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Abstract: A general theorem is obtained for the moments of sums of inde-
pendent identically distributed Banach space valued random variables. Then
it is applied to prove an almost sure limit theorem for variables being in the
domain of attraction of a stable law.

1. Introduction

In [3] an almost sure limit theorem is presented for random vari-
‘ables from the domain of geometric partial attraction of semistable laws
(Th. 1 of [3]). The proof is partially based on a lemma concerning the
moments of sums of independent identically distributed random vari-
ables (Lemma 1 of [3]). On the other hand, in [5] an almost sure limit
theorem is obtained for a stochastic process converging to a stable law
(Prop. 3.1 in [5]). However, in [5] the proof is based on an other method.
In this paper we shall show that an appropriate version of Lemma 1 of
3] can be used in the proof of Prop. 3.1 of [5].

The main result of this paper is Th. 2.1. It provides sufficient

conditions for the boundedness of moments of normalized sums of inde-
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pendent identically distributed Banach space valued random variables.
It is a generalization of Lemma 1 of [3]. The main steps of proof are
included in the proof of Th. 6.1 in [1]. (Actually, Th. 6.1 in [1] con-
cerns variables being in the domain of attraction of a stable law.) Our
Th. 3.1 is the same as Prop. 3.1 in [5]. Here we present a new proof
based on Th. 2.1. In the proof a part of our calculation is similar to the
one given in Lemma 6.1 of [1]. In this paper we use some basic facts
from the theory of Banach space valued random variables (we refer to
the papers [1], [6] and [9]). Recently several papers are devoted to the
study of almost sure limit theorems (see [2], [3], [5], [7], [10] and the
references therein). :

2. The main result-

Let B be a real separable Banach space with norm ||.}|. We sup-

pose that B is equipped with its Borel o-field B. Our main result is the
following theorem. L : :
Theorem 2.1. Let £1,&;,... be independent identically distributed B-
valued random variables, S, = &1+ -+&n, n=1,2,..... Letay,as,. ..
‘be an increasing sequence of positive real numbers. Let a € (0,2] be
fized. Assume that :

(2.1) dom — opllett) pom=1,2,...
G,

where T(n) is a sequence of nonnegative numbers with limy, .0 7(n) =
= 0. Assume that for any B € (0, )

(22) B < oo
Let {a;,} be a subsequence of {an} so that for some c< oo, a1, <cai,_,,
n=1,2,.... Let by, ba,... be a B-valued sequence. Assume that

(2.3) {ﬂi ~b,, n=12,.. } is stochastically bounded.

a,ln :

Then, for any B € (0, @),

; s
_Sl_” — bln
ar,. ’
Proof. Let Sp = 0. Let &,,£5,... be an independent copy of the se-
quence £1,&z,.... Then &, =&, —§,,n = 1,2,... is the symmetrization

< ©o.
n

(2.4) , supE ‘
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of {&n,m=1,2,.... Moreover, let S/, =& +---+¢,,n=1,2,...(5,=0).
Then S, =S, — S,n =1,2,... is the symmetrization Sp,n = 1,2, ....

Let r be an arbitrary positive integer, [,—1 < r < l,. Then, for
any d > 0,

P (ﬂ%—“ >d> SIP’<11<nax 1S3]] >dar> _<_]P’<11<ne§lc 155 > dal > <

~ d 1d
<28 (101> Zar, ) <4p (I, ~ o, > 320, ) =
C 4 C
Zln _p,

R
a 2¢

In
Here we used the Lévy inequality (see Hoffmann-Jgrgensen [9]), the
symmetrization inequality, and the properties of {ai, }. So we obtain

that (2.3) implies that the sequence £ Sa i stochastically bounded. That
is for any € > 0 there exists a. d > 0 such that for all r € N we have

05 i (HSTH éé) <

- The random variables

T

Snk - S"'rl.(k,—l) = gn(k:—l)-i—l R gﬂ.ka n=12,...,m,
are independent and identically distributed thus

S i m [Snk — Snie_
{POLSHH <d)} :P(maxlgkg Ha k (k—1) | <d) _

—1_P (malxlgkgm H‘S’nk - Sn(k—l)“ > d) >

Anm
AN
Onm

S1_P MAX1<k<m HSnLH AR
: ’a'nm
Here we applied the Levy inequality. Using the mean value theorem,
we see that 1 — (1 —2e)m < H(e )X, where H(¢) » O0ase — 0 (¢ > 0).
-Consequently, the above inequality gives

