Mathematica Pannonica

18/1 (2007), 11-18

ON A PROBLEM OF A. IVIĆ

Imre Kátai

Eötvös Loránd University, Department of Computer Algebra, and Research Group of Applied Number Theory of the Hungarian Academy of Sciences, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary

Dedicated to the memory of Professor N. M. Timofeev

Received: January 2007
MSC 2000: $11 \mathrm{~N} 37,11 \mathrm{~N} 25,11 \mathrm{~N} 69$
Keywords: Number of divisors, problem of Ivić.
Abstract: It is proved that

$$
\sum_{n \leq x} \tau(n+\tau(n))=D x \log x+O\left(\frac{x(\log x)}{\log \log x}\right)
$$

with positive constants $D>0, \delta>0$, where $\tau(m)$ is the number of divisors of m.

1. As usual, $\tau(n), \omega(n), \Omega(n)$ denote the number of divisors, the number of distinct prime factors, the number of prime factors with multiplicity of n.

Let furthermore $\varphi(n)$ be Euler's totient function. For the sake of simplicity we shall write $x_{1}:=\log x ; x_{2}:=\log x_{1} ; x_{3}:=\log x_{2}$.
A. Ivić [1] formulated the conjecture that

$$
\begin{equation*}
D(x):=\sum_{n \leq x} \tau(n+\tau(n))=D x x_{1}+O(x) \tag{1.1}
\end{equation*}
$$

We can deduce the somewhat weaker assertion, namely that

E-mail address: katai@compalg.inf.elte.hu
Financially supported by the grant T46993 of OTKA.

$$
D(x)=D x x_{1}+O\left(\frac{x x_{1}}{x_{2}}\right)
$$

by using two theorems of N. M. Timofeev and M. B. Khripunova [2], which are analogons of the Vinogradov-Bombieri theorem and the BrunTitchmarsh inequality. We shall formulate them as Lemmas 1, 2.

In [2] they proved the asymptotic of $\sum_{n<x} \tau(n+a)$ where n runs over the integers with $\Omega(n)=k$, uniformly as $k \leq(2-\varepsilon) x_{2}, a=1$. In [4] they proved the asymptotic of

$$
\sum_{\substack{n<N \\ \Omega(n)=k}} \tau(N-n)
$$

uniformly as $k \leq(2-\varepsilon) \log \log N$, or $(2+\varepsilon) \log \log N<k<b \log \log N$.
2. Let $t \geq 2, P(t)=\prod_{p<t} p, p$ runs over the set of primes. In what follows, $\varepsilon, \varepsilon_{1}, \varepsilon_{2}, \ldots$ are arbitrarily small positive numbers.

Denote
$\mu(x, k, t, a, d)=\#\{n \mid n \leq x, \Omega(n)=k,(n, P(t))=1, n \equiv a(\bmod d)\}$.
Lemma 1. Let $2 \leq t \leq \sqrt{x}, k \leq x_{2}^{2}$, and let

$$
\begin{aligned}
\Delta_{k}(t)= & \sum_{d \leq Q} \max _{y \leq x} \max _{(a, d)=1} \mid \mu(y, k, t, a, d)- \\
& \left.-\frac{1}{\varphi(d)} \#\{n \mid n \leq y, \Omega(n)=k,(n, d P(t))=1\} \right\rvert\,
\end{aligned}
$$

Then

$$
\Delta_{k}(t) \ll Q \sqrt{x} \exp \left(x_{2}^{2+\varepsilon}\right)+\frac{x}{x_{1}^{B}},
$$

where $\varepsilon>0$ and B is an arbitrary positive constant.
Lemma 2. Suppose $k \leq(2-\varepsilon) x_{2}, 0<\varepsilon<1, d \leq x^{\frac{1}{2}+\alpha(k)}, 2 \leq t \leq$ $\leq x^{\beta(k)}, \alpha(k)=1 / 3 k$, and $\beta(k)=\frac{1}{10} \exp (-k / 2)$. Then there exists a constant $c\left(\varepsilon, \varepsilon_{1}\right)$ such that

$$
\mu(x, k, t, a, d) \leq c\left(\varepsilon, \varepsilon_{1}\right) \frac{x}{\varphi(d) x_{1}}\left(1+\varepsilon_{1}\right)^{k} \frac{\left(\log \frac{x_{1}}{\log t}\right)^{k-1}}{(k-1)!}
$$

where $0<\varepsilon_{1}<1$.

