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Abstract: This paper is motivated by the work of H. Zeitler [3] who re-
searched the Mandelbrot set and its main body for a function f(z) = 2™ + ¢,
where n € Z. An interesting connection between classical geometry and mod-
ern chaos theory, excursions into complex number iterations, amazing proper-
ties of the Mandelbrot set and impressive pictures inspired me to investigate
the main body of the Mandelbrot set for the root function. How does the
main body of that function look like in a complex plane or is it better to look

for it somewhere else?

1. Introduction

Let f(z) = 2% + ¢, where p,q € N, p < ¢q and GCD(p,q) = 1,
be a function of a complex variable z. To ensure that this is a single-
valued mapping we must examine it on a suitable Riemannian foliation
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R (f : R — R). The Riemannian foliation (briefly foliation) R con-
sists of ¢ complex planes put one over the other so that the coordinate
axes of all planes coincide. We cut each of these planes starting at
the origin and then along the positive part of the real axe. We then
connect the i-th plane with the (i+ 1)-th plane along the cut, i =
=1,2,...,¢— 1 and finally connect the ¢g-th plane with the first one.
How do the function f act on the described foliation? The first of the
g planes in the foliation R is transformed into the area between angles
0 and 27—;2 in the first plane of the foliation which contains images of
the function f. The second of the ¢ planes is transformed into the area
between angles —2—5—2 and %ﬂ, and so on. The last of the g planes in the

2n(g—1)p

foliation R is transformed into the area between angles and

27p and it is connected with the first one (area between angles 0 and
2mp
q )-
We consider a fixed z (for example z = 0) and iterate with respect

to ¢, obtaining the following sequence of complex numbers:

F0)=c¢, F2(0)=ct +¢, f3(0)= (c§+c)§+c,....

We present this sequence as a set of points in the Riemannian foliation
R. We define the Mandelbrot set M in respect of f and z = 0 as the set

2
of ¢ € R for which the sequence c, ¢t + c, (cg + c) * +ec..., does not
tend to co as n tends to co:
M = M(f,0)={ceR; f°(0)» oo, for s = co}.

Definition 1.1. The set of all points ¢ € M such that the above se-
quence for function f has exactly one attractive fixed point is called
the main body H of M (for function f and initial point z = 0).

By the term attractive fixed point we mean a point wy which sat-
isfies the following conditions:

(a) f (wo) = wo.

(b) There exists such a neighborhood U of the point wg that for
every w € U

nl_i+ngo ™ (w) = wp.

The main results in the present paper are descriptions of the subsets
of Riemannian foliation representing the main bodies of the irrational
functions f(z) = 2% + ¢ with p,q €N, p<gq,q>1and GCD(p,q) = 1.
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Remark 1.2. There are two variables used in our text: the variable
z and the parameter c. We shall even jump between the z-plane (with
c fixed) and the c-plane (with z fixed). The first one is denoted as
dynamical plane and the second one as parameter plane. The c-plane
is the native place of the Mandelbrot set.

2. Conditions for the existence of attracting fixed
points

The following theorem indicates the conditions under which at-
tractive fixed points of the function exist.

Theorem 2.1. Suppose that f : R — R, where R is a Riemannian
foliation in a sence explained in Introduction, is defined by f(z) = z¢ +
+c where p,q € N and GCD(p, q) = 1. If the function f is continuously
differentiable in a neighborhood of the fized point wo and if |f' (wo)| <
< 1, then an open neighborhood U of the point wq exists, such that

lim f™(w) = wq for every element w € U.
—+00

Proof. By the assumption of the theorem the function f is continuously
differentiable at the point wg. So an open disc K (wg,€), € > 0 exists,
such that |f' (w)] < A < 1 for every w € K (wp,€). Because of the
properties of analytic functions the following inequalities are valid:

(1)

|f (w) — wo| =
:lf(wo)—l—f'(wg)(w—wo)—l—f ;;UO) (w—w0)2+..._w0 =
:'f’(wo)(w—wo)—l—fﬂguo) (w—w0)2+...lg
o f*) (w -2 2
<|f" (wo) (w — wo)| + (kzﬂf—-k—(!—gz(w—wo)k >(w—w0) =
o f*) Wo -2 2
=|f" (wo)| |lw — wo| + Zf%(w—wo)k lw —wo|” <

k=2
<A|w—wpl+ Ce |lw —wp| = (A+ Ce) lw — wo| < |[w — wp| -

To end the proof we have to show that the expression




280 I. Kosi-Ulbl

2\ )
> L) (w — we)t

k=2

is less than a constant C. The series inside the absolute value signs
oo

is the power series in the form  a,2", a, € C, which converges for
n=0

|z| < r, z € C (with r we denote the radius of convergence). The radius

of convergence for the given series equals

Qn
Ant+1

r= lim
n—>00

b

if the limit exists. In case of the function f(z) = 2% +c where p,q € N,
p < g, q>1and GCD(p,q) = 1 the following result for the radius of
convergence is obtained:

Qn,

r= lim
n—o0 an+1

14

§(’E’—1)---<E—n+1>w5_n(n+1)!

= lim - =
n—=oo P[P _ R o P _ -
nlE (q 1) ( n+1) (q )
qg(n+1
RS )
p—ng
We conclude that our series is convergent and the expression (1) is
strictly less than

= |wg| lim
n—oo

(A + Ce) |lw — wo| < |w — wo|

for a suitable constant C.

With the description above we showed that the point f(w) is
closer to the point wg then the point w. We find out, in a similar
way, that the point f2 (w) is even closer to the point wq then the point
f (w) and so on. So we conclude that nlgrolo ™ (w) = wp for every w €

€ K (wp,€). This ends the proof of the theorem. ¢

3. The border line of the main body for the function
£(z)=25% +c, p,qeN

Theorem 3.1. The main body H of the Mandelbrot set M in respect
of functions f(z) = z7+c,pg€EN, p<yq, GCD(p,q) =1 1is the set of
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points in the Riemannian plane R outside the curve represented by the

equation
re= =
c= (P-) ett — (1—9> eitg, teR
q q

Remark 3.2. Let be p = ¢/, ¢ = p’. With the following substitution of

parameter
P (p\’
l=—=s= (——) 5
q q

we rearrange the equation of the curve from Th. 3.1:

q P p! ]

_a_ P q
o (Q) a—p eit_ (2_7) a—p eitg _ (gé)p—q eisg_:_. (q_i) =g eis:
q q b D

, q p'

g7 ! T4
g\ 4 qg \? -« isgﬁ_
= — ——I— e —_— —/ e g
D D

This means that the second curve is the mirror image (over the origin)
of the first curve.

From the following corollary it is evident that the mentioned equa-
tion represents the border curve of the main body H for the function
f(z)= z7+c, p,qc N, p > q, GCD(p, q) = 1 (with the “~” sign). ,
Corollary 3.3. The main body H of the set M in respect of functions
f(z) = 29 + ¢, p,qg €N, p > q, GCD(p,q) = 1 is the set of points
in the foliation R within the curve represented by the equation ¢ =

rrrl FrerR

()= (57 e

Let us explain why the transformation in the Remark 3.2 was
done. In the first part of this paper we described the Riemannian
foliation in case p < g. With our transformation we showed, that the
curve from Th. 3.1 (p < ¢) and the curve in Cor. 3.3 (p > q) mean the
same curve in different positions on the Riemannian foliation R: the
second curve is obtained from the first one by reflection over the origin.
So the Riemannian foliation in case p < ¢ can be used as a set of images
for the function f(z) = z7 + ¢ in both cases: p<gqandp>q.

The proofs of Th. 3.1 and it‘s corollary for the case f;: C — C
where f; is one of the branches of the function f can be found in [2].
Th. 2.1 in the case of the Riemannian foliation as the domain and the
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set of images of the function f(z) = z7+e¢, p,q €N, allow us to extend
(in the same way) these results to the global case f: R — R.

4. A connection between the dynamical and the
parameter plane

The proofs of Th. 3.1 and it‘s corollary imply that the border line
of the main body for the function f(z) = zi+c,p,q €N, GCD(p,q) =1
is the unit circle B () = €* in the dynamical plane (for more detail see
[2]): Because the main body H consists only of attractive fixed points
we have to make sure that fixed point z (we will write z = k), k € R,
due to further calculation) is of this type. By the stability criterion
from Th. 2.1 involving the derivation of f we obtain

()] =

/ <1.

