Cor. 1.3.9 in [6], we have

(7) γa(A|a1, . . . , an) = γsa

n

(τn(A)), a ∈ I, n ∈ N+,

for any set A belonging to the σ-algebra generated by the random
variables an+1, an+2, . . . .

Now, using (7) and equation (2.5.4) in [6], i.e.,

Pi1...im
(a) = γa(I(i(m))),

where I(i(m)) = (ω ∈ Ω : a1(ω) = i1, . . . , am(ω) = im) is the funda-
mental interval of rank m, m ∈ N+, we obtain

(8) γa(an+m = im, . . . , an+1 = i1|a1, . . . , an) = Pi1...im
(sa

n).

From (5), (6) and (8), equation (4) follows. ♦

Now, by (1.2.4) in [6], I(i(m)) is the collection of irrationals in the
interval with end-points pm/qm and (pm + pm−1)/(qm + qm−1). Since

pm

qm

= [i1, . . . , im] =











1

i1
, m = 1

1

i1 + pm−1(i2, ..., im)/qm−1(i2, ..., im)
, m > 1

and

pm + pm−1

qm + qm−1
=







1

i1 + 1
, m = 1

[i1, . . . , im−1, im + 1], m > 1
=
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=











1

i1 + 1
, m = 1

1

i1 + pm(i2, . . . , im, 1)/qm(i2, . . . , im, 1)
, m > 1

we have
(9)

Pi1...im
(x) = (x + 1) × 1

qm−1(i2, . . . , im)(x + i1) + pm−1(i2, . . . , im)
×

× 1

qm(i2, . . . , im, 1)(x + i1) + pm(i2, . . . , im, 1)

for any m ≥ 2, i(m) ∈ N
m
+ and x ∈ I.

Finally, note that ui1...im
(x) can be written as

(10) ui1...im
(x) =

pm−1x + pm

qm−1x + qm

, x ∈ I, m ∈ N+,

with p0 = 0, q0 = 1.

In the sequel we also need the well-known equation

(11) pmqm−1 − pm−1qm = (−1)m+1, m ∈ N.

3. The main result

We are now in a position to prove our main result which reads as
follows.

Theorem 1. For any a ∈ I, n ∈ N and m ∈ N+ we have

(12)

a + 1

2(Fn + aFn−1)(Fn+1 + aFn)
≤

≤ sup
x,y∈I

|γa(τn+m ≤ x, sa
n ≤ y) − Hm(x, y)| ≤ 6k0

FnFn+1
,

where

Hm(x, y) =
1

log 2
log

∏

i1,... ,im

(

1 +
(−1)mxy

(qm−1x + qm)(pmy + qm)

)(−1)m

,

x, y ∈ I.

The probability density of the limiting distribution Hm is



A family of limit distributions 141

hm(x, y) =
1

log 2

∑

i1,... ,im

1

(pm−1xy + qm−1x + pmy + qm)2
, x, y ∈ I.

Proof. Set Ga
n(y) = γa(sa

n ≤ y),Ha
n(y) = Ga

n(y) − G(y), a, y ∈ I,
n ∈ N. By (1) we have

(13) |Ha
n(y)| ≤ k0

FnFn+1
, a, y ∈ I, n ∈ N,

where k0 is a constant not exceeding 14.8.
By Prop. 1 and equations (2) and (3), for any a, x, y ∈ I and

n ∈ N, m ∈ N+, we have

γa(τn+m≤x, sa
n≤y) =

∫ y

0

γa(τn+m ≤ x|sa
n = z)dGa

n(z) =

=

∫ y

0

∑

i1,...,im∈N+

x(uim...i1(z) + 1)

xuim...i1(z) + 1
Pi1...im

(z)dGn
a(z).

