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1. Introduction

In control theory the Malmquist-Takenaka systems (®3,n € N*)
[6], [10] are often used to identify the transfer function of the system
[1], [2], [3]- This orthonormal system is generated by a sequence a =
= (a1, as,---) of complex numbers a, € D (n € N* := {1,2,---}) of
the unite disc D := {z € C : |z| < 1} and can be expressed by the

Blaschke-functions

z—0b
1.1 B = - beD,ze€C).
(1) W2) =2 (beDzeC)

Namely (see [4]) the systems &, = ®% (n € N*) in question are defined

1—aq]
i) = 1—51; ’
(1.2)
1_|an
\/1:1—[30.1; (ZEC,’H,:2,3,)

The Malmquist-Takenaka functions form an orthonormal system
on the unite circle T := {z € C: |z| = 1}, i.e.

1

27
1 / B () B (e®) dt = 6o (mym € NY),
0

(@n,@m> = o

where 0, is the Kronecker symbol (see [3], [4]).

In the special case if a, = b (n € N*), then ®2 = L2 (n € N*) is
the discrete Laguerre system, and if asg—1 = a,a9x = b (k € N*), then
(®2,n € N*) is the Kautz-system, investigated in [2].

If b belongs to D then By is a 1—1 map on D and on T, respectively.
Moreover (see [2]) By, can be written in the form

(1.3) By(e't) = eP® (1R, b=re" €D),

where

Bo(t) == 7+ s(t — 1), 7s(t) 1= 2 arctan (s tan %)

<te (=, 1)), 5 := 1:’:)

and ;s is extended to R by ,(t + 27) = 27 + v,(¢) (t € R).
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Thus the product H;VZI By, is of the form
N
(1.4) H “5 = t(Bay (B)+++Bay () teRN=1,2,---).

This imphes that the solution of the equation

Z—Qa1 Z—Aa9 Z2—an

=1

1—-08:121—as2 1—anz
can be written as
(15)  wp =€, t:=03"Cn(k-1)/N) (k=1,2,---,N),
where 05" is the inverse of the function

(16) 0N = B+ fan(t) (EER)

We introduce the weight function py by

(1.7) le”‘]aﬂz z€T, N=1,2,--+)

PN(Z 1 —agz|?
nd set
)
Ty =Ty = {05'@n(k—1)/N) : k=1,2,--- ,N} (N=1,2,---).
Theorem 1. The finite collection of the functions ®, (1 < n < N)

form a discrete orthonormal system with respect to the scalar product
(1.9) [F,GIn := Y F(2)G(z)pn(2),
z€T N

namely

[@mq)m]N =0mn (1<m,n< N).

In this paper we show that the points of T%; are closely connected
with an electrostatic equilibrium problem.

2. The equilibrium condition

For any complex number z € C set 2* := 1/Z and introduce the
polynomials
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N

(2.1) wi(2) H(z —ak), wa(2):= kl:[l(l — Gx2),

w(z) = wl(z)wg(z) — wy(2)w1(2) ) (z € C).

It is clear that w is a polynomial of degree 2N —2. We show (see Lemma
1.) that if ¢ € C is a root of w then ¢* is also a root of w with the same

multiplicity. Denote by ¢y,c}, -+ ,cs, c; the pairwise distinct roots of
w with the multiplicity vy, vy, , Vg, Vs.
Theorem 2. The numbers z, := w, € T} (n=1,2,---,N) are the
solutions of the equilibrium equations

N .

Z z “Z<2z’—c I;jz —1—c*)
(2.2) k=1k#n " mT no

(n=1,---,N).

The points of T, can be interpreted as a solution of the fol-
lowing electrostatic equilibrium problem. If N unite "masses” at the
variable points 21, 29, - , 2y € T and —v1 /2, —v1/2,- -, —vs/2, —vs/2
fixed mases at the fixed points c1,c], - ,cs,C}; are given then z; =
= wy, - ,2y = wy is the equilibrium position of the electrostatic
forces in question.

