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Abstract: D.H. Hyers and S.M. Ulam [3] (cf. [2]‘, [5]) have proved the
following theorem: If g : D — R (D C R®, D open and convex) is an
e-convex function, i.e.

gtz + (1 —t)y) <tg(z) + (1 —t)g(y) +¢ t€0,1], z,y €D,
then there exists a convex function f: D — R such that

|f(z) —g(z)| < Me, z€D,

where the constant M depends only on n. We consider this problem for

generalized convexity (in Beckenbach sense).

1. Generalized convex functions

In this section we repeat, for the convenience of the reader, two
definitions and two theorem from [1].
Definition 1. A family F of continuous real-valued functions ¢, defined
on an open interval (a, b) is said to be a two-parameter family on (a, b)
if for any distinct points z1,z2 in (a,b) and any numbers y1,y there
exists exactly one ¢ € F' satisfying

olz)) =1y, i=1,2.

Throughout the paper we assume F' is a two-parameter family on
(a,b).
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Definition 2. We say that a function ¢ : (a,b) — R is convex (concave)
function with respect to the family F if for any points a < z1 < z9 < b
the unique ¢ € F' determined by

o(zi) =(z:), i=1,2
satisfies the inequality :

¥(z) 3 pz), zE€lry,ma]. |
Theorem 1. Let @1,y be distinct elements of the family F and let
c € (a,b). If p1(c) = pa(c), then either

p1(2) > pa(z),z € (a,0) and @a(z) < p2(2), 3 € (¢,0)

o1(z) < p2(xz),z € (a,c) and 1(z) > ps(z),z € (c,b).

Theorem 2 (cf. [6]). Let '
a<z? <zy<b and yT,y; be real numbers,
forn=20,1,2,..., such that
0

— 1 n 0 _ 1 n L
z; = lim z7,y; = lim gy, ¢=1,2.
n—oco n—+oo

Let oy, wheren = 0,1,2,..., be the element of F determined by
the relations '

on(z?) =y, 1=1,2.
Then ¢, — @o uniformly on every compact subinterval of (a,b).

2. Generalized convex sets

First we give two definitions and one theorem from [4]. Let A, B €
€ (a,b) xR, A = (z1,41), B = (z3,¥2). If z1 = x5, then

[4,B] == {(z1,9) :y1 <y <92}, v1 < v,
[4, B] :={(z1,¥) 1 y2 <y < y1}, 41 > v
If z1 # x5, then ’
[A, B] == {(z,p(2)) : 21 < & < 22}, 21 < T2,
[A,B] == {(z,0(z)) : z2 < z < 21}, 21 > o,
where ¢ € F is determined by
p(zi) =y, 1=1,2.
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Definition 3. A set D C (a,b) xR will be called convez with respect to
the family F (or briefly F-convex) iff for any A, B € D we have
[A,B] C D.
Definition 4. Let D C (a,b) x R. The set ‘
convpD := ﬂ {U c (a,b) x R:U is F-convex, D C U}

is called the convex hull of D with respect to the family F.
Theorem 3. Let D,Dq,D; C (a,b) x R. Then

1. if D is F-convex, then int D and cl D are F-convez,

2. D CconvgD,

3. convrD is the smallest F-convex set containing D,

4. D 1is F-convez set iff D = convpD,

5. if D1 C Dy, then convp Dy C convgDs.

The Carathéodory theorem is well known in the theory of convex
sets. Now we give a similar one. Let D C (a,b) x R and let

D, :=D,Dy:=U{[A,B|: A,B€ D}, D3 :=
.= U{[4,B]: Ae D,B e D,}.

Theorem 4. convpD = D{UDyUDs3.

This theorem asserts that any point of the set convpD is a ”com-
bination” of at most three points from D.

To prove this theorem we need the following two lemmas.
Lemma 1. Let A,B € Ds. Then for every C € [A, B] there exist
A € Dy, B € D3 such that C € [A, B].

Proof. Let A,B € D3,C € [A,B] and let A= (z4,y4),B = (zB,yB).
Without loss of generality we may assume that A # B. We consider
two cases:

l. z4 # zB,
2. xpA =2xp.

1. Let for example 4 <z p. Since A € D3, there exist Ay, Ao, Ag €
€ D and A4 € [A1, Ap] such that A € [A3, A4]. Let ¢ € F be deter-
mined by

| ©(z4) = ya, 90(1»’3) =YB.

