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Abstract: We consider in a real separable Hilbert space a class of nonau-
tonomous and nonlinear systems. Under a natural condition (more general
than the controllability condition used in [2], [3] and [4]) and using LaSalle
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1. Statement of the Theorem

1.1 Throughout this paper, H will be a real separable Hilbert space
with inner product < . > and associated norm ||.||. Let § be a real
function defined on R. Let A be a possibly unbounded operator on
H and denote D(A) for its domain. Let b € H and let t — C(¢)
be a mapping from [0,00[ to L(H) the Banach algebra of bounded
operators in H, and let B € L(H). We consider the following linear
nonautonomous and nonlinear system:

() { y(t) = [A+C@Oy®) +u@)(By@®)+0b), t=0
y(0) =yo € H, wu(t)=-p(<b,y(t) >).
The aim of this paper is to establish some stabilization results concern-
ing the system (S) under the following assumptions:

(H 1) The linear operator A is closed, densely defined, dissipative (i.e.
< Az,z ><0, for all z € D(A)).

(H 2) The operator B is skew-adjoint on H.

(H 3) b € D(A*) (where A* is the adjoint of the operator A) and if
for allt > 0 < b, ety >= 0 then zg = 0.

(H 4) Every C(t) is dissipative and the mapping ¢ +— C(t) is
continuously differentiable from [0,00[ to L(H) , and verifies

(H 5) G is a real C'-function on the real line satisfying 3(0) = 0 and
for which there exist a positive number € and a positive integer
k such that t3(t) > et?* for all real number t.

The assumption (H 3) is more general than the controllability
condition used in the papers [2], [3] and [4]. We recall that the systems
studied in these papers are particular cases of the system (S) considered
here. The aim of this paper is to generalize and unify all these papers.
The main result of this paper is the following theorem:

Theorem 1.2. Suppose that (H 1), (H 2), (H 3), (H 4), and (H 5) are
satisfied. Then we have:

(i) The system (S) has o unique mild solution y defined on the
infinite interval [0, 0o[.

(i) The system (S) is weakly stabilizable, and the feedback u(t) =
= —(3(< b,y(t) >) (which may be nonlinear) is a weakly stabi-
lizing control law.
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2. Existence and uniqueness of a mild solution
for (S)

2.1. In this section, we suppose that (H 1), (H 2), (H 4) and (H 5) are
satisfied. We shall prove the existence and uniqueness of mild solutions
of the system (S). We observe that assumption (H 1) ensures that A is
the generator of a Cy semigroup of contractions which will be denoted
by (e")i>0.

2.2. Let us define the map f from [0,00[xH to H by setting for all
t € [0,00] and all v € H,

ftv) =Ct)v— B(< b,v >)(Bv+b).
It is easy to see that f satisfies a local Lipschitz condition in v, uniformly

in t on bounded intervals, that is for every T' > 0 and constant ¢ > 0
there is a constant M (¢, T) such that

1£(Ev) = f(Eu)ll < M(e, T)|lv — uf
holds for all u,v € H with ||v]| < ¢, ||lul| < ¢, and ¢ € [0,T]. Thus we
may apply Th. 1.4. in [7], p. 185, to obtain that there is a tmax < 00
such that (S) has a unique mild solution y on [0, co[ and that moreover,
if tmax < 0o then lim;;__ ||y(t)|| = oo.
2.3. We recall (see for example [7], [4]) that for every T > 0 a mild
solution of the initial value problem (S) on [0,7] is any continuous
function y(t) defined on [0, T satisfying the integral equation

t
y(t) = ey + / AL (s y(s)) ds, Ve [0,T]
0

Since f is continuously differentiable from [0,7] x H into H then (see
[7]) this mild solution y(t) becomes a classical solution of initial value
problem (8) on [0,T] when the initial value yg € D(A).

2.4. Let yo € H and consider a sequence (y§), of elements in H
converging to yg. For each T > 0, let y(t) and y™(¢) be the mild
solutions of (S) associated respectively to the initial values yo and yg.
Then one can prove that for each ¢ € [0,T], the sequence (y™(t))n
converges in H to y(t).

Theorem 2.5. Suppose that (H 1), (H2), (H4), and (H5) are satisfied.
Then the system (S) has a unique mild solution y defined on the infinite
interval [0, col.

