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Abstract: An approximation method by time discretization is investigated
for an abstract stochastic evolution equation, involving Lipschitz continu-
ous functions and a nonlinear maximal monotone operator, which satisfies a
growth condition. A sequence of step functions is constructed and proved
that it converges strongly to the solution of the evolution equation.

1. Introduction

Functional analytical formulations with generalized solution con-
cepts are very useful in the investigation of stochastic partial differential
equations. Important results were obtained by I. Gyoéngy [2], [3], [4],
W. Grecksch, C. Tudor [1], N. V. Krylov, B. L. Rozovskij [7], E. Par-
doux [9] and illustrate different methods in the research of stochastic
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partial differential equations; for example, one can consider infinitesi-
mal operators of a semigroup or monotone operators on Sobolev spaces
to obtain assertions about the existence and uniqueness of the solutions
of such equations.

Methods such as Galerkin’s method or Rothe’s method, inspired
from the research of deterministic partial differential equations (see, for
instance, [12], [10]) have been extended to the stochastic case. The
Galerkin method consists in approximating the solution of the equa-
tion by a sequence of solutions of finite dimensional equations. Rothe’s
method involves the approximation of the solution by a sequence of so-
lutions of time discretized equations. In the book [1] W. Grecksch and
C. Tudor present the Rothe method for an abstract stochastic parabolic
evolution equation. The ”classic” linearity and continuity condition of
the operator under consideration is replaced by monotonicity, hemicon-
tinuity and growth condition. We also mention the paper of I. Gyongy,
D. Nualart [5], where the authors give an implicit approximation scheme
similar to the Rothe method. In [8] H. Liske and E. Platen give numeri-
cal results for several time discrete approximation methods. Numerical
methods for approximation of stochastic differential equations are sub-
ject of the book of P. Kloeden and E. Platen [6].

The purpose of our paper is to present Rothe’s method (time dis-
cretization) for an abstract stochastic parabolic evolution equation (in
the sense of Ito), where the operator is maximal monotone and satisfies
an abstract Garding inequality (weak coerciveness) and a growth con-
dition (local boundedness). We establish the existence and uniqueness
(with probability 1) of the solution of the following abstract stochastic
evolution equation:

1) dX(w,t) = —AX(w,t)dt + f(t, X (w,t))dt + g(t, X (w,1))dw(w, t)
with the initial condition
(2) X(w,0) = Xo(w),

where w € 2 (a.e.) and ¢t € [0,T] C R. We also prove that the sequence
of the solutions of the discretized equations converge in mean square
to the solution of the given equation. We want to point out that our
assumptions on the operator A are more general than in the papers [9],
[1], [11], [7] (no linearity or continuity or hemicontinuity condition, but
a maximal monotonicity condition). Our assumptions will be illustrated
in the next section.



Approzimation of stochastic evolution equations 247

Notations

(Q,F, P) complete probability space

EX mathematical expectation of the random variable X
Bio, the o-algebra of all Borel sets of the interval [0,T] C R
L2(Q) space of all F-measurable random variables

v: Qx[0,T] = S with E|jv]|% < oo
L%(Q x [0,T]) space of all F x Bjp,r-measurable processes
v:Qx[0,T] — S that are adapted to (F;)sepo,r) and

T
Eof lu(®)||2dt < oo

— weak convergence (in the sense of functional analysis)

2. Assumptions

We assume that the following hypotheses are fulfilled:
(Hi1) (2, F, P) is a complete probability space, {F; | ¢t € [0,T]} is
a filtration (contained in F) with respect to a given real Wiener process

(w(t))te[O,T];

(Hz) (V,H,V*) is an evolution triple (see [12], p. 416), where
(V.|| - lv) is a real separable, reflexive Banach space and (H, (-,-)) is a
real separable Hilbert space;

(H3) A:V — V* is a maximal monotone operator (i.e. A is
monotone and has no proper extension) satisfying the following condi-
tions:

1) There exists two constants a; > 0, a; € R such that for each
v € V it holds:

(Av,v) > aa||vl[}, — az]lv]|?
(abstract Garding inequality);
2) For each 7 > 0 there exists a ¢, > 0 such that for any