Then
[A:B] = {(33, 90(‘77)) x4 Sz < 373}-
It is easily seen that there exists :
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A€ [Ay, A)U[AL, A3 U [Ag, A3], A = (7, %)
such that Z < z 4, p(Z) = 7. Hence we have
[A,B] = {(z,0(z)): z <z < zp}.
and, as simple consequence, [A4, B] C [A, B]. Since A1, Az, A3 € D, we
have
[A1, A2] U[A1, A3] U [As, A3] C Ds.
Therefore A € Dy. Consequently C € [A, B] and A € Dy, B € Ds.
2. In this case y4 # yB, because A # B. Let y4 > yg. Then
[A,B] = {(z4,y) 1 yB <y < ya}.
Let A, Ay, A3, A4 be as in the case 1. Analysis similar to that in the
case 1 shows that there exists

Ae [Al, Az] U [Al, A3] U [Ag,Ag],A = (57, ﬂ)

such that Z = z4,J > ya and [4, B] C [A, B]. Therefore C € [A, B]
and A € Dy, B € D3. This proves the lemma. ¢
Lemma 2. Let A € Dy, B € D3. Then for every C € [A, B] there
ezxist A€ D, B € D3 such that C € [4, B].
Proof. Let A € Dy,B € D3,C € [A,B] and let A = (z4,y4),B =
= (zB,yB), C = (zc,yc). Since A € Dy and B € D3 there exist
Al,Ag,Bl,Bz,B3 €D and By € [Bl,Bz] such that

Ae [Al,Az],B € ['33,34].
Let A; = (z4,9:),i = 1,2 and let B; = (zB,,ym,),t = 1,2,3,4. Without
restriction of generality we may assume that A # B,C # A,C # B,A; #
# Ag,A# A; and A # A,. We consider the following cases:

1. T4, = z4,,

2. T4, Fxa,.

1. In this case z4 = x4, and ya, # ya,, because A; # As. Let
ya, < yYa,. Then
(1) Ya; <ya <Ya,
(A+# A1, A+# As) and

[A1, A2] = {(z4,9) 1 ya, <y <wa,}.

If £ = zp, then z¢ = z4 and C € [A,, B] (if yo < ya) or

C € [A1,B] (if yo > ya).

Let x4 # zp. Let for example x4 < zp. Then z4 < z¢ < =g,
because C # A and C # B. Let ¢, p1, ps € F be determined by
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w(za) =ya, o(zB) = ¥,
(2) 01(T4;) = Yas, vi(zc) = ye,
(3) 902($A2) = YA, (10(1"0) =VYc,

respectively. It follows from the definition of ¢ and from C € [A, B]
that ¢(zc) = yo. Hence, from (1) and from the definitions of ¢, @1, @2
we have

p(zc) = p1(zc) = p2(z0), p1(za) < p(za) < P2(z4).
Therefore we have by Th. 1,

p1(z) < p(z) < p2(z), T € (a,70),
p1(z) > p(z) > pa(z), € (xc,b).

Set

H:={(z,y):z>zc, ¢2(z) <y <pi(z)}
Obviously, B € H and B € [B3, Bs] C Ds.

If [Bs, By) ¢ H, then there exists G € [Bs,Bal, G = (z¢,¥a)
such that zg > z¢ and ¢1(zg) = ye or wa(re) = ye. This means
that C € [A1,G] and A; € D, G € [Bs, Bs] C D3 or C € [A3,G] and
As € D,G € [Bs, B4] C Ds.

If [33,34] C H, then B3 € H, B3 = (11}3,'y3). Thus
(4) T3 > TC, p2(T3) < Y3 < p1(zs).

Let 3 € F be determined by

(5) p3(zc) =yc, 3(z3) =ys.
From (2), (3), (4) and from (5) we get :
p1(zc) = pa(zc) = p3(z0), P2(xs) < p3(zs) < p1(zs).
Hence
w1(z) < p3(z) < pa(z), =€ (a,zc),
by Th. 1. In particular
¢1(z4) < p3(za) < Pa2(z4).

This means that the point E := (z4,p3(za)) belongs to [A1, As).
Therefore E € Ds. It follows from the definition of ¢3 that

C e [B3,E] and Bz€ D,E € [Al,Az] C Dy C Ds.

2. The proof is similar, so we omit it. ¢
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Proof of Theorem 4. It is obvious that

D =Dy CDyC D3 =Dy UDyUD3 C convgD.
Therefore, if we prove that D3 O convgD, the assertion follows. Since
D C Ds, it suffices to show that the set D3 is F-convex. To do this, we
have to show the following implication

A,Be€ D3 =[A,B] C Ds.

It follows from Lemmas 1 and 2 that we need only consider the case
A€ D, Be Ds.

Let (za,y4) = A€ D,(zB,ys) = B € D3 and let (zc,yc) =C €
€ [A, B]. Since B € Ds, there exist By, By, B3 € D and By € [B1, Bs]
such that B € [Bs, Bs). Let B; = (z;,y;) for i = 1,2,3,4. Without
loss of generality we may assume that By # B, B # B3, B # B, and
A # B.

Let us consider two cases:

1. z3 7& Ty,
2. I3 = T4.