Lemma 3. Let $z>0,1<\beta, Q(y):=y \log \frac{y}{e}+1$. Then

$$
\sum_{k \geq \beta_{z}} \frac{e^{-z} \cdot z^{k}}{k!}<\frac{\sqrt{\beta} e^{-Q(\beta) z}}{(\beta-1) \sqrt{2 \pi}}
$$

The proof can be found in [3]. Here the authors proved also that

$$
\#\{n \leq x \mid \omega(n)=k\} \leq \frac{c_{0} x}{x_{1}} \frac{\left(x_{2}+c\right)^{k-1}}{(k-1)!} \quad(x \geq 3, k \geq 1)
$$

which is called as Hardy-Ramanujan inequality.
3. Let $(a, d)=1$,

$$
\begin{equation*}
S(y ; l, K, a, d):=\sum_{\substack{n \leq y \\ \omega(n)=l \\(n K)=1 \\ n \equiv a(\bmod d)}}|\mu(n)| . \tag{3.1}
\end{equation*}
$$

Let χ be a Dirichlet-character mod d. Since

$$
\prod_{(p, K)=1}\left(1+\frac{z \chi(p)}{p^{s}}\right)=\prod_{(p, K)=1} \frac{1}{1-\frac{z \chi(p)}{p^{s}}} \cdot \prod_{(p, K)=1}\left(1-\frac{z^{2} \chi^{2}(p)}{p^{2 s}}\right)
$$

holds for $z \in \mathbb{C},|z| \leq 1$, therefore

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ \omega(n)=l \\(n, K)=1}} \chi(n)|\mu(n)|=\sum_{\substack{m r^{2} \leq x \\(m r, K)=1 \\ \Omega(m)+2 \omega(r)=l}}(-1)^{\omega(r)}|\mu(r)| \chi(m) \chi^{2}(r) . \tag{3.2}
\end{equation*}
$$

Thus, counting $\frac{1}{\varphi(d)} \cdot \sum_{\chi}(3.2)_{\chi}$, we obtain

$$
\begin{equation*}
S[y ; l, K, a, d]=\sum_{\substack{r^{2} \leq y \\(r, K \bar{d})=1}}(-1)^{\omega(r)}|\mu(r)| \cdot \mu\left(\frac{y}{r^{2}}, l-2 \omega(r), 2, b_{a}, d\right) \tag{3.3}
\end{equation*}
$$

where $b_{a}(\bmod d)$ is defined by $r^{2} b_{a} \equiv a(\bmod d)$.
Let

$$
\begin{equation*}
T(y ; l, K, d):=\sum_{\substack{n \leq y \\ \omega(n)=l \\(n, K d)=1}}|\mu(n)|=\sum_{(a, d)=1}^{a} S[y ; l, K, a, d] . \tag{3.4}
\end{equation*}
$$

It is clear that

$$
\begin{align*}
& \left|S[y ; l, K, a, d]-\frac{1}{\varphi(d)} T(y ; l, K, d)\right| \leq \\
& \leq \sum_{\substack{r^{2} \leq y \\
(r, K d)=1}}|\mu(r)| \left\lvert\, \mu\left(\frac{y}{r^{2}}, \quad l-2 \omega(r), 2, b_{a}, d\right)-\right. \tag{3.5}\\
& \left.\quad-\frac{1}{\varphi(d)} \#\left\{n \leq \frac{y}{r^{2}}, \Omega(n)=l-2 \omega(r)(n, d)=1\right\} \right\rvert\, .
\end{align*}
$$

Furthermore, from (3.4) and (3.3) we deduce that

$$
\begin{gather*}
T(y ; l, K, d)= \tag{3.6}\\
=\sum_{\substack{r^{2} \leq y \\
(r, K d)=1}}(-1)^{\omega(r)}|\mu(r)| \#\left\{\left.n \leq \frac{y}{r^{2}} \right\rvert\, \Omega(n)=l-2 \omega(r),(n, K d)=1\right\}
\end{gather*}
$$

4. Theorem. We have

$$
\begin{equation*}
D(x)=D x x_{1}+O\left(\frac{x x_{1}}{x_{2}}\right) . \tag{4.1}
\end{equation*}
$$

Proof. Let us write every n in the form $n=K m$, where K is squarefull, m is square-free and $(K, m)=1$. We say that K is the square-full and m is the square-free part of n.

If $n=K m, \omega(m)=t$, then $\tau(n+\tau(n))=\tau\left(K m+\tau(K) \cdot 2^{t}\right)$.
Let

$$
\begin{equation*}
E_{K, t}(x)=\sum_{\substack{m \leq x / K \\ \omega(m)=t}} \tau\left(K m+\tau(K) \cdot 2^{t}\right) \tag{4.2}
\end{equation*}
$$

where in the summation we assume furthermore that $(m, K)=1, m$ is square-free.