T
- function v : Q x [0,T] = V with E[|jv(t)||3dt < r it follows that
0

T
E [ Av(t)||3dt < ¢, (growth condition);
0

(H4) f,9:[0,T] x H — H are mappings satisfying the following
inequalities for all ¢1,%2 € [0,T] and for all vy,vs € H
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1£ (b1, 01) — £ (b2 w2)I < alts — ta[2 + Bllvr — val2,

lg(t1,v1) = g(t2, v2)|* < ety = taf* + Bllvs — 2%,
where o, > 0 are given constants. ‘
(H5) Xo: Q — H is Fo-measurable and FE||X||? < co.
An adapted process (X (t)) 0,17 from the space £%(Q2 x [0,T])
telo,
with E|| X (¢)]|? < oo for all t € [0,T] is called solution of problem

(P1) if it satisfies equation (1) and the initial condition (2) in the
following sense:

(X(£) - Xo,0) =
- /<Ax<s) s+ [(F(s, X(s)),0)ds+ [la(s, X(s)), v)du(s)
0 0 0

for a.e. w € Q and for all v € V,t € [0, T].

Remark 1.1. In every reflexive Banach space S, an equivalent norm
can be introduced so that S and S* are locally uniformly convex and
thus also strictly convex with respect to the new norms on S and S*
([12] Prop. 32.23, p. 862). Without any loss of generality we can con-
sider in our hypothesis that the reflexive Banach space V' is also locally
uniformly convex. In [1] the space V was assumed to be a Hilbert space.
In our paper the space V must not be a Hilbert space.

Remark 1.2. An classical example of an oparator that satisfies (Hz3)
is the Laplace operator. Another example is the following (see [12], p.
427): let V = Wi*(G), H = L2(G), where G is a bounded region in
R* (withn>1)and A: V = V*

(Au,b):/G!(ZDuD v—l—ZuD v—}—uv)d

,J=1
Remark 1.3. A slightly more general assumption is (H*,) instead
of (H4):
(H*y) f,9 : @ x[0,T] x H — H are mappings such that
f(-,h),g(-, k) are predictable in (¢,w) for each h € H and they sat-
isfy the following inequalities for all ¢1,t2 € [0,7"] and for all v1,v, € H

£ (w, t1,v1) — Fw, t2;v2) |1 < alty — ta]® + Bllvr — va|?,
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lg(w, t1,v1) = g(w, t2, va)|* < alts — ta]* + Bllvs — 2%,
where a, 8 > 0 are given constants. All the results of this paper hold
also in this case.
Remark 1.4. The abstract Garding inequality assumed for A and the
assumptions on f, g are closely related to the coerciveness condition on
the oparator considered in the papers [1], [3], [7], [11].

3. Main Result

Let a be a real positive number and consider the following sto-
chastic evolution equation

(3) d(e-atX(t)> = —eat (AX(t) + qX(t))dt+
+ e f(t, X (8))dt + e~ (¢, X (1)) dw(t)

with w € Q and t € [0,T7], and the initial condition (2).
We denote by (P2) the problem of finding in the space £Z(Q x

% [0,T]) an adapted process (X (t)) that satisfies equation (3)

t€[0,T
and the initial-condition (2). Using thEe It]O formula, it can be shown
that X is a solution of (P1) if and only if X is a solution of (Pz). The
advantage of problem (P3) is the possibility of a favorable choice of the
constant a (see relation (31)), that will give us some useful properties.
Let 0 =% < i1 < -+ <ty = T be an equidistant partition of [0, T]
with hy = t, — th_1 = %, n € {1,2,...,N} and set w, = w(t,), for
each n € {0,1,...,N}. We discretize problem (P3) in the following
way:

(4) e—atn wn + e—atn (Axn + CL.’L‘n)hN —
| = e_atn—ly'n,—l + e_atn—lf(tn—hxn—l)hNy n = 1, 27 ERE] N7

(5) ynzxn'l“g(tn—l,xn)(wn_’wn_1), TL:1,2,...,N,

(6) zo = Yo = Xo,
where 1, € Vand y, € H (n=1,2,...,N).
Lemma 3.1. For each n € {1,2,...,N} equation (4) has with proba-
bility 1 a unique Fy,_, -measurable V-valued solution z,, € L% (Q).

In order to prove Lemma 3.1 one can apply a corollary of the
theorem by Browder and Minty about monotone operators (see [12],
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Cor. 32.26, p. 868) and the method of induction. For a.e. w € Q we
introduce the step process

N
IN (t) = Z I[tn_l,tn[(t)mna
n=1

for all t € [0, T] and set Zn(T') =z for t = T. The main result of this
paper is the following theorem:
Theorem 3.2. There ezists a unique (with probability 1) solution X =

= (X(t))te[o - of problem (Py) such that

?

(i) the process (X (t)) 011 has in H continuous trajectories;
telo,

(il) the sequence (&n) converges strongly to X in the space L2, (€ x
x [0,T);
(iii) (Zn(T)) converges strongly to X(T') in the space l.