P (.”:%lﬂ > d) <l- (1——26)% < H(E)%

N
[R] |

Amn

where H (e) depends only on e. So




1520 deﬁww) |

i )I—I-];(n) —

Substitute dCm=+7(") by t. Then we get that m = (&)=

1
= (45) &+ ™¢*=9 where § > 0,6 — 0, if n — co. Then we can write

1
(2.6) H(e)(dC) F+7™ > t*—0p (”i, dl > t)
™

We explain relation (2.6). Here C and « are fixed, 7(n) > 0, 7(n) — 0.
For € > 0 the value of d is chosen so that (2.6) is satisfied. Then H ()
depends on € and lim._,o H(g) = 0. So the left side is bounded. As
t= dC’ma+T(”), we see that (2.6) is valid for ¢ > tg, where to > 0 is
large enough. (To this end we have to choose m to be large.)

So for all ¢ > tg the following is valid: for each § > 0 there exists
an ng so that if n > ng then .

(2.7) A>1*7°P <M > t> :

0n

Therefore for each fixed (small) d > 0 for n > ns we have

E <““§—:”) / (- 95)150“”5 p (“an > t) dt <

< (a— 95) / to‘_r";_ldtJ—(a 20) / te201p Mzt dt <
(2. 8) to on

to [e’s]
< (a — 26) / =211 4 (o — 26) A0t =
to
=8

—+ (Ol — 25)14?%' = ta—')(s =+ (Ol — 95)14'—5—

By (2.2) we have
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g a—26
maxIE(M> < o0,
nngs Qp, o

This and (2.8) give that for § > 0 (4 is small)

—26 - ,
(2.9) supE (”S ”) < oo.

neN Qn,

For the desymmetrization procedure we use the known inequality

P(1%1> £) 2201 ~ ol > 9P (1% ~al > 3)

for all t > 0. Now we have

N\ /IS
O&n _)ZP(ﬁg_m ZQPO_L_Q <)
a, 2 A\lla, " ar, T2
(2.3) implies that P ( —by, > tforallniftis large enoﬁgh.

Applying again the formula IE||X HS = fo suTIP(|| X|| > w)du and
(2.9), we obtain (2.4). ¢ N ‘ :

3. An application in the almost sure limit theory

Here we present an application of Th. 2.1 for proving an almost-

sure limit theorem. We give-a new proof of Prop. 3.1 of [5]. The result
states convergence to p-stable limit.

Let V(t), t > 0, be a random process with independent stationary
increments. Assume that V(0) = 0, {V({,w) : t > 0,w € Q} is mea-
surable, and the trajectories of V(¢) are right continuous and have left
limit. For each infinitely divisible distribution F', there exists such a
process V(t) so that V(1) has distribution F' (see [12]). Therefore V (t)
has the following characteristic function

ovin(z) =E (=VO) =y (t,3,b,0% L), RE)) =
. o? O 7 izy
(3.1) =exp (t {sz— —2—:1:2 +/_Oo (e v—-1-— 1+y2> dL(y)+

[ (o)),

z € R (Lévy's formula, see [8], Sect. 18). Here L(y) is (left-continuous
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and) non-decreasing on (—o0,0) with L(—oco0) = 0, R(y) is (right-
continuous and) non-decreasing on (0,00) with R(co) = 0 and they
satisfy f y2dL(y) + [ y?dR(y) < oo for all € > 0.

We Wﬂl consider a random process having the form

(3.2) ;wo:7$?>fmm 0<t< oo,

where f : [0,00) — [0,00) is a fixed strictly increasing function and
A : [0,00) — (0,00) is a fixed positive function. Moreover, we will
consider for | < k the processes

V@) -V{fi+1)
. X = —
(3.3) w(t) a0 ’Bz @),
Then, for | < k, {X(¢) : | <t <41} and {X;(t) : k<t <k+1}
are 1ndependent families.

We shall consider the process V(t) with b = 0 and o0 = 0, fix
the functions f and A(t), then choose the function B(t) such that the
characteristic function of X (t) has the form ;
vxw(z) =¥ (1,2,0,0, f(t)L(A®)y), f(£) R(A(t)y)) =

- =9 (z, FOLA®Y), fEORARY)) -

Such choice is possible:

i 0 oo
B(t) = / o)) + / o(t, y)dR(),

-0

k<t<k+l.

(3.4)

! V.
where g(t,y) = A((t)) (l+y2)(1+y2/Ao @) (1- Aal(t)) Then we shall choose

By(t) such that the characteristic function of A?l(—i)l) [X () — Xux (t)] is

(3.5) © 80 (x50 () =

= (z, f(L+ DL(AQ +1)y), £+ DR(AQ+ ).

