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Abstract: Conditionally orthogonal systems of rational functions are in-
troduced and their product systems are examined. It is proved that under
certain conditions these product systems form a discrete orthogonal system
and the partial sums of their Fourier-series can be obtained in useful form.

Also byorthogonal systems of this type are investigated.

Expansions by orthogonal and biorthogonal systems play an im-
portant role in mathematics and in applications. Several methods
are available for constructing such systems. In a Hilbert space, for
instance, the Gram-Schmidt method transforms a linearly indepen-
dent system into an orthonormed one. Orthogonal polynomials, the
Franklin—system and its generalizations, orthogonal systems consisting
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of rational functions (discrete Laguerre, Kautz, Malmquist-Takenaka
systems) are examples that can be derived this way [2], [3].

In the middle of the 1970’s the author introduced a new method
for constructing orthogonal systems starting from some conditionally
orthogonal functions [5], [6], [7]. Several classical systems, including
the trigonometric, the Walsh system or the Vilenkin system, character
systems of additive and multiplicative groups of local fields, UDMD and
Walsh—similar systems, can all be constructed by using this method [10],
[11],[13],[15], [16], [17]. One of the key concepts in our construction
is the notion of product systems of conditionally orthogonal systems.
These systems have important theoretical properties that are useful
in numerical computations, too. For instance, Fourier—coefficients and
partial sums can be computed by applying fast algorythms similar to
FFT [8], 9], [12], [14].

In this paper we introduce conditionally orthogonal systems of
rational functions, and examine their product systems. We prove that
under certain conditions these product systems form a discrete orthogo-
nal system and the partial sums of their Fourier—series can be obtained
in a useful form. We also investigate biorthogonal systems of this type.

Expansion of this type can be used in control theory [2].

1. Introduction

In this section we recall some notions and results on UDMD sys-
tems introduced in [11], [13]. Fix a probability space (X, A, ). The
conditional expectation (CE) of the function f with respect to the sub-o-
algebra B C A is denoted by EBf. The Li-space of B-measurable func-
tions will be denoted by L4(B) := L4(X, B, ). Instead of LI(X, A, p)
we write L9. It is well-known that for 1 < ¢ < oo the map L9 >
> f — EBf is a bounded linear projection onto L4(B) and ||E®f||q <
< |Ifllq- The operator EP is B-homogeneous, i.e. if A is B-measurable
and f,\f € L' then

(1.1) EB(\f) = \EB}.
Furthermore, if C C B C A are sub-o-algebras of A then
(1.2) EC(EBf) = B¥(E°f) = E°f

for any f € L' (see [4], [18]). We note that if B := {X,0} is the trivial
o-algebra then
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By _
(1.3) Bof = [ s,

i.e. CE is a generalization of the integral.

The conditional expectation operator has a simple form if B is
an atomic o-algebra, i.e. if B is generated by the collection of pairwise
disjoint sets B; € B (j =1,2,---,m) :

B:=0{Bj:j=1,2,---,m},
BiﬂBjI@ (1S2<j§m), U;nlej:X.

The sets B; (j = 1,---,m) are called the atoms of B and the B-
measurable functions are exactly the step functions, constant on the
B;’s. This m-dimensional space coincides with L*. Denote the collec-
tion of atoms in B by B. Then the conditional expectation is of the
form

(1.4) (BB ) (z) = ﬁ/de“ (zcBecB)

The fact that CE has properties similar to those of integral makes
it possible to extend several concepts connected with the integral to CE.
For example a finite or infinite system of functions ¢, € L? (n € N) is
called a B-orthonormal system (EB-ONS) if

(1.5) EB(¢rdy) = 0k (k£ €N),

where dy is the Kronecker-symbol. If B := {X,0} is the trivial o-
algebra then we get the usual definition of ONS. Moreover, (1.2) and
(1.3) imply that each EB-ONS is an ONS in the usual sense.

Replacing the integral by CE in the definitions of Fourier-coef-
ficients and Fourier partial sums we get the following: The function
EB(f#,) is called the n-th B-Fourier coefficient of the function f with
respect to the system (¢,,n € N). In the case B := {X,0} these
notions coincide with the usual definitions of Fourier-coefficient. The
concept of B-biorthogonal systems and Fourier-coefficients with respect
B-biorthogonal systems can be defined in a similar way.