4. Proof of the Main result

To begin we introduce some more notation. For each
n € {1,2,...,N} we denote
vy =€ %z, and wu,=e %"

and for all ¢ € [0,T] we set
In(t) = I[tn_1,tn[(t)7 n 7é N

IN(t) = I[tN_l,tN](t)7 n= N7
and consider the following step processes

Yn,

N N
(7) on(t) = In(t)vn, in(t) =Y In(t)un.
n=1 n=1
Other notations are the following:

N
FN(t) = Z In(t)e—at"“lf(tn_l, il?n_l),
n=1

N
GN(t) = Z In(t)e_atng(tn—la xn)a
n=1



Approzimation of stochastic evolution equations 251

N
BN(t) = Z In(t)e_at".Amn.
n=1
The following lemma contains some a-priori estimates, that will be used
to prove weak convergence properties in Lemma 4.2 and Lemma 4.3.

Lemma 4.1. There exist two constants c¢1,c9 > 0 (that do not depend
on N) such that

(8) Bljon? < e,

(9) Ellun|® < &

for alln € {1,2,...,N} and
T

(10 B [lon @)t < e,
0
T

(11) B [ Ien@lRde < cs
0

for all natural numbers N.
Proof. Let n € {1,2,..., N}. Using (4) we obtain
(1 + ahn)||vnl® + (e Azp, v )by =
= ('U,n_]_, 'Un) + (e—‘atn_lf(tn—17wn—-1)a 'U'n.)hN
for a.e. w € Q. Using hypothesis (Hj3), we then get
(€7 Az, vn) + allonl® 2 arlloall + (a — a2)lva|l?,
(we choose a > az), so (12) becomes

lonll* + axllonll Ay < (un—1,vn) + €% (f(tn—1, Tn—1), va) -

Then by the Schwarz inequality and elementary calculus we obtain

(12)  Zllval? + aallonl e <

1 1 _ L 1
< Sun—|)® + 2¢ 1| f (1, Tn—1) || PR + §anl|2hN-

In addition, from (5) we get
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Bllynal* =Ellzn-1? + Bllg(ta-2,2n-1)(wa-1 — wa-2)|*+
+2B ((9(tn-2, 1), Bn—1) (Wn-1 = Wn_2) )

for n > 2. Taking into consideration the properties of the conditional
expectation and of a Wiener process, on the one hand, and the F;__,-
measurability of z,,_1, on the other hand, we obtain

(13)  Ellun-al® = Ellvn-a|® + hve 1 Bllg(tn—2, zn-1)[|*.
Since f and g are Lipschitz continuous, one can show that

(14) e B f(tn-1,2n-1)|* < Br(1+ Blloa-a]?)

(15) e 21 Bllg(tn-2, Tn-1)[|* < k(L + El|va-1]?),
where k; is a positive constant that does not depend on N.
From (12), (13), (14) and (15) we obtain

1

EE”UTL”z + alhnE”Un”%/ <
hn

2

Summing from n =1 to n = p, where p € {1,2,..., N}, we thus have

1
< 51*7I|Un—1||2 + kb + kihn Elvn—1|* + == Ellva|®.

1 D
(16) S Ellvpll* + arhn > Elully <

n=1

1 | 1 3
< (5 -+ kth) EH’U()“2 + kT + (5 -+ kl) hn Z E”vrsz'

n=1
Hence
1 , 1 1 £
—2—E|]vp}|2 < (5 -+ k1T> E|| Xo|| + k1T + (—2— - k1> han_:lEanHZ.
Applying Gronwall’s Lemma we obtain

Ellv,|? < <<—;— + le) E|| Xo|* + k1T> ek2T for allp € {1,...,N},

where kj := 1+k;. These inequalities, (13) and (15) imply the existence
of a positive constant ¢; (that does not depend on N) such that (8) and
(9) hold.

From (16) (for p = N) and (8) it follows that
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N
1 1
alhn E E”’Un”%/ S (5 + k1T> E“Xo“2 -+ le -+ C1 <§ + kl) T.
n=1

Hence there exists a positive constant k3 (which does not depend on
N) such that

T
E/ low (8)13dt < ks,
0

for all natural numbers N and so by the definition of 9 we have

T T 1
E/HSEN(t)H%,dt < ezaTEﬁwN(t)“%/dt < ezaTk&
0 0

Hence, (10) and (11) are proved. ¢
Lemma 4.2. There ezist & € L3 (Q % [0,T]), @ € | and o subsequence
(N') of (N) such that

Uyt — U, Iy — 2 in ﬁ%/(Q X [O, TD,

where () = e®o(t) for a.e. (w,t) € Q x [0,T), as soon as
dye =19 in LH(Qx[0,T]),

an(T) =4, wT) =4 in  LEO).