Such choice is possible:

Bi(t) = B(t) + Aig)l) [ / : g(t,y)dL(y) + /0 oo’g(l,y)dR(y)]-

—o0

In [5] a.s. limit theorems for some important classes of the above
processes are proved.
Here we study distributions belonging to the domain of attraction
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of a stable law. We shall consider the case when f(z) = z, so the
characteristic function has the form

(3.6) wx@) () =¥ (2, tL(AQ)y), tR(A()y)) -
Moreover, the characteristic function of A(lf_)l)[ (t) — X1k (t)] is
(3.7)

P_AM X (6)— X5 (8)] (z) = ;/)— (:E, (I+1)L(A(I+ 1)y)a (1 +,1)R(A(l + 1)y)).

AT+D

Following [5], we shall study a process converging to a p-stable.
law and for this process we shall consider an integralanalogu‘e of the
almost sure limit theorem.

~ First let 0 < p < 2. Let V(¢) be a process with Lévy’s represen-
tation (3.1) and with L(y) and R(y) satisfying

L(—t) C1

as t — oo,

and

L(-t)+|R®) |
T(—tz) ¥ |Rz)] 5 #17%

for all x > 0, and for ¢1,c3 > 0 such that ¢; +c¢c3 > 0. We mention
that by [8], Sect. 35, we have the following. If F'(z) is a distribution
function such that for some zo > 0 we have F'(z) = L(z), z < —zg and
F(z)—1= R(z), z > zg, then F' belongs to the domain of attraction of
the p-stable law having Lévy’s representation L,(t) = c1/[t|?, Rp(t) =

= ¢y /(—tP), if and only if (3.8) and (3.9) are valid. ;

We mention that (3.8) and (3.9) imply that 1/L(—t) and 1/|R(t)]
are regularly varying with exponent p, if ¢; # 0 and ca # 0, respectively.
Here we shall consider the case ¢; # 0 (in the case ¢c; = 0 but ca # 0
we should impose condition on R instead of L).

Let A(¢) be a positive mcreasmg function such that ‘

(3.10) tL(—A(t)) > ¢1 >0, as t— oo.

Relation (3.10) implies that A(t) is the (asymptotic) inverse of
1/L(—t), therefore A(t) is regularly varying with exponent 1/p (see
[4], Th. 1.5.12).

In [5] it is shown that (3.8), (3.9) and (3.10) imply that X (t) 2V,
as t — oo, where V is a (p-stable) random variable with characteristic
function ,

(3.9)
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— C1 Ca
311 viZ) = (z’—,_—_> .
(3.1) ov () = (2705512
Now let p = 2. Consider a process V(t) with Lévy’s representation
(3.1) and with L(y) and R(y) satisfying
t? (L(~t) — R(¥))

(3.12) T —
f——t z? dL(z) + fo z? dR(z)

— 0, as t — oo.

When F(z) is a distribution function such that for some zq > 0 we
have F'(z) = L(z) for x < —zp, while F(z) — 1 = R(z) for = > zo,
then F' belongs to the domain of attraction of a Gaussian law if and
only if (3.12) is valid (see [8], Sect. 35). Relatlon (3.12) implies that
the functlon

0 t
(3.13) Gt) = / 22 dL(z) + / 22 dR(z)
—t 0
is slowly varying (apply Th. 8.3.1 of [4]). Let A(t) be a positive increas-

ing function such that
(3.14)

¢ (/jw (Z%YdL(x) +/:(%) (ﬁ)zdmm)) 1, as t— oo

Relation (3.14) implies that A(t) is regularly varying with exponent 1/2
(see [4], Th. 1.5.12). o

It was pointed out in [5] that (3.12) and (3.14) imply the condi-
tions of Th. 2 of [8], Sect. 19. Therefore X (t) converges to the standard
normal law as t — oo. ‘

Let 0, denote the unit mass at point z, ue the distribution of &,

- the convergence in distribution.
Theorem 3.1. (Prop. 3.1 in [5].) Let X(t) be a process with charac-
teristic function (3.6). If 0 < p < 2 assume (3.8), (3.9) and (3.10). If
p =2, assume (3.12) and (3.14). Then

dt

| Gxpn = , as T —» o0,
].Og(T) A X (t,w) n Uz as — 00

for almost all w € Q, where Z 1is p-stable, more precisely Z 4 v (v

denotes the standard normal random variable) for p = 2 and Z Ly
for p < 2 (here V has characteristic function (3.11)).
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Proof. We have to check the assumptions of the general a.s. limit
theorem of [5] (see Prop. 4.1 in the Appendix). In [5] the validity
of (4.3) is proved by using the tools of [8]. Moreover, characteristic
functions are applied to check conditions (4.1). Here we shall show
(4.1) with the help of Th. 2.1.