For the definition of product systems (see [1]) we fix a collection
of function systems

(1.6) ®p = {4t :£=0,1,---,p—1} C L? ,

where p > 2,p € N is a fixed number and 0 < £ < N < oo. We shall
use the expansion of natural numbers with respect to the base p. It is
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well-known that every number m € N,m < p?V can uniquely be written
in the form

(1.7) m= Y mp®

where my, € {0,1,---p — 1}. Then for each 0 < m < p" we define the
product

(1.8) Ym =[] oF*,

0<k<N

provided that in the case N = oo the infinite product in (1.8) converges.
The system ¥ = {9, : 0 < m < p™} is called the product system of the
systems @y, (0 < k < N). In the special case p = 2 (1.7) is the dyadic
reprezentation of m € N.

In order to get orthonormed product systems we fix a stochastic
basis, i.e. an increasing sequence of sub-c-algebras of A:

(1.9) Ay ={X,0} Cc A C---CA, C---CA,

and a sequence ®; (0 < k < N) of adapted conditionally orthonormal
systems (AC-ONS). This means that the functions in @, are Agi;-
measurable and ®; is Ag-orthonormed:

i) P, C Lz(.Ak.H) (k < N),
i) Ex(drdr) =6 (0<4,5 <pk<N),
where E}, denotes the conditional expectation with respect to Ayg.
The stochastic basis (1.9) is called dyadic if for every k& < N the
o-algebra Ay is atomic and every atom I € A can be split into two
atoms I',I" € Agq1, such that u(I') = p(I”). If p = 2 and ¢} =
=1 (0 < k < N), then (1.10) ii) means that ¢ := ¢3 (0 < k < N)
is a martingale difference sequence with respect to the stochastic base
(Ags1,k = 0,1,---). If |¢pg]| = 1 then the system (¢x,k = 0,1,---) is
called a system of unitary dyadic martingale differences, or UDMD-system
and the system W is called an UDMD product system.
It is known (see [8], [13], [14]) that conditions (1.10) imply that
the product system ¥ is an ONS.
Theorem A. Let U be the product system of a finite AC-ONS satis-
fying (1.10). Then ¥ is an orthonormed system.

In this paper we investigate only finite product systems, i.e. we
suppose that NV < co and A = Ay is the collection of subset of X. If

(1.10)
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p = 2 then X has 2V and the Fourier-coefficients with respect to the
system W can be written in the form

(L) fR) =[f, el =27V ) f(@)Pp(e) (B=0,1,---,2N —1).

z€X

Furthermore, each function f : X — C can be reconstructed from f by

aN_1

(1.12) f@) =Y fk)n(a) (z€X).
k=0

In order to compute the ¥-Fourier coefficients of a function f or
to reconstruct f from f by formula (1.11) and (1.12) one needs 2V - 2N
multiplications and 2% (2 — 1) additions. In the trigonometric case,
there is an algorithm which computes the discrete Fourier coefficients
using N2V algebraic operations (additions or multiplications). This
algorithm is called the Fast Fourier Transform or, more briefly, FFT.
It was showed (see [9], [10], [12], [13], [14]) that such an algorithm
exists for any ¥-transform provided ¥ is a product system of systems
satisfying (1.10)i).

For 0 < m < 2V denote

fa(m) = Bu(f,,) (0<n<N)
the m-th A, Fourier-coefficient with respect to the system ¥ and set
N-1
m” = Z mp2® (0<n < N).

k=n

By (1.1), (1.2), (1.8) and (1.10)ii)

(1.13) Fa(m™) = En(@y, " Ent1(fmnsr)) (0 <n < N),

where in the case n =N weset ,,v~ =1 , and consequently
En(fppn) = [

The A, measurable function g is constant on each I € A, atom.
The value of g at the points of I will be denoted by g(I). Especially,
the value of f,(m™) at I is denoted by fn(m™,I). Let I = I' UI" be
the decomposition of I € A, into two Ay, atoms. Then (1.13) can be
written in the form
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(1.14) ) )
b1y = B U aa (1) 4 G () e (m7 4, 1)
n b - 2

0<n<N,0<m<2¥,I=TruI"I1cA,,I' " € A1)

The numbers of atoms in A, is 2® and the numbers of m,’s is
2N="_ Thus computing the E,, Fourier coefficients on the basis (1.14)
we need 2%V operations. Starting with the function fN = f and applying
the recursions (1.14) we get the Fourier coefficients f = foin N steps.
The number of operations in this algorithm is N2V. The algorithm
suggested by (1.14) can be organized so that the calculations and the
storage used is mimimized (see [14]).