Proof. By Lemma 4.1 and by Prop. 5.1 from the Appendix there exist
9 € L3(Q2 % [0,T]) and a subsequence (N') of (N) such that 9y — 9
in £3 (2 x [0,T]). As for (13) it can be shown that

17)

Ellun—v,|? = hne 2% B|lg(ta_1,z,)||?, for all ne {1,2,...,N},
from which with (15) we get

T N
B[l () = o (Ol < kuty S0+ Blunl?),
0 n=1
Together with (8) this inequality yields
T
B [l (t) — o (o)t 0,
0

s0 4y — 9 in the space £L%(Q x [0,T]). Note that the inequality
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(18) 0< (1—e%)" <622
holds for all s,6 > 0. Using this inequality we can write

T T
B [llon() - eon(Olfydt < a?e T E [low (0l
0 0

so in view of (10) we have
T

(19) B [ ow(0) - o)yt .
0

Hence Zn+ — £. In view of (9) we have
Ellan(T)|I* = Elluy|* < 1

for each natural number N. By Prop. 5.1 there exist 4 € [ and a
subsequence (N"') of (N') such that (4n~(T)) converges weakly to @ in
the space [. From (17) it follows that E||anx(T) — 9n(T)||? = 0. As a
consequence we have

dne(T) =@ in LH(Q).
For simplicity we will denote the subsequence of indices (N"’) obtained
above also by (N'). 0

Lemma 4.3. There exist B € £L2.(Q x [0,T]), F,G € £%(Q x [0,T])
and a subsequence (N"') of (N') such that

(i) By (t) = B(t), e ™ Aznn(t) = B(E) in L. (2% [0,T]);
(il) Fnn(t) — F(t), e_a‘tf(t, Znu(t)) = F(t) in ﬁ%I(Q x [0,T));
(i) Gun(f) — Gt), e=tg(t, ann(t)) — G(t) in L4(Q x [0,T)).

Proof. We can write

T T
B[ ()|t < B [ 1an(ozae.
0 0

From hypothesis (H3) and from (11) it follows that (By) is a bounded
sequence in the space £2.(22x[0,T]). Since V is continuously embedded
in H, there exists a positive constant ¢ such that

(20) vl < c|lv||ly forall veV.
By using (14), (10) and (20) we obtain
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E/HFN(I?)szt < kll(T + E|IX0H2) + CklE/||’l7N(t)H%/dt < kg,

where k4 is a positive constant that does not depend on N. By using
(15) and (10) we see that

E / 1GN (®)|Pdt < kiT + ko E / o (B)|[2dt < ks T + ceky.
0 0

In view of Prop. 5.1 there exist B € £%.(Q x [0,T)), F,G € £L%(Q x
x [0,T]) and a subsequence (N") of (N') such that (By~) converges
weakly to B in L3, (2x[0,T]), (Fn~) converges weakly to F and (Gyn)
converges weakly to G in £%(2 x [0,T]). We also have

E/ 1By (t) — e~ Agw (1)|2dt < a2 TR, B / 1Az x (2)] 24,
SO from hypothesis (H3) and from (11) we obtam

B / 1B (s) — e Az (£)|2dt — 0.

Thus
e_at.A.'i'Nu(t) — B(t) in £3 L(Q x [O,T]).
From (4) and (5) we obtain
Tp — Ty =(1 —e 9N — ahNe_“hN)a;n — hye " Az, +
+hn f(tn—1,Tn-1) + 9(tn—2,Zn_1)(Wn—1 — Wp—3)

for all n € {2,3,...N}. Taking into account Lemma 4.1 and (8),(14),
(15) and (18), it then follows that

E||Zn — Za-1]? < hnks + | Az,|2,  forall ne{1,2,...,N}

(ks is a positive constant that does not depend on N). Now by using
(14), (8), (18) and (H,4) we obtain

B[ 1F(t) = =26, aw (O < hucks + 2D | Az ()2

(ke is a positive constant that does not depend on N). Taking into
consideration (11) and hypothesis (H3) we conclude that
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E / 1w (8) — e~ £ (£, () 2dt = 0
0

and hence ,
e_atf(t, Zyn(t)) — F(t).
Taking into consideration (15), (10), (18) and (Hj), we have

B / G () — e=tg(t, 2 ()2t < 202K ko B / o (8)|[2dt + B ke

for each N (k7 is a positive constant that does not depend on N). So
we get

B / G (£) — e=®tg(t, 2 ()] 2dt — 0

and hence
e~ %g(t,Enn(t)) = G(t). €

The results from Th. 3.2 are contained in the following theorem,
that gives us the proof of the main result of the paper.