We remark that the zeros of Jacobi, Laguerre and Hermite polyno-
mials admit a similar interpretation (see [9], pp. 140, 153).

The roots of w are described in the following
Lemma 1. Denote a1, as, - ,a, the pairwise distinct roots of wy with
the multiplicity my, ma,---,m,. Then w is of the form

=) [[(-e)™ 7 (1 -a2)™ " (2€0),

where

m@—zmwwM)H (z=a;)(1-a;2) (2€C)

j=1,j#k

is a polynomial of degre 2r — 2. Moreover, if ¢ is a root of 2 with
multiplicity m then c* is also a root of ) with the same multiplicity.

In the case of discrete Laguerre functions a1 = a3 =---=any =b
and consequently
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w(z) = N[(z—-b)N 11 -b2)N + 5(1 ~bz)V (2 - b)N] =
= N1 —|b*)(z - )N 11 - b))V,

Thus the roots of w are b and b* with multiplicity N —1 and we get the
next claim proved in [6].

Corollary 1. The numbers wy = €™ (7, := By '(2n(k — 1)/N),
k=1,---,N) are the solutions of the equilibrium equations

N 1 N—l( 1 1 )
2 = +
w 2

— _— — *
ke L on T W Wy —b  w, —b
(n=1,---,N).
In the case of Kautz system a; = a3 = -+ = aan_1 = a € D,
az = ---=agny = b € D and consequently

w(z) = U2)[(z — a) (z — b)(z — a*)(z — b")]V Y,
Q) = N[(1 = |a|*)(z = b)(1 = b2) + (1 = [p*) (2 — a) (1 — a2)).

Denote ¢ and c¢* the roots of the polynomial Q.

Corollary 2. Let 05(t) := (Ba(t) + Bs(t))/2 be the argumentum trans-
formation corresponding to the Kautz system. The numbers wy = '™

(6 == Opn(n(k —1)/N), k = 1,2,---,2N) are the solutions of the
equilibrium equations

1/2 1/2
2o, 2
Wy —C  Wp—C

N-1( 1 1 1 1
+ + + + =

2 Wp—a Wp—a* w,—b w,—b*
2N 1
= > (n=1,2,---,2N)
k=1k#n o~ Wk

3. Proofs

To prove Th. 1 we use the following closed form of the Dirichlet
kernel of the system @, (n € N*).
Lemma 2. The Dirichlet kernels of the system ®, (n € N*) can be
written in the closed form (see [4])
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1- Hj.v_'__l B, (2)Ba, (w) |

1—zw

: N
(31)  Dn(z,w) =) Pk(2)Pk(w) =
k=1

Proof of Lemma 2. We show (31) by induction with respect to V.
For N =1 we have
1— B, (2)Boy, (w) _ (1 -a12)(1 —a1%) — (2 — a1)(@ —a1) _

1—-z2w (1 —a12)(1 — a1w)(1 — 2w)

- jmP)a-ew)
(1 —a12)(1 — a1w)(1 — 2zw)

and (3.1) holds for N = 1.
Suppose that (3.1) is true for N. Then by (1.2) and (3.1)

1-TIiL, Ba,(2)Ba; (w)

= 91(2)®1(w)

D =
(7 w) 1-zw *
. N 77N
(1 —lans1|*) [Tj=y Ba;(2)Ba; (w) 1~
(1 - EI,N_{_lZ)(l - O,N+11T)) 1—zw

_ 2 _7(1—5N+1Z)(1—GN+1?I’)—(1‘275)(1"‘|aN+112) =
HBaj( )Baj( ) (1—zzD)(1—ﬁN+1Z)(1“'aN+1m)

Jj=1
1—zw

1=, Ba,(2)Ba,(w)

and (3.1) holds for N +1. ¢
Proof of Theorem 1. By (1.2) and (1.7) °

lag|? 1
Z |‘I)k(z Z [1 _ a:z|2 ~ on(z)’