2. Rational UDMD systems

In this section we investigate discrete conditionally orthonormal
systems constructed by rational functions. To this end denote C the
set of complex numbers and let D := {z € C : |z| < 1} be the open
unite disc. In our construction the Blaschke functions

(2.1) Bo(z) = 2= (ze Q)

play a basic role. If the parameter b belongs to D then the restriction
of By to D is a bijection of D. Furthermore By is a 1 — 1 map on the
unite circle T := {z € C: |z| = 1}. Functions of the form

G(z) = cBy,(2) By, (2) - Bp,(2) (z€C,ceT,ne N :={1,2,---})

are called Blaschke products of order n. It can be showed (see Lemma
1 in section 3), that for every w € T the equation G(z) = w has n
pairwise distinct solutions belonging to T.

For every couple a = (a(1),a®) € D? := D x D we introduce the
Blaschke products of order two:

(2.2) Ay(2) == By (2)By (2) (z€C,a = (a1, a®) e D?).

For the definition of the discrete probability space we fix the se-
quence a, € D? (n € N := N* U {0}) of couples and for all n € N we
introduce the functions
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wo(2) :==Bo(z) =2z (z€Q),

2.3
(2.3) On = Aa,_,0---0A, 0As (neN),

which map D onto D and T onto T. Here o stands for composition of
functions. It will be proved (see Lemma 2 in Section 3) that ¢, is a
Blaschke product of order 2™. Fix the numbers N € N*, w € T and
introduce the set
X =Xy :={weC:opn(z) =w}.

Then (see Lemma 1 and Lemma 2) X C T and X has 2V elements.
Denote A = Ap the collection of subsets of X and denote u the discrete
probability measure defined by

(2.4) pwH):=2"V3"1 (HeA).
rE€H

Forn=1,---, N let A, denote the g-algebra generated by the function

Qs'n.—l = PN-n-
Since ¢p—1 = Agp_,_, O Pn (n=1,2,---,N) we have
(2.5) AgC A C---CAy_1 C Ay = A

It is easy to see that for n = 1,2,---, N the range of ¢,_1 is the set
Ypoi={2€C:(Aay_,04ay .0 04ay_,)(2) = w}
with 2™ elements. Thus the o-algebra A, is atomic with the atoms
ni1y) ={zeX ¢pa(z) =y} (yeTyu),
An = {d);il(y) 1y € Yo H(C Ap).

Obviously p(I) = 27" for every I € An. Furthermore, every atom
Ie fln is of the form

I=T'UI", where I''I" € Apyq, I'NI" =0, and
Aay—ns (¢n(I”)) = Aan_ns (an(I/)) = ¢n-1(I),
and (1.10)ii) is equivalent to

(28)  Ba(sa(D) = 5 ((@5FI) + (@EI).

Let p = 2 and denote ¥ := Uy := (¢, n =0,1,--- 2N — 1) the
product system of

(2.6)

(2.7)
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&, :={1,¢n} (n=0,1,---,N—1).

If o) = —af? then ¢ (I') = —¢n(I") by Lemma 1. Therefore, we
have by (2.8) that the system ®,, is A,-orthonormed, moreover ¢, (n =
=0,1,---,N —1) is an UDMD system. This implies the following
Theorem 1. Suppose that the generating sequence a,, € D? satisfies
ag) = ——ag). Then ®,, is an AC-ONS of rational functions and conse-
quently the product system U is a discrete rational orthonormal system.
The Fourier coefficients with respect to the system ¥ can be computed
by the the fast algorithm (1.14) using O(N2V) operations.

In the general case a biortogonal system ¥y to ¥ can be con-
structed. Let T = I' U I the decomposition of the atom I € A,.
Observe that by (2.7) and by Lemma 1 ¢ (I') # ¢n(I" ) To define the

system @, = {¢0 451} biorthogonal to the system ®,, := {¢2,¢L} =
= {1,¢n} set 7 = = 2/(¢n(I") — ¢n(I')) and let

bo(I') =F1da(I"), G0(I") = ~71$n(I)
on(I') = =71, Sr(I") =71
and consequently
En(8n) = bk (k£ =0,1).
Then we get (see also [12])

Theorem 2. The product system T of the systems CD (n=0,1,---
,IN — 1) is biorthogonal to U, i.e.