Theorem 4.4. There ezists a Fi-measurable process (X (t)) 017 with
telo,

X=& in  L%(Qx][0,T)),
such that the following assertions are true:
(i) For allt €[0,T),v €V and a.e. w € 82 it holds

(21) (e X (t),v) = (Xo,v) — /t( ds - /t v)ds+

+ [(F(s) v)ds + /

0

and (X (t)) has in H continuous trajectories.
tef0,T]

(ii) There exists a subsequence of (Zn) that converges strongly to X
in L£2,(Q x [0,T7).

(iii) There exists a subsequence of (Zn(T)) that converges strongly
to X(T) in L%().
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(iv) The process X is with probability 1 the unique solution of prob-

lem (Pq).
(v) The whole sequence (Zn) converges strongly to X in L3 (Q x
X [0,T]) and the whole sequence (Zn(T)) converges strongly to
X(T) in L%(Q).
Proof. (i) We will now denote the subsequence of indices (N"') obtained
from the previous lemmas also by (V). From (4) and (5) we conclude
that ‘

Up + €7 % (A, + azn )y =Un_1 + e~ %=1 f(ty 1, Tp_1)hn+

: +€_at"g(tn—1, $n)(wn - wn—l)
for each n € {1,2,...,N}. Let ¢t € [0,T[ be arbitrarily chosen. Then
there exists a ¢ € {1,2,..., N} such that ¢t € [{4—1,t,[. Summing up
fromn=1to n=q we get
' tq tq

ﬁN(tq)+7BN(s)ds+a/ﬁN(s)ds:Xo+/FN(s)ds;i—7GN(35dw(s).
0 0 0 0

Using notations (7) this equation can be rewritten as
¢ t ¢

(22) i (1) :Xo—/ By (s)ds—a / z‘zN(s)ds+/ Fy(s)ds+

0 0 0

4 / G (s)dw(s) + i (t) + 3 (2) + r () + 7 (),

N tn N tn
ry(t) = — Z I.(t) /BN(s)ds, ri (t) = ZIn(t) /FN(s)ds,

tn

N tn N
) =3 1) / Gn(dw(s), () =3 1) / i (5)ds.

t
We note that

T T
E/ Ik (912t < hNTE/ 1A% (8) |2,
0 0
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T T
B[ Ik Ol < wTE[ | Ew )|
0 0
T T
B[ Ir(0)?dt < B |G (o),
0 0

T T
E|[ ||Ir%@®)]%dt < hnTE [ ||on (t)||?dt.
[z ]

Therefore we have especially %, — 0 in £2.(Q x [0,T]), as well as
ra — 0,73 — 0 and 7% — 0 in L% (Q x [0,T]).

We take into consideration the weak convergences in Lemma 4.2
and Lemma 4.3, use Cor. 5.4 and pass to the limit in (22) when N — oo

to obtain
t

e~ 2(t) = Xo ~/tB(s)ds—a/tf)(s)ds-l—/tF(s)ds—t—/G(s)dw(s)
0 0 0 0

for a.e. (w,t) € Q x[0,T].
There exists a {Fi|t € [0,T]}-measurable process (X (t))
such that

(23) e *X(t) =

t€{0,7]

t t

= Xo— /B(s)ds - a/t@(s)ds+/F(s)ds+
0

0 0

G(s)dw(s)

o .

for all t € [0,T] and a.e. w € £, and for which
Z(w,t) = X(w,t) forae (w,t)eQx[0,T], in Ly (Qx[0,T]);
(X (t))te[o, considered as a H-valued process is continuous (see [11],
Th. 2, p. 73). But from Lemma 4.2 we have
8(s) = e~ %%(s) ae. (w,t) €N x[0,T).
Therefore
(24) #(s) = e ¥ X(s) ae. (w,t) € Qx][0,T].
(ii) Applying the Ito formula to (23) we get
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T
(25) BleX(T)|* = E|Xoll* - 28 [ (B(s),e=** X (s))da
0

t T T
~2 / (9(s), e~ X (5))ds2E / (F(s), e~ X (5))dstE / 1G (5)|2duw(s).