1. Let ¢ € F be determined by
o(z3) =y3, @(z4) = pa.
First, suppose that ¢(z4) = y4. Then ¢(zc) = yc and consequently
C € [A, By U[B, B4] C [A, B4]U[Bs, B4] C Ds,
because B € [Bs, By],C € [A,B] and A, B € D, By € D,.

Now, assume that ¢(z4) # ya. Let for example p(r4) < y4. It
is easily seen that there exists

B € [By,B3]U[B1,By if y1 <,
or
B € [Bs, B3] U [By, Byify; > yo,
such that
B € [A,B)].
Hence [A, B] C [A, B]. Therefore, C € [A,B] and A € D,B € Dy,
because
B1,By, B3 € D and [Bi, By),[B2, B4] C [B1, By).
This means that C € D3.
2. The proof is similar, so we omit it. ¢
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3. Approximately generalized convex functions

As in the case of the usual convexity (see [2], [3], [5]), we may
introduce the definition of the approximately convex function.
Definition 5. A function g : (a,b) — R will be called e-conver with
respect to the family F (e > 0) iff for any points a < 21 < 75 < b the
unique ¢ € F' determined by

o(z;) = g(zi), i=1,2
satisfies the inequality :
9(z) < o(z)+e, =z € [z1,30]
A function g : (a,b) — R will be called approzimately generalized convex
with respect to the family F' iff it is e-convex with respect to the family
F' (for some € > 0).

It turns out that these functions have the same properties as in
the classical situation. We shall start from the following
Theorem 5. Let g : (a,b) — R be an e-convez function with respect
to the family F' (¢ > 0). Then g is locally bounded at every point of
(a,0).

Proof. As an easy consequence of Def. 5 we obtain that g is locally
bounded above at every point of (a, b).

For an indirect proof suppose that there exists an zg € (a,b) such
that g is not bounded below on any right-hand neighbourhood of z; or
on any left-hand neighbourhood of zy. We consider the first case, the
second is similar. ~ :

Let zo < zg < x5 < b and let o € F be determined by

wo(zo) = g(z0), olzg) = g(zg).
By hypothesis and by continuity of ¢, there exists z; € (g, z) such
that

(6) g(z1) < min{po(z1),—1}.
Let ¢y € F be determined by
p1(z1) = g(z1), @1(zg) = g(zg).
From definitions of ¢, ¢1 and from (6) we get
<P1(5L') < 900(1")7 -z € (aamg)’
by Th. 1. By a similar argument, there exists z3 € (zg, 1) such that

g(z2) < min{p;(z2),—2}.
Let ¢y € F' be determined by
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pa(za) = g(z2),  wa(zg) = g(zp)-
Obviously
wa(z) < p1(z), € (a,zy),
This way we get a sequence of points z1, z2,Z3,... and a sequence of
functions ¢1, Y2, @3, ... such that

To < <T3< T < Ty <TH<ITy,

(7)  on € Fyon(zh) = g(z}), pnlzn) = g(zn), n=1,2,3,...,

() < pala) < pale) < 2(@) < pola), @€ (@),
(9) g(zn) < min{en—1(z,),—n}, n=123,....
From (8) ‘

-+ < p3(@p) < p2(z0) < p1(zo) < wolzo)-
Consequently, there exists ¢ € RU {—o0} such that
| " Jlim o, (zg) = c.
If c € R, then
(10) on(zg) > M, n=1,23,...
for some negative integer M. Let ¢ € F be determined by
o(z) = M, @(zg) = g(x0)-
From definitions of ¢,, @ and from (10) we get
¢(z) < pn(z), € (a,25),mn=1,2,3,....
Consequently
(zn) < on(zn), n= 1,2,3,....

®
Hence and from (7) (pn(zn) = g(zn),n =1,2,3,...) we see that
(11) @(zn) < g(zy), n=1,2,3,....

Since @ is a continuous function, @ is bounded below on [zg, zj]. There-
fore the sequence g(z1),9(z2),g(x3),... is bounded below (see (11)).

On the other hand, from (9) we have
lim g(z,) = —oo,
T—> 00

which is impossible. This contradiction shows that
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nlinc}o on(zg) = —00.
Hence there exists a positive integer ny such that
(12) Pno (75) < po(zp) — €.
By (7) | | |
Pra (xno) = g(xno)a Png ('7‘.6/) = g(.fﬂg :
This gives

g(z) < Pny (117) +e€ TE [:17”0,11:8], ;
because g is e-convex function with respect to the family F. Thus
9(20) < o (x0) +e.
Moreover g(zg) = wo(zf) (see (7)). Therefore
v0(7p) < Pno(zp) +€, and consequently —n,(z5) > @o(xp) — €,
which contradicts (12) and completes the proof. ¢

A simple consequence of Th. 5 is. »

Corollary 1. Ifg: (a,b) — R is an approzimately generalized convez
with respect to the family F, then g is bounded on every compact C C
C (a,b).