When applying Prop. 1 we used the fact that the σ-algebras gen-
erated by (a1, . . . , an) and by sa

n are identical for any a ∈ I and n ∈ N+.
Using equation (9), the right-hand member above can be written

as
1

log 2

∫ y

0

∑

i1,... ,im∈N+

x(uim...i1(z) + 1)

xuim...i1(z) + 1
× 1

q′m−1(z + i1) + p′m−1

×

× dz

q′′m(z + i1) + p′′m
+

+

∫ y

0

∑

i1,... ,im∈N+

x(uim...i1(z) + 1)

xuim...i1(z) + 1
× z + 1

q′m−1(z + i1) + p′m−1

×

× dHa
n(z)

q′′m(z + i1) + p′′m
,

where, to simplify notation, we put

qm−1(i2, . . . , im) = q′m−1,pm−1(i2, . . . , im) = p′m−1,

qm(i2, . . . , im, 1) = q′′m, pm(i2, . . . , im, 1) = p′′m.

Also, using elementary properties of sa
n and qn, we have

uim...i1(z) =
qm−1(z + i1, i2, ..., im−1)

qm(z + i1, i2, ..., im)
=

qm−1(im−1, ..., i2, z + i1)

qm(im, ..., i2, ..., im)
=

=
(z + i1)q

′

m−2 + qm−3(i3, ..., im−1)

(z + i1)q′m−1 + qm−2(i3, ..., im)
=

(z + i1)q
′

m−2 + p′m−2

(z + i1)q′m−1 + p′m−1
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hence
(14)
x(uim...i1(z) + 1)

xuim...i1(z) + 1
=

x((z + i1)q
′′

m + p′′m)

x[q′m−2(z + i1) + p′m−2] + q′m−1(z + i1) + p′m−1

.

(i) The upper bound. We start with computing

S1 :=
1

log 2

∫ y

0

∑

i1,... ,im

x(uim...i1(z) + 1)

xuim...i1(z) + 1
× 1

q′m−1(z + i1) + p′m−1

×

× dz

q′′m(z + i1) + p′′m
.

Using (10), (11) and (14), it is easy to check that

S1 =
1

log 2

∑

i1,... ,im

(−1)m

∫ y

0

(

1

z + i1 + ui2...im
(x)

−

− 1

z + i1 + ui2...im
(0)

)

dz =

=
1

log 2

∑

i1,... ,im

(−1)m
[

log(z + i1 + ui2...im
(x))−

− log(z + i1 + ui2...im
(0))

]

∣

∣

∣

∣

z=y

z=0

=

=
1

log 2
log

∏

i1,... ,im

(

y + i1 + ui2...im
(x)

y + i1 + ui2...im
(0)

· i1 + ui2...im
(0)

i1 + ui2...im
(x)

)(−1)m

=

=
1

log 2
log

∏

i1,... ,im

(

y + (qm−1x + qm)/(pm−1x + pm)

y + qm/pm

·

· qm/pm

(qm−1x + qm)/(pm−1x + pm)

)(−1)m

=

=
1

log 2
log

∏

i1,... ,im

(

1 +
(−1)mxy

(qm−1x + qm)(pmy + qm)

)(−1)m

=

= Hm(x, y).

Now, put
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S2 =

∫ y

0

∑

i1,... ,im

x(uim...i1(z) + 1)

xuim...i1(z) + 1
× z + 1

q′m−1(z + i1) + p′m−1

×

× dHa
n(z)

q′′m(z + i1) + p′′m
.

Using again (10) and (14), we obtain

S2 =

∫ y

0

∑

i1,... ,im

(z + 1)/q′m−2

z + i1 + p′m−2/q′m−2

[

1/q′m−1

z + i1 + ui2...im
(0)

−

− 1/(q′m−2x + q′m−1)

z + i1 + ui2...im
(x)

]

× dHa
n(z).

Integrating by part now yields

S2 =
∑

i1,... ,im

{

(y + 1)/q′m−2

y + i1 + p′m−2/q′m−2

[

1/q′m−1

y + i1 + ui2...im
(0)

−

− 1/(q′m−2x + q′m−1)

y + i1 + ui2...im
(x)

]

Ha
n(y)−

−
∫ y

0

(−1)m d

dz

[

(z + 1)

(

1

z + i1 + ui2...im
(x)

−

− 1

z + i1 + ui2...im
(0)

)]

Ha
n(z)dz

}

.

Next, put

S3 =
∑

i1,... ,im

(−1)m

∫ y

0

d

dz

[

(z + 1)

(

1

z + i1 + ui2...im
(x)

−

− 1

z + i1 + ui2...im
(0)

)

]

Ha
n(z)dz =

=
∑

i1,... ,im

(−1)m

∫ y

0

[

i1 + ui2...im
(x) − 1

(z + i1 + ui2...im
(x))2

−

− i1 + ui2...im
(0) − 1

(z + i1 + ui2...im
(0))2

]

Ha
n(z)dz =

=
∑

i1,... ,im

(−1)m

∫ y

0

[

(A(z)−B(z))(1−(z+1)(A(z)+B(z)))
]

Ha
n(z)dz,

where
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A(z) =
1

z + i1 + ui2...im
(x)

and B(z) =
1

z + i1 + ui2...im
(0)

.

Using (13), since |1−(z+1)(A(z)+B(z))| ≤ 1 and A(z)−B(z) preserves
a constant sign, for any fixed m ∈ N+ and any i1, . . . , im ∈ N+ we have

|γa(τn+m ≤ x, sa
n ≤ y) − Hm(x, y)| ≤

≤ k0

FnFn+1

(∣

∣

∣

∣

∣

∑

i1,... ,im

(y + 1)/q′m−2

y + i1 + p′m−2/q′m−2

[

1/q′m−1

y + i1 + ui2...im
(0)

−

− 1/(q′m−2x + q′m−1)

y + i1 + ui2...im
(x)

]

∣

∣

∣

∣

∣

+

+
∑

i1,... ,im

∣

∣

∣

∣

log
y + i1 + ui2...im

(x)

i1 + ui2...im
(x)

− log
y + i1 + ui2...im

(0)

i1 + ui2...im
(0)

∣

∣

∣

∣

)

=

=
k0

FnFn+1

(∣

∣

∣

∣

∣

∑

i1,... ,im

(−1)m(y + 1)

[

1

y + i1 + ui2...im
(x)

−

− 1

y + i1 + ui2...im
(0)

]

∣

∣

∣

∣

∣

+

+
∑

i1,... ,im

∣

∣

∣

∣

log

(

1 +
ui2...im

(x) − ui2...im
(0)

y + i1 + ui2...im
(0)

)

−

− log

(

1 +
ui2...im

(x) − ui2...im
(0)

i1 + ui2...im
(0)

)∣

∣

∣

∣

)

=

=
k0

FnFn+1
(|S4| + S5),

where S4 and S5 are the two series occurring on the right-hand side

above. Since
∑

i1,... ,im

1

qm(qm−1 + qm)
= 1, it follows that

|S4| ≤ 2
∑

i1,... ,im

∣

∣

∣

∣

1

y + (qm−1x + qm)/(pm−1x + pm)
− 1

y + qm/pm

∣

∣

∣

∣

≤

≤ 2
∑

i1,... ,im

1

[(pm−1x + pm)y + qm−1x + qm](pmy + qm)
≤
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≤ 2
∑

i1,... ,im

1

q2
m

≤ 4
∑

i1,... ,im

1

qm(qm−1 + qm)
= 4.

Since

log

(

1 +
ui2...im

(x) − ui2...im
(0)

y + i1 + ui2...im
(0)

)

≤

≤ |(qm−1x + qm)/(pm−1x + pm) − qm/pm|
qm/pm + y

=

=
x

(pm−1x + pm)(pmy + qm)
≤ 1

pm(pm−1 + pm)

for all x, y ∈ I it follows that

S5 ≤ 2
∑

i1,... ,im

1

pm(pm−1 + pm)
= 2.