0

Next we set t =T in (22). Thus
T

T T T
an(T) = XO—O/BN(s)ds—aO/vN(s)ds—l—O/FN(s)d.?—f—([GN(s)dw(s).

Using Lemma 4.2, Lemma 4.3 and Cor. 5.4 and passing to the limit
when N — oo we obtain

T

T T T
ﬂ:X0~/B(s)ds—a/f)(s)ds+/F(s)ds+/G(s)dw(s)
0 0 0 0
for a.e. w € Q. Taking into consideration (23) we have

(26) i(w) = e T X (w, T) for a.e. we Q.

In Lemma 4.2 we proved in(T) — 4 in £%(Q). It follows from Prop.
5.2 and (26) that

(27) Elle™"X(T)|? < lim inf E|ox (T)||*.

Put
§ = limsup E|[on(T)||* — Elle™*" X (T)||
N—oo

From (25), (26) and (27) we obtain
(28)

T T
5+E|| Xo|)* - 2E/(B(5), e~ X(s))ds — 2aE/(7§(s), e~ X (s))ds+

T T ,
2B [ (P(s), e X (5))ds + B[ l66)Pds < i sup Bfox(7)

and from (5), (12) and (13) we get
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(1 + 2ahn) Eljvn? + 2E{e=" Az, vp) by < El|va_1]*+
+2E(e——atn_lf(tn—1y zn—l)a 'Un)h'N + EHe_atn-lg(tn—Zy mn—-l)HZhN
for each n € {2,3,..., N}, with

(1 -+ 2ahN)EHv1||2 -+ 2E(€—at1.A.’E1, ’U]_)hN <
< E”XO”Z -+ ZE(B_atOf(to,Io), ’Ul)hN

in the case n = 1. Summing these relations from n =1 to n = N, we
obtain

09)  Blon(D)I SEIXol? - 25 [ (Bu(s),on(s))ds—
T . T T
_%E / 6 (5) | ds+2E / (FN(s),ﬁN(s))ds-{—E'/ G (5)[12ds.
0 0 0

In the proofs of Lemma 4.2 and Lemma 4.3 we have seen that

E/|]e N(t) - 'UN(t)H2dt 0,
B / 1By (£) — et Az (£)[12dt = 0,
E/HFN(t) — e % f(t,in(2))]|%dt — O,

E / G (6) — e *g(t, & (£))|%dt — 0

for N — oo. Consequently,

T T
. ~ P TEET _at s N
]}%E/uw(t)n dt—l\}l_r)réoE/(e 20 (1), v (£))
0 0
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T T

lim E[(Bn(t),on(@))dt = lim E[{e”®Azn(t), On(t))dt,
N—o00 N—ooo
0 0

T T
Jim I / (Fi (), o (t))dt = lim B / (e~ F(t, & (1)), by (),
0 0

T T
lim Eﬁ|GN<t>n2dt= lim E/ le=2tg(t, &x (1)) 12t
N—oo N—oo

0 0

In these equalities we have omitted writing limsupy_,,,, because all
the above sequences are bounded and thus a subsequence can always

be found that is convergent and for which we can use the same notation.
From (28) and (29) it follows that

T T
(30) 6—2E / (B(£), e~ X (£))dt — 20 / (0(2), e~ X (£)) i+
0 0
T T
128 [(F(), et x 0))dt + B [ |G()|2dt <
/ /

T
< -2 lm E/ (€= A (£), D (£)) dt—
N—oo
0

T .
—2a lim E[(e”“#n(t), in(t))dt+

N—oo
0
T
+2 lim E[{e”®f(t, Zn(t)), On(t))dt+
N—=oo
0

T
+ lim E/ le=2tg (¢, 2 ()| 2dt.
N-—o0
0

Let L be the right part of this inequality. Further, for each natural
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number N we put

T
Ly = —2E / =2t ( Az (t) — AX (), 3n(t) — X (£))dt—

0

T
% / e=20 15 (1) — X ()| Pdt+
T

+28 [ 7204t 8a(t)) — £(6, X (), 2(0) ~ X ()b

T

+B [ g(t,an(0) — 6, XO)]"di+

T .
+aiE / 2% 150 (8) — X (8)| B dt.

We claim that
(31) Ly <0 for all natural numbers N.