Proof. It is sufficient to prove that for each T > 0 the mild solution
y(t) is bounded by a constant independent of T. To do this we discuss

two cases:
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i) If the initial value yo € D(A) then y(t) becomes a classical
solution and a differentiation of the function v(t) := —%—]]y(t}”2 defined
for all t € [0,T] will give the following inequality:

dv(t) dy(t)
T Vg
=< [A+CO)y(t),y(t) > — < b,y(t) > (< by(t) >) <0,

from which we deduce that |y(t)|| < ||lyol for all ¢ € [0, T].

i) If yo & D(A) then we can find a sequence (yg)n of elements
in D(A) converging to yo in H. For all t € [0,T] and all integer n we
know from i) that ||y ()] < |lvgll. Know, we conclude by 2.4. that
ly@ < llyoll, for all £ € [0,T]. ©

>=

3. Weak stabilizability of the system (S)

We suppose as before that (H 1), (H 2), (H 3), (H 4), and (H 5) are
satisfied. The purpose of this section is to study the weak stabilizability
of the system (S). Our result will be based on several lemmas listed
below.

Lemma 3.1. lim;_,o < b,y(t) >=0.
Proof. As in the proof of Th. 2.5.; two cases will be distinguished:

(i) If the initial value yo € D(A) then the function v(t) := 3 |y(t) 12
is continuously differentiable and we can write for all ¢ > 0, the follow-

= v(0) +/O < [A+C()]y(s),y(s) > ds— < b,y(t) > B(< b,y(t) >).

By using assumption (H 5), we deduce from the previous equality the
following inequality

t
: 1
/ <byy(s) > ds < o—[luol*, vt > 0.
0

This ensures the convergence of the integral [~ < b,y(t) >2% dt. Since
the derivative 2 < b,y(t) >?% is bounded on [0, oo|, our claim in this
case is proved.

(i1) If yo & D(A) then there is a sequence (y§). of elements in
D(A) converging to yo in H. Let y™(t) (resp. y(t)) be the mild solution
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of (S) defined on [0, oo[ associated to y§ (resp. to o). Since (y™(t))n
converges in H to y(t) for all ¢ > 0, and the following inequality holds

©° 2 1
/ <by(s) > ds < |l
0 2e

An application of Fatou’s theorem will help us to obtain
o0
3 1
| <t > ds < ool
0 €
2k

In this case too, we verify easily that the derivative Ed{‘g< b,y(t) > is
bounded on [0, co[. So we can assert that limi—,oo < b,y(t) >=0. ¢
3.2. Now for each initial value yo € H, we will denote by I'(yo) the
weak positive w—limit set of the trajectory of the state y(t). This set
given by

{z€ H:3 asequence t, — oo suchthat w— lim y(t,) = z}.

From Lemma 3.1, we deduce that I'(yo) is included in b+ the orthogonal
of b. The following lemma is needed to finish the proof of Th. 1.2.
Lemma 3.3. We have et4(T'(yo)) C T'(yo), for all t > 0.

Proof. Let ¢ > 0. and let 2 € I'(yo). Consider a sequence (t,), such
that ¢, — oo for which the sequence (y(t.)). converges weakly to z.
We know that the state y(t + t,) has the following expression:

Ayt + [ [0+ )y + 1))~

— B(< b,y(s+tn) >)(By(s+t,) + b)} ds.

Now, for any arbitrary vector £ € H, we can write the following in-
equality:

|<y(t+1tn),€ > — < 2,6 S[<|< Yyt +ta), € > — < ey(tn), € >| +

+ < ey(tn), € > — < 2,6 >
Moreover, we can find two positive constants M; and M, such that the
following holds

|<y(t+tn), € > — < 6tAy(tn)1§ >|< My /Ot | B(< b,y(s +tn) >) | ds+

+M, /0 O + ) ds.

Using the fact that lim, .., < b,y(t + t,) >= 0, the assumptions
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(H 4) and (H 5) (made respectively on on the functions C and f) and

Lebesgue theorem of bounded convergence, we obtain
t

lim | B(< b,y(s+tn) >) | ds =0,
0

n-— 00

and
t

lim |C(s+tn)| ds = 0.

TI—00 0
Since
lim | < ey(tn), 6> — < etz 6> ]=0,

then we have
lim | <y(t+ta),E > — <elz 6> =0.

We conclude that we have proved the existence of a sequence (sp)n
such that s, — oo for which (y(s,)). converges weakly to e'“z, so our
lemma is proved. ¢
3.4. End of the proof of Th. 1.2. Let yg € H and let z € I'(yo).
By Lemma 3.3, we have < et4z,b >= 0, V¢ > 0. By using assumption
(H 4), we deduce that z = 0 and conclude that I'(yo) = {0}. Conse-
quently, the state y(t) converges weakly to 0 when ¢t — oo.

We conclude that the system (S) is weakly stabilizable, since there
exists a stabilizing feedback law w(t) := —F(< b,y(t) >) so that the
whole closed loop system

§(t) =[A+C@)ly(t) — B(< by(t) >)(By(t) +b)
is weakly asymptotically stable. ¢
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