Set
Ukg = (I)k(’wg) pN(wg) (1 <k t< N)
In the case j # £ by (1.4), (1.5), (1.6) and (3.1)
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N N
> wngiig = \fow (wy) v (we) 3 B (w;) Tlwe) =

1 — e2miN(On (t;)—0n (te))

= \/PN(wj)pN(wlf) =

l—wj'uTé

\/ 1 — 2mi(i—4) 0
=\ pr(wj) o (we) ————+ o O

Obviously for 7 = £ we have

N
Z Ugilge = 1.
k=1

Thus
N
Zukjﬂke =652 (1<j,£<N)
k=1

and consequently the matrix U = [ukg]{:: s is unitary. This fact, (1.7)
and (1.9) imply

N

Zujkm: (@5, Pelny =05 (1< G, €< N)

k=1
and Th. 1 is proved. ¢
Proof of Lemma 1. To prove Lemma 1 we introduce the following
notion. We shall say that the polinomial P of degree n is an inversion
polynomial if for every 2 € C, z # 0

P(z*) =z "P(2)
is satisfied.
Obviously
Qu(z) :=(z—a)(1—az) (z€C
is an inversion polynomial. Indeed

B L R

z

It is clear that if ¢ is a root of an inversion polynomial P and
0 # ¢ € C then P(c*) = 0. Moreover, the multiplicity of ¢ and ¢* is the
same.
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Observe that if ¢ is a root of the inversion polynomial P then for
the polynomial P/Q. we have
P(*) _ (-2 PG
Qc(z*) Qc(z)

and consequently P/Q. is also an inversion polynomial. This implies
that the roots ¢ and ¢* have the same multiplicity.
We show that €2 is an inversion polynomial. Indeed

*)~—ka 1— |ax/?) H Qa; (2) =

j=lj#k

— 5—2(r— 1)ka1_|ak|) H Qa

i=1,j#k

— _ 5—2(r— 1)Q( )

Thus Lemma 1 is proved. ¢
Proof of Theorem 2. Denote
N-1

o(2) = [[ 7L ~1 (2€0).

1—az
§=0 7

By (1.1), (1.3), (1.4) and (1.5) it is clear that ¢(z) = 0 if and only if
? = wy 1= ek, by, .= 05" (2n(k —1)/N) (k=1,---,N). Set
3.2)

=

F(z) = ] | (2 —wg),
k=1
N N .
g(z) == H(z —aj) — H(l — 8j2) =t wi(2) — wa(2) (z € C).

The polynomials f and g have the same degree and roots, therefore
f = Ag with a constant A € C.

It is easy to see that

N

(3.3) lg”(wn) — lf”(wn) — Z —1_ (n =1,2,--- ,N).

2 g (wn) 2 [wn) L, Wn—

By the definition of wy,
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N

(3.4) I1 le C_;Zjn - ::EZ}’:; =1 (n=1,---,N).

j=1
On the other hand by (2.1), (3.2) and (3.4) we get

9" (wn) _ w (wn) — wy (wn) —
9'(wn)  wi(wn) — wh(wy)

3.9

O el ) - oy (w,) _ /()
wa(wn)wi(wn) — wi(Wn)wy(wn) — w(wy)

By Lemma 1 the roots of w are of the form cy,c3,- -+, cs, ck with the

multiplicity vy, vy,--+, vs,v,. Consequently in w'/w every root ap-

peares with multiplicity 1 and thus we have the partial decomposition

w'(z > Aj fij
w((z)) :,Z(z—cj +z—c"-‘>'

j=1 J

Write w(z) = (2 — ¢;)* Pj(z), where P(c;) # 0. Then
w'(z) viPj(z) + (z — CJ)PJ/(Z)

w(z) (2 = ¢;)P;(2)
Consequently
o w'(z) _
A; = zli)nclj(z - cj)m = ;.

In a similar way A; = v; and by (3.3) and (3.5) we get

lg/l(wn)_lw’(wn):i< vi[2 N vi/2 )

2 9'(wn) 2 w(wy)

and Th. 2 is proved. ¢
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