Indeed, from hyothesis (H3) we have
T
_oE / =204 A (t) — AX(£), Bn(8) — X (£))dt <
0
T T
< 20, / =223 () — X (2)|[%dt + 22 / e=20t 15 (1) — X (1)|dt.
0 0

The Lipschitz continuity of f and g implies that

T
25 7204t e (t) — £ (8, X (), 2(0) — X ()t <

T
<a+PE [ e lan() - X@) P,
0 : .
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T T

B &gt 2 (0)) - o(t, X ()|t < o5 [ lante) - x)Pat
0 0

S0

T
Ly < (26 +1+ 2a; — azc - 20)E / 2% @ n (1) — X (2)||2dt,
4]

(where c is the positive constant that appears in (20)). For a convenient
choice of a (i.e., such that 268+ 1+ 2as —ajc—2a < 0 and @ > az), we
obtain Ly < 0. Next note that

T T
Jim Ly =L+2E /(B(t), e”“X(t))dt — 2FE / (F(t),e” ™ X (t))dt+
- 0 | 0
(32)  4E / (e%g(t, X (£)) — 2G(2), e~ g(t, X (£)))dt+
0

T T
+24E / (0(2), e X (£))dt + ay lim E / 2 an (1) — X(8)[[2dt.
N—=oo
0 0
From (30), (31) and (32) it follows

T
5+ E/HG(t) ~e"%g(t, X (1)]>+

T
t+ay lim E/ 23 (1) — X ()2 dt < 0.
N—co
0

This inequality implies § = 0,
(33) e"%g(t, X(t)) =G(t) for ae (w,t)eQx]0,T],

and
T

(34) lim E[e 2 2n5(t) — X (£)]|2dt = 0.
N—o0
0

From (34) it follows that 2y — X in £2( x [0, T]). We mention that
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(2n) here denotes a subsequence of the original sequence ().
(iii) Since 6 = 0, we have
E|on(T)|* — Elle™* X (D)|1*.

By using Lemma 4.2 together with relation (26) and Prop. 5.2, it follows
that o (T) — e~ °TX(T) in I. Therefore £y (T) — X (T); (:L'N(T)) de-
notes here a subsequence of the original sequence (Zn(T')). (iv) Taking
into consideration the conclusion (ii) of this theorem and the Lipschitz
continuity of f, we have

e~ F(t, BN (L)) — e f(t, X (1)) in LEH(Qx[0,T]).
From Lemma 4.3 it follows that
(35) e f(t, X(t)) = F(t) for ae. (w,t)€Qx][0,T].
Next we show that
(36) e AX(t)=B(t) for ae (w,t)€Qx[0,T]

From the monotonicity of A we have

E / (e~ (Azn(t) — Ay(t)), En(t) — y(B))dt > 0

for all y € £23(Q x [0,T]). Passing to the limit when N — oo, using
Lemma 4.3 and conclusion (ii) of Th. 4.6, we get

(37) B / (B(E) — et Ay(8), X (£) — y(£))dt > 0

for ally € £2,(2x[0,T)). Let J : V — V* be the duality map between
V and V*. From the properties of this map (see [12], Prop. 32, p. 861)
we can write

(38
T

E/e““t(jX(t)—Jy(t),X(t)—y(t))dt >0 forall ye L£%(Qx][0,T]).

The map (A+J)~!: V* = V is well defined and is a demicontinuous,
maximal monotone mapping (see [12], Cor. 32.30, p. 882). Using the
Enm)lotonicity of A and the properties of J it can be shown that

39

|(A+T) " Hz) = (A+T) " H(z2)llv < llzr—zellve forall z,2z € V™

Hence (A + J)~! is a continuous function and in view of (39), we can
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write
T T

o) B [ A+ ) @)t < B [ IR+ A+ 20,
0 0

for all b* € L£2. (2 x [0,T]) (0* is the zero element in L. (Q x [0, T])).
Hence (A + J)71(b*) € £3(Q2 x [0,T)), if b* € LZ.(Q x [0,T]).

Let Z(t) = X(t) — (A+ J) YT X(t) + e**B(t)); from (40) we
conclude that Z € £2(Q x [0,7]). Relation (36) holds if we can prove
that Z = 0 in the space £2,(Q x [0, T]). For this end we consider

(41) Yi(t) = (A+ )" NI X () + e®B(t) + TZ(t)),

which is obviously an element from £% (2 x [0, T]) (we use (39). In (37)
and (38) we put y = Y; and add up these two relations and obtain

T

(42) E / e (e B(t) + T X (t) — AYy(t) — JY1(t), X (t) — Ya(t))dt > 0.
0

This implies

T

_E / =9t (TZ(8), X (t) — Yo(£))dt > 0
0
and then
T T
E / e (TZ(t), Z(t))dt + B / e~ (T2 (L), Yolt) — Ya(6))dt < 0.
0 0
On the other hand the monotonicity of (A + J)~! and (41) imply
i
B[ 747 2(6), %o(t) - Yi(e)ie <.
0
Therefore