It is clear that

$$
\begin{equation*}
D(x)=\sum_{K \leq x} \sum_{t=0}^{\infty} E_{K, t}(x) \tag{4.3}
\end{equation*}
$$

where K runs over the square-full integers.
We shall prove that

$$
\begin{equation*}
\sum_{K \geq x_{1}^{4}} \sum_{t} E_{K, t}(x)+\sum_{K \leq x_{1}^{4}} \sum_{t \geq \beta x_{2}} E_{K, t}(x) \ll x \cdot x_{1}^{1-\delta}, \tag{4.4}
\end{equation*}
$$

where β is an arbitrary constant larger than $1 / \log 2$.
Since $\tau(n)=O\left(n^{\varepsilon}\right)$, therefore

$$
\sum_{K \geq x^{1 / 4}} \sum_{t} E_{K, t}(x)=O\left(x^{1 / 4}\right)
$$

Let $K \leq x^{1 / 4}$. By using the Hölder inequality

$$
\begin{gather*}
E_{K, t}(x) \leq\left(\sum_{\substack{m \leq x / K \\
\omega(m)=t}} 1\right)^{1 / 2}\left\{\sum_{m \leq x / K} \tau^{2}\left(K m+\tau(K) \cdot 2^{t}\right)\right\}^{1 / 2} \ll \\
\ll\left(\frac{x}{K x_{1}}\right)^{1 / 2}\left(\frac{\left(x_{2}+c\right)^{t-1}}{(t-1)!}\right)^{1 / 2} \cdot\left(\frac{x}{K} x_{1}^{3}\right)^{1 / 2}= \tag{4.5}\\
=\frac{x}{K} x_{1} \cdot \frac{\left(x_{2}+c\right)^{(t-1) / 2}}{(t-1)!^{1 / 2}}
\end{gather*}
$$

Here we used the Hardy-Ramanujan inequality and the known inequality

$$
\max _{t \leq x_{1}} \sum_{m \leq x / K} \tau^{2}\left(K m+\tau(K) \cdot 2^{t}\right) \leq \frac{c x}{K} x_{1}^{3}
$$

where c does not depend on K and t.
Since

$$
\sum_{t \geq 0} \frac{\left(x_{2}+c\right)^{(t-1) / 2}}{(t-1)!^{1 / 2}} \ll x_{1}^{1 / 2} \cdot x_{2}^{1 / 4} \ll x_{1}
$$

we obtain that

$$
\begin{equation*}
\sum_{K \geq x_{1}^{4}} \sum_{t} E_{K, t}(x)=O(x) \tag{4.6}
\end{equation*}
$$

Let $K \geq x_{1}^{4}$. From (4.5) we obtain that

$$
\begin{equation*}
\sum_{t \geq \alpha x_{2}} E_{K, t}(x) \leq \frac{c x x_{1}}{K} \sum_{t \geq \alpha x_{2}} \frac{\left(x_{2}+c\right)^{\frac{t-1}{2}}}{(t-1)!^{1 / 2}} \ll \frac{x}{K} \cdot \frac{1}{x_{1}^{2}} \tag{4.7}
\end{equation*}
$$

if α is large enough.
Let $\beta>1 / \log 2$. We shall estimate $\sum_{\beta x_{2} \leq t \leq \alpha x_{2}} E_{K, t}(x)$.
If $\omega(m)=t \geq \beta x_{2}$, then $\tau(m)=2^{t} \geq 2^{\beta} x_{2}$, consequently

$$
\begin{equation*}
\sum_{\beta x_{2} \leq t \leq \alpha x_{2}} E_{K, t}(x) \leq 2^{-\beta x_{2}} \sum_{\beta x_{2} \leq t \leq \alpha x_{2}} \sum_{m \leq x / K} \tau(m) \tau\left(K m+2^{t} \tau(K)\right) \tag{4.8}
\end{equation*}
$$

One can prove elementarily that the inner sum on the right-hand side of (4.8) is less than $\ll \frac{x}{K} x_{1}^{2}$, consequently the left-hand side of (4.8) is less than $\ll \frac{x}{K} x_{1}^{2-\beta \log 2} \cdot x_{2}$.

We proved (4.4). Thus

$$
\begin{equation*}
D(x)=\sum_{K \leq x_{1}^{4}} \sum_{t<\beta x_{2}} E_{K, t}(x)+O\left(x \cdot x_{1}^{1-\delta}\right) \tag{4.9}
\end{equation*}
$$

with a suitable $\delta>0$, if $\beta>\frac{1}{\log 2}$.
Observing that

$$
\sum_{t \leq \beta x_{2}} \sum_{m \leq \frac{x}{K}} \tau\left(K m+\tau(K) \cdot 2^{t}\right) \ll \frac{x}{K} \cdot x_{1} \cdot x_{2}
$$

if $K \leq x_{1}^{4}$, and that $\sum_{K>y} 1 / K \ll \frac{1}{\sqrt{y}}$, therefore

$$
D(x)=\sum_{K \leq x_{2}^{4}} \sum_{t \leq \beta x_{2}} E_{K, t}(x)+O\left(\frac{x x_{1}}{x_{2}}\right)
$$

