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Abstract: Fix integers d, t with d > 4 and 0 <t<(d-2)(d-1)/2—2. Here
we prove that the normalization of a general plane curve of degree d with ¢
nodes has only ordinary Weierstrass points. We prove a corresponding result
for Weierstrass pairs and for Weierstrass triples.

Let X be a smooth complex projective curve of genus g > 2 and
Pe X. Theset N(P,X):={t € N: hO(X, Ox(tP)) > h(X, Ox((t -
—1)P)} (i.e. the set of all integers ¢ > 0 such that there exists a rational
function on X which is regular on X \ {P} and which has a pole of order
¢ at P) is an additive semi-group of N; N (P, X) is called the semigroup
of non-gaps of P. The set G(P,X) := N\ N(P, X) is called the set of
gaps of P. We have card(G(P, X)) = g ([2], Ex. I-E). For general P ¢
€ X we have G(P, X) = {1,...,g}; if G(P, X) # {1,...,g}, Pis called
a Weierstrass point of P. Set w(P) := 2i<i<ag_2 PP (X, Ox (tP)) —

E-mail address: ballico@science.unitn.it
The author was partially supported by MURST (Italy).




268 E. Ballico

— g(g — 1)/2. The integer w(P) is called the weight of P. We have
w(P) > 0 for every P. P is a Weierstrass point of X if and only if
w(P) > 0. We have 3_pcx w(P) = g(g +1)(g — 1)/6 for every X and
in particular every X has at least a Weierstrass point. It is unknown
what are the semi-groups S C N with card(N \ §) = g and which are
of the form N(P, X) for some P and some smooth curve X of genus g
(see the introduction of [6]). Recall (see [2], p. 42) that a Weierstrass
point P of X is said to be normal if its gap sequence is given by the
integers t with 1 < ¢ < g — 1 and the integer g + 1 or, equivalently,
if W9(X,0x((g —1)P)) =1, h%(X,0x(gP)) = 2 and h'(X,0x((g +
+1)P))) = 0, or, equivalently, if it has weight 1. A Weierstrass point
P of X is said to be ordinary if h*(X,0x((g + 1)P)) = 0 (and hence,
since it is a Weierstrass point, h®(X,0x(gP)) = 2). Let P? be the
complex projective plane. Fix integers d, t with d > 4 and 0 <t <
< (d—2)(d~1)/2 — 2. Let A(d,t) be the set of all integral plane
curves with degree d and with exactly t nodes as only singularities. It
is known (see e.g. [11] or [7]) that A(d, ) is an equidimensional smooth
scheme of dimension (d2+3d)/2—t. J. Harris proved in [7] the so-called
Severi conjecture, i.e. that A(d,t) is irreducible. The varieties A(d,?)
are called Severi varieties. Here we study the Weierstrass points of the
normalization, X, of a general member of A(d,t). Note that X has
genus (d — 2)(d — 1)/2 — t. In the unique section of this paper we will
prove the following result.

Theorem 0.1. Fiz integers d, t withd > 4 and 0 <t < (d—2)(d -
—1)/2 —2. Then the normalization of a general member of A(d,t) has
only normal Weierstrass points.

The proof of Th. 0.1 will give an interesting result (Th. 1.1) for
Weierstrass pairs and Weierstrass triples on the normalization of a gen-
eral degree d nodal curve with ¢ nodes (see the beginning of Section 1
for the corresponding definitions). To prove these results we need to
control, up to high codimension, the cohomology of zero-dimensional
subschemes of P2, Z, with card(Z;eq) small (see Lemma 1.2 for the
case card(Zyeq) = 1). This seems to be very delicate but of indepen-
dent interest. We stress the notion of prolongation introduced in the
proof of Lemma 1.2. We found that a good class of zero-dimensional
schemes for the postulation with respect to degree m forms are given
by the ones contained in a smooth curve of degree m.

1. The main results. Let X be a smooth, connected projective
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curve of genus g > 2; fix an integer s > 0 and integers a(1),...,a(s)
with a(i) > 0 for every ¢ and ), ;.. a(é) > g; fix distinct points
P(1),...,P(s) € X. The ordered s-ple (P(1),...,P(s)) is called a
Weierstrass s-ple of type > (a(1),...,a(s)) if

WX, 0x( Y ali)P(i))) 0.

1<i<s

This is the notion studied in [3]. For s = 2 this is the notion of Weier-
strass pair given in [10] and related but different from the notion of
Weierstrass pair given in [2], p. 365. For any fixed s-ple (a(1), ... ,a(s))
the set of all Weierstrass s-ples of type > (a(1),...,a(s)) is an alge-
braic locally closed subset of X°. The aim of this section is the proof
of Th. 0.1 and of the following result.
Theorem 1.1. Let d and t be two