E / (T Z (), Z(t))dt < 0,

which imply Z(t) = 0 for a.e. (w,t) € Qx[0,T]. Consequently, relation
(36) holds. |
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Finally, from (33), (35), (36) and (21) it results that
¢ ¢
e X (t) = Xo — /e‘“s (AX(s) +aX(s))ds + /e““sf(s, X(s))ds

0 0
t

+ [ e g(s, X ()du(s)
0
for all ¢ € [0,T] and a.e. w € . By the equivalence between the
problems (P; ) and (P32) it follows that X is solution of (Py).
In order to show the uniqueness of the solution of (Py), we assume

that (X (t))te[O,T] and (Y(t)>te[0,T] are two solutions of (Py). Let t €

€ [0,T] be fixed for the moment. Then by the Ito formula it follows
that

B|X(t) — Y@)|2 = —28 / (AX(s) — AY (s), X (s) — ¥(s))ds-+
28 (£(5,X(5)) = (5, Y(5)), X(5) = Y (5)ds+

+E / lg(s, X()) — g(s, Y(s))|%ds.

Since A is monotone and f, g are Lipschitz continuous, we have
t
EX(@) -Y I < 26+ 1)E/ 1X () - Y (0t
0

so by applying Gronwall’s Lemma it follows that

EIX () -Y®)|*=0.
Hence X (t) = Y(t) fora.e. w € Q. But X and Y have continuous
trajectories in H and so

P( sup |X(5)~Y(®)*=0) =1,
t€[0,T]
which means that (P;) has with probability 1 a unique solution.
(v) Let (Zn) be an arbitrary subsequence of the original sequence
(£n), such that (&) converges weakly to a function z € L2 (Qx[0,T)).
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Repeating the argument of all results contained in Lemma, 4.2 up to Th.
4.4-(iv) for this subsequence, we conclude that z is a solution of (P1).
From the uniqueness of the solution of problem (P1) we obtain z = X.
Thus all weakly convergent subsequences of (£n) have the same limit
X. By Prop. 5.1 it follows that (£n) converges weakly to X.

Let (Zn/) be a subsequence of the original sequence (Zy). All
results contained in Lemma 4.2 up to Th. 4.4-(ii) (applied for (&n) in
the space £Z,(2 x [0, T])) imply the existence of a subsequence of (Z )
that converges strongly to X. Thus each subsequence of (£n) has a
subsequence that converges strongly to X. Using Prop. 5.1 it follows
that the original sequence (& N) converges strongly to X.

Reasoning as in the proof of the strong convergence of (Zy) to
X in the space £% (2 x [0,T7]), it also can be shown that the whole
sequence (2n(T")) converges strongly to X (T) in I. ¢

5. Appendix - Some convergence principles

Proposition 5.1 ([12], Prop. 10.13, p. 480). Let (z,) be a sequence
in a Banach space S. Then the following assertions hold:

(i) If S is reflezive and (z,) is bounded, then (zn) has a weakly
convergent subsequence. If, in addition, each weakly convergent subse-
quence of (t,) has the same limit z € S, then (zn) converges weakly
to x.

(ii) If every subsequence of (zn) has a subsequence that converges
strongly to the same limit © (where z € S), then z, — x.
Proposition 5.2 ([12], Prop. 21.23, p. 258). Let (zn) be a sequence
in a Banach space S. :

(i) If (zn) converges weakly to z (where z € S ), then (z,) is
bounded and

Nlzlls < lim inf ||z, |s.
n-—+00

(ii) If S is locally uniformly convez and the sequence (zn) satisfies
Tn =z and ||z,]|s — ||z]|s (where z € S), then z, — .
Proposition 5.3 ([12], Prop. 21.27, p. 261). Let S; and S, be Banach
spaces and let L : Sy — Sy be a continuous linear operator. If (z,) is a
sequence in Sy such that T, — z (where z € Sy ), then L(z,) — L(x).

By applying Prop. 5.3 we obtain the following corollary.
Corollary 5.4. If S is a Banach space and if (zn) is a sequence from
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L%(Q x [0,T)) that converges weakly to T € L%(Q x [0,T]), then

(i) {tmn(s)ds — {taz(s)ds, jmn(s)dw(s) — Oftm(s)dw(s) in L%(Q x
x [0,T7);

T T T T
(ii) {mn(s)ds — {m(s)ds, ‘Ofmn(s)dw(s) — {x(s)dw(s) in L%(Q).
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