Let k > [ and let [ be large enough. We shall show that for all
0<fB<p

I B/p I B/p

where p’ is an arbitrary number with p’ > p and C does not depend on
I, k and t. The details are the following. The characteristic function of
the process A’?Z(J?l)[ (t) — Xi(t)], k<t <k+1,is of the form

¥ (z, I+ 1LAI+ Dy), ( + DRA(L+ )y)) .

Therefore the distribution of AAz(_r_)l)[ (t) — Xik(t)] is the same as
that of X(l + 1) = SH_l/A(l + ].) BH_]_, where SH—l = 51 + -+
+ &1, and &1,&2,... are iid. with common characteristic function
¥ (1,z,b,0, L(y), R(y)). So it converges to a p-stable law. Therefore it
is bounded in probability, so (2.3) is satisfied.

To prove (2.1), we can use that A(f) is regularly varying with
exponent 1/p. So there exists a number B > 0 such that for all z > B

we have .
A(t) =t exp (n(t) + /; E(—;C—)dm>

“where 7 is a bounded measurable function on [B, oo[ such that n(z) —
— ¢, (Jc| < 00), e(z)is a continuous function on [B, oo such that e(z) —
— 0, as £ — oo (see Th. 1.2 of [13]). Then

Aﬁa?;) — m¥ exp (7,7(mn) —n(n) + /n i 5(75”) dx) <

| M Ly
< C'm¥ exp <T(n) / —dm) = Cm3t™™

n ¥+

where 7(n) — 0 as n — oo.
Finally, to prove-(2. 2), we use that the mﬁmtely d1v151ble distri-
bution F has finite moment of order p if and only if f oo —1[ [ZIPAL(z) +

+ f1 00 ZPAR(z) < 00 (see Th. 8 of [11]).
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Consider first the case 0 < p < 2. As ¢; # 0, we know that L(t)
is regularly varying with exponent —p. Then
-1

[ ePare = [(sP2@) % - [ 2@l <oo

—00 —00
if 8 < p. Therefore we see that E||&;]|? < co.
‘When p = 2, the function G(t) in (3.13) is slowly varying. Then

/ﬂl |z|PdL(z) + /10O zPdR(z) = /100 1Pd(R(z) — L(~1)) =

—00

o 1
:/1 zﬂﬁdG(x) < o0

if <2
Therefore, f I < k<t < k+1,

8
E|X(t) — X)) =E )Ai(t)l) (Afll:f = = B(l + 1)) } <

co(2) so((2)")

for [ large enough, where p’ > p. Here we applied that A is regularly
varying with exponent 1/p. This implies (3.15). ¢

4. Appendix

For the sake of completeness we quote Th. 2.1 of [5].

Let (B, p) be a complete separable metric space, denote by B(B)

the o-algebra of the Borel sets of B. Let X (t),t > 0, be a measurable
random process with values in B.
Proposition 4.1. Assume that there ezxist C < oo, 8 > 0, an in-
creasing sequence of positive numbers cp, with lim, .ocn = o0,
Cni1/cn = O(1), moreover, there ezists a strictly increasing unbounded
sequence of nonnegative numbers v, such that for each pair (I, k), with
| < k,1,k € N, there ezists a B-valued random process Xix(t), vy <
< t < vgyp1, with the following properties. For | <k {X(t) : w <
<t<wvyi} and {Xu(t) @ vk <t < uvgt1} are independent families of
random variables, moreover, for all t with vy <1t < Vr41
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) c B
(41) Eo (X(8), Xun(t)) < o(—l) |

Ck

Suppose that there ezists a decreasing positive fvmction dt), v1 < t,
with f::“ d(t) dt < log(cxy1/ck) for each k, and fvolo d(t)dt = co. Set

D(T) = [, d(t)dt and

t R
) = 577 / Sxewy(A)d(t) dt, A< B(B).

Then for any probability distribution u on the Borel o-algebra
B(B) the following two statements are equivalent

(4.2) Qb (w) 5 i, as T — oo, for almost all w € O
(4.3) ! / x ) d(t) dt T
. D — — —_ .
D(T) J, Hx (t) W, as o0
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