Drpeat et
q

- =
Now we choose k such that gkpq_q = 1. This means k = (%) 7 Then

we obtain I)\L;ql < 1 and because p < ¢ further |A| > 1.

We are going to investigate the transformation ¢ that maps the
unit circle to the parameter plane which is the native plane of the main
body of the Mandelbrot set. From the condition for the fixed points of

fl2)=20 +c=2z
we get the following prescription for the transformation ¢:
c=p(z)=z2—2z4
for every z € C. We want the transformation ¢ from the dynamical
plane to the parametric plane to be one-to-one. Therefore we should
investigate our curve ¢ = ¢ (2) (or in a parametric form ¢ = v (t)) on

a suitable Riemannian foliation. We have to be careful with the points
that “contradict” the one-to-one property of the function:

z1 # z9 and f(z1) = f(22).
These points appear in the neighborhoods of the critical points. The
point zg is a critical point for the transformation ¢ if ¢’ (2) = 0. If
two different points in the neighborhood of the critical point are close
enough to each other they might have the same value in respect of the
transformation ¢. The roots of the equation
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p—g
cp'(z)zl—z—)zq =0, or 29 =1
q p

are the points

ey

To make sure, that the transformation ¢ is one-to-one, we will eliminate
the points ¢ (z) from the parameter plane.

Beside these |¢ — p| points, the point 0 should be removed because
0= (0) = ¢(1). Therefore |¢ — p| + 1 points are to be cut out of the
plane.

If we want the transformation ¢~! from the parametric to the
dynamical plane to be one-to-one, another point should be removed:
the point at infinity. The explanation of the statement is as follows: if
we denote ¢ (z) = w, the next equalities are valid:

((p o (p_l) (w) =1id(w) =w
and

_ — !
¢ (7 (W) [ ()] =1,
—1 ! ].
o (w)] = —7—7—= =0
7 @l = ST
Hence w is a critical point for ¢! when ¢’ (¢! (w)) = ¢’ (z) = oo and
the only corresponding points are z = 0 in the case p < ¢ and z = ©
in the case p > q.

1

5. The special Riemannian foliation - a home place
for the main body of the function f(z) =z% +¢, p,qeN

We proceed with the description of a model of the Riemannian
foliation on which our curves lay.

Our model of the Riemannian foliation looks like a tower build
of complex planes laid one over the other (the coordinate axes of these

- q )

planes coincide). The points z =""" (%) are arranged symmetrically
around the origin. These points are mapped by function ¢ into the
points
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=2 = (5[5

which should be signed on each of the complex planes and connected
with the point 0 by cuts. To remove the point at infinity we also make
a cut from the origin along the positive part of the real axe.

We make these cuts on each of the complex planes that form the
foliation. Then we connect every two neighboring planes as well as the
last plane with the first one. The foliation consists of ¢ planes if the
number |p — ¢| is odd. On the other hand, if the number |p — ¢| is even,
the foliation R is built of only ¢ — 1 planes (in this case the cut from
the origin along the positive part of the real axe already eliminates one
of the points ¢ (2)).

On the above described foliation our curve ¢ = «y () is continuous

and it does not cross itself.
Remark 5.1. The curves created in Th. 3.1 and it‘s corollary lay on the
described foliations. Each curve divides the foliation into two regions.
Due to arbitrary convention the region which contains the origin is
named interior of the curve and the remaining part of the foliation is
called exterior of the curve. The function ¢ which maps the unit circle
into the curve ¢ = -y (t) is continuous. The points inside the unit circle
are mapped into the interior of the curve and the points laying outside
the circle are mapped into the exterior of the curve on the foliation.

According to Remark 5.1 the ¢ (z) values lay inside (p > ¢q) or
outside (p < ¢) of the area limited by the curve ¢ = 7 (). So we have
to remove the point 0 or the point co. Hence in each case (p > ¢ or
p < g) we eliminate |¢ — p| + 1 points.

Because the described foliations are difficult to present in the space
we will restrict ourselves to the projection of the curves ¢ = « (¢) on
one of the complex planes which form the foliation.

6. Visualization for some special cases

At the end of the paper we illustrate the above results for functions
f(z) = z% + ¢, p,qg € N with some special values of the exponent %.
The following pictures present the mentioned projections of the circle
B (t) = re* (where r is a constant value, 7 = 3) mapped by the function
¢ (Figures 1 - 4):
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