[ g, Y] = 6ke (0 <K, £ < 2M).

The Fourier coefficients with respect to the system T can be computed
by the the fast algorithm (1.14) using O(N2N) operations.

3. Properties of the Blaschke products

In our constructions we used the following properties of the Blaschke

products.
Lemma 1. Let by,bs, -+ ,b, € D (n € N*) and denote

G(2) := By, (2) By, (2) -- - By, (2) (2€C)
a Blaschke product of order n. Then for every w € T the equation
(3.1) Gz)=w

has ezactly n solutions, and the solution z; (j =1,2,---,n) satisfy
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z; €T, zj# 2z (1<7,k<n,j#k).
If’)’l, =2 and bl = —bz then Z1 = —29.
Proof. Equation (3.1) is eqivalent to

(3.2) (1 —wby-+bp)2™ 44 (=1)"by - b, —w = 0.
Consequently, it has at most n distinc solution. In order to prowe that
the number of the solutions is n we use the fact that By is an 1 —1 map
of T whenever b € D. Moreover, on T the map By is of the form
By(e®) = e®  (t € R),

where 7 : R — R is a strictly increasing continuous function such that
Yot + 2w) = Y(t) + 27 (t € R) (see [2]). Set w = €*° and z = e
(t,6 € [0,27)). Then (3.1) is equivalent to

e"® = e where v = yp, + -+ -
Obviously, v(27) — v(0) = n2m. Let

ko :=min{k € Z : 6 + k2m > v(0)},
and introduce the sequence 7; := § + (ko + 7)27 (j € N). Then by
definition v(0) < 7; < y(27) (0 < j < n). Consequently, the numbers
tj ==y (r;) (0 < j < n) satisfy
0<tg<t1 < - <tp_1 < 2.

Set zj := e®i-1 (j=1,2,--,n). Then

G(Zj) — G(eitj_l) — ei’y(tj_l) — e'iTj_l - e'i(<5+(ko+j—1)27r) — eié = w,

and the numbers z; are the solutions of (3.1).
If n = 2 then (3.2) is of the form
(1 — wbyby)2z?® — (by + by — w(by + ba)z + b1by — w = 0.
Hence it is clear that if b; = —bs then the solutions satisfy z; = —25. 0
The set of finite Blaschke products is closed under multiplication
and it is also closed under compositions of functions o. Namely, the

following lemma holds.
Lemma 2. Letai,as, -+ ,a, € D? (n € N*). Then the function

(3.3) F(z):= A, 0As,0---0A,,

is a Blaschke product of order 2", i.e. there exist 2™ numbers a; €
eD (j=0,1,---,2" — 1) and a number c € T such that
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(3.4) F=c |] B,

Proof. First we show that for every b € D and a = (a1, a2) € D? there
exist two numbers a1, as € D and a number € € T such that

(3.5) Byo A, = €Bqy, Ba,.-
It is easy to see that
(1 - bﬁlﬁg)zz - (Cl,l + as — b(?z‘l - 62))2: -+ (CL10,2 —_ b)

By(Aa(2)) = " ——= e = =
(@1G2 — b)2%2 — (@1 + az — b(a1 + a2)) + (1 — bajas)
_. 22 —pz+q
gz%2 —pz+1’
where
__ap+az— b(&l + 52) 0102 — b . 1 - baias
T i1-tma, T 1-bma T 1-basas

Let a7 and oy denote the roots of the equation 22 — pz + g = 0. Then

2 —prtg=(z—)(z—a) =22 — (1 + az)z + a1as (2 €C).
Consequently

(1 —a@2)(1 —ta2) =1—-pz+7q2> (z€C).

Thus we get
(z —a1)(z — an)
By (A, =

o(4a(2) = ¢ —F o) 1 —ame)

Since the left hand side is bounded on the closed disc D := {z € C: |z] <
< 1} the poles of the right hand side are outside of D, i.e. |&;|= > 1
(=1,2). Thus o; € T (j =1,2) and (3.5) is proved.
Let n = 2. Then
Aal (Aaz (Z)) = Ba§1) (Aaz (Z))Bagz) (Aaz (z)) (Z € C)

Applying (3.5) we get that there exist ¢, € T (j = 1,2) and ag (k =
=0,1,2,3) such that

(z € Q).

A (Aay (2)) = 162 [ | B (2) (2€0)
k=0

and (3.4) is proved for n = 2.
The general case can be proved in a similar way by induction. ¢
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