Now we shall present two stability type theorems. The first is
Theorem 6. Let g: (a,b) — R be an e-convez function with respect to
the family F' (e > 0). Then there exists a conver function with respect
to the family F' f : (a,b) — R such that

@) 9@ < f@) +e e (@)

Proof. The proof is similar to that used in [2; Th. "2]. Let g be an
e-convex function with respect to the family F. Put

Wy :={(z,y) € (a,b) xR:g(z) =y}, W :=convpW,.

We first show
(13) (z,y) €W = g(z) —e < y.

Let (z,y) = C € W. It follows from Th. 4 and from definition of
W that C € Wy U Wy U W3, where

Wi =W, Wy = U{[A, B] A, Be W()},
W3 = U{[A, B] cAe Wy, Be Wz} ‘

If C € Wy = Wy, that obviously g(z) — e < y. Let C € Wy \ W;.
Then there exist A,B € Wy such that C € [A,B] and A # B, A #
# C,B #C. Let A= (z4,y4),B = (zB,yp) (since A,B € Wy and
A# B, x4 # zp) and let oap € F be determined by
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©aB(za) =ya, ¢ap(zB)=ys.
Then y = pap(z) and we have
9(z) < pap(z) +e=y+e,
because g is e-convex function, hence g(z) — e < y.

Now, assume that C € W3\ (WyUW;). Then there exist A, By, B, €
€ Wy and B € By, By] such that C € [A, B]. Let

A= (Z'A,yA), B = (xB)yB)7 Bl = ("I;B17yB1)a B2 = (sz)yBg)-
Since A,B1,By € Wy and C ¢ Wy U W,, we conclude that x4 #
# TB,,TA # Tp, and T, # Tp,. Let for example z4 < zp, < p,.
Then zp, < zp < zp, and z4 < z < zp. We assume that z4, < z <
< zp, (in the case zp, < z < zp the proof is similar).
Let waB,vaB,,vaB, € F be determined by
0aB(Ta) = YA, @aB,(Ta)=Ya,
vap(zB) =YyB, $aB:(zB;)=1YB;,
Then y = pap(z) and pap, () > y or wap, (z) < y, because C & Wy U
UWa. If pap, (z) > y, then

vaB,(2) < paB(7) < paB,(2), z€ (z4,3B]
Hence @4p,(z) < wap(z) = y and moreover (z,pap,(z)) € Wy. By
the above, g(z) —€ < wap, (z). Since Yap,(z) < pap(z) =y, it follows
that g(z) —e < y. ; ‘ '

Similar arguments apply to the case pap, (z) < y we get

(@, 048, (z)) € Wa, @up,(z)) <y,9(z) — € < pan, (z) <y,

which proves (13). ,

(13) allows us to define a function f : (a,b) — R by the formula

f(z) :=inf{y e R: (z,y) e W}, =z € (a,b)
and implies the inequality
9(z) < f(z) +e, =z €(a,b)
Otherwise, since (z, g(z)) € Wy for = € (a,b), we have
f(z) < g(z), =ze€ (a,b).
It remains to show that f is convex with respect to the family F.
To do this fix a < 1 < 22 < b and let g € F' be determined by

QDo(LEi) = f(:cz), 1= 1,2.
By the definition of f, there exist sequences (ys)_, (yfl)n such that
(z1,9}), (z2,y2) € W for n =1,2,3,... and

i=1,2.
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Yo = F(31), ¥ — f(z2).
Let ¢, € F be determined by
o en(@) =yn, @n(m) =95,
for n = 1,2,3,.... Since (z1,y.),(z2,%2) € W and W is F-convex,

(z,n(x)) € W for © € [z1,25]. Hence and from the definition of f we
have '

(14) o f(z) L onlz), z€[r1,22).

By Th. 2 ¢n — o on (a,b). Therefore f(z) < @o(z) on [z, 3], by
(14). This means that f is convex with respect to the family F', which
completes the proof. {

Under an additional assumption we have
Theorem 7. Let g be as in Th. 6. If for any c € R and any ¢ € F we
have c + ¢ € F, then there ezists a function f : (a,b) = R convez with
respect to the family F' such that

9(e) ~ @] <5, we(ab).
Proof. Let
91(2) = g(@)+ 5, € (a,b).

It is obvious that g; is e-convex with respect to the family F, too.

By Th. 6 there exists a convex function with respect to the family F
f :(a,b) = R such that

fle) <gi(z) < f(z) +e, z€ (a,b).
Hence

€ €
f(m)hisg(x)gf(x)_i—iv SCG(CL,b),
and consequently
l9(z) — f(z)] <
This completes the proof. ¢

—;—, T € (a,b).
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