Thus the upper bound announced follows from |S4| + S5 ≤ 4 + 2 = 6.

(ii) The lower bound. It follows from the result just established that

Hm(1, y) = G(y) =
1

log 2
log(y + 1), m ∈ N+, y ∈ I.

(This can be also checked by direct computation.) Then, for any a ∈ I,
n ∈ N and m ∈ N+ we have

sup
x,y∈I

∣

∣

∣

∣

γa(τn+m ≤ x, sa
n ≤ y) − Hm(x, y)

∣

∣

∣

∣

≥

≥ sup
y∈I

∣

∣

∣

∣

γa(τn+m ≤ 1, sa
n ≤ y) − Hm(1, y)

∣

∣

∣

∣

=

= sup
y∈I

|γa(sa
n ≤ y) − G(y)| ≥ a + 1

2(Fn + aFn−1)(Fn+1 + aFn)
. ♦

Remark. The upper and lower bounds in (12) are of order O(g2n) as
n → ∞.

4. Approximating the limiting distribution

Using some mixing properties of the sequence (an)n∈N+
under γa,

a ∈ I, we shall now provide an approximation of the limiting distribu-
tion Hm, see Th. 1. We use the notation in Subsec. 1.3.6 from [6].

For any k ∈ N+, let Bk
1 = σ(a1, . . . , ak) and B∞

k = σ(ak, ak+1, . . . )
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denote the σ-algebras generated by the random variables a1, . . . , ak,
respectively, ak, ak+1, . . . .

For any γa, a ∈ I, consider the ψ-mixing coefficients

(15) ψγa
(n) = sup

∣

∣

∣

∣

γa(A ∩ B)

γa(A)γa(B)
− 1

∣

∣

∣

∣

, n ∈ N+,

where the supremum is taken over all A ∈ Bk
1 and B ∈ B∞

k+n such that
γa(A)γa(B) 6= 0, and k ∈ N+.

By Prop. 2.3.7 from [6], the sequence (an)n∈N+
is ψ-mixing under

any γa, a ∈ I, that is, lim
n→∞

ψγa
(n) = 0. For any a ∈ I we have

ψγa
(1) ≤ 0.61231 . . . and

(16) ψγa
(n) ≤ ε2λ

n−2
0 (1 + λ0)

1 − ε2λ
n−1
0

, n ≥ 2,

where ε2 = 0.14018 . . . and λ0 = 0.30363300289873265859 . . . .
We first notice that putting A = {sa

n ≤ y} ∈ Bn
1 and B =

= {τn+m ≤ x} ∈ B∞

n+m by (15) we have

(17) |γa(A ∩ B) − γa(A)γa(B)| ≤ ψγa
(m)γa(A)γa(B)

for any a ∈ I and n,m ∈ N+. Recall (see Sec. 3) that

(18) lim
n→∞

γa(A) = γ([0, y]) =
log(y + 1)

log 2
, a, y ∈ I.

Also, by Th. 1.3.12 from [6] we have

(19) lim
n→∞

γa(B) = γ([0, x]) =
log(x + 1)

log 2
, a, x ∈ I.

Finally, notice that

(20) γa(A ∩ B) = γa(τn+m ≤ x, sa
n ≤ y)

for any a, x, y ∈ I and n,m ∈ N+. Now, by (18), (19), (20) and Th. 1,
letting n → ∞ in (17) yields

∣

∣

∣

∣

Hm(x, y) − log(x + 1) log(y + 1)

(log 2)2

∣

∣

∣

∣

≤ ψγa
(m)

log(x + 1) log(y + 1)

(log 2)2

for any m ∈ N+ and a, x, y ∈ I. In conjunction with (15), the last
inequality provides a good approximation of Hm(x, y) for moderately
large values of m ∈ N+.
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