Finally it remained to give the asymptotic of $E_{K, t}(x)$ under the condition $K \leq x_{2}^{4}, t \leq \beta x_{2}$. This is the number of solutions of

$$
K m+\tau(K) \cdot 2^{t}=u v \leq x+\tau(K) \cdot 2^{t}
$$

where u, v run over the positive integers, m over the square-free integers coprime to K, and with $\omega(m)=t$. If we multiply the number of solutions by 2 , we can assume that $u<v$. The contribution of the solutions with $u=v$ can be ignored.

Let $Q:=\sqrt{x} \cdot e^{-x_{1}^{1-2 \varepsilon}}$, where $\varepsilon>0$ is the same as in Lemma 1 .

Let us overestimate first

$$
\begin{equation*}
\sum_{t \leq \beta x_{2}} \#\left\{\left.m \leq \frac{x}{K} \right\rvert\, K m+\tau(K) \cdot 2^{t} \equiv O(\bmod u), \Omega(m)=t\right\} \tag{4.10}
\end{equation*}
$$

By using Lemma 2 (substituting $t=2$ defined there), we deduce that $(4.10)_{u}$ is less than

$$
\begin{aligned}
\frac{c x}{K \varphi(u) x_{1}} \sum_{t \leq \beta x_{2}} \frac{\left(1+\varepsilon_{1}\right)^{t-1} \cdot x_{2}^{t-1}}{(t-1)!} & \leq \frac{c x}{K \varphi(u) x_{1}} \exp \left(\left(1+\varepsilon_{1}\right) x_{2}\right)= \\
& =\frac{c x}{K \varphi(u)} x_{1}^{\varepsilon_{1}}
\end{aligned}
$$

Furthermore

$$
\sum_{Q \leq u \leq \sqrt{2 x_{2}}} \frac{1}{\varphi(u)} \ll \log \frac{\sqrt{2 x_{2}}}{Q} \ll x_{1}^{1-2 \varepsilon}
$$

Since $\varepsilon=\varepsilon_{1}$ can be chosen, we obtain that

$$
\begin{align*}
D(x)= & \sum_{K \leq x_{2}^{4}} \sum_{t \leq \beta x_{2}} \sum_{u \leq Q} \#\left\{\left.m \leq \frac{x}{K} \right\rvert\, K m+\tau(K) \cdot 2^{t} \equiv 0(\bmod u)\right. \tag{4.11}\\
& \omega(m)=t,(K, m)=1, \mu(m) \neq 0\}- \\
& -\sum_{K \leq x_{2}^{4}} \sum_{t \leq \beta x_{2}} \#\left\{\left.\frac{m \leq u^{2}-\tau(K) \cdot 2^{t}}{K} \right\rvert\, K m+\tau(K) \cdot 2^{t} \equiv 0(\bmod u),\right. \\
& \omega(m)=t,(K, m)=1, \mu(m) \neq 0\}+O\left(\frac{x x_{1}}{x_{2}}\right) .
\end{align*}
$$

Now we can apply (3.5), (3.6) and Lemma 1 in the usual way. We obtain our theorem quite directly. We omit the details. \diamond
5. The following assertion can be proved similarly:

$$
\sum_{n \leq x} \tau(n+f(n))=D_{f} x \log x+O\left(\frac{x(\log x)}{\log \log x}\right)
$$

with some constants $D_{f}>0, \delta>0$ if $f(n)=\omega(n), \Omega(n), \tau(\tau(n))$, $2^{\omega(n)}, \tau_{k}(n)$, where $\tau_{k}(n)$ is the number of solutions of $n=u_{1} \ldots u_{k}$ in positive integers u_{1}, \ldots, u_{k}. Similar theorems can be proved if we substitute $\tau(m)$ by $2^{\omega(m)}$.

References

[1] IVIĆ, A.: An asymptotic formula..., Univ. Beograd Publ. Elektrotech. Fak. Ser. Mat. 3 (1992), 61-62.
[2] TIMOFEEV, N. M. and KHRIPUNOVA, M. V.: Distribution of numbers having a given number of prime divisors in progressions, Mat. Zametki [Math. Notes] 55/2 (1994), 144-156.
[3] HARDY, G. H. and RAMANUJAN, S.: The normal number of prime factors of a number n, Quart. J. Math. 48 (1917), 76-92.
[4] TIMOFEEV, N. M. and KHRIPUNOVA, M. B.: The Titchmarsh problem with integers having a given number of prime divisors, Mat. Zametki [Math. Notes] 59/4 (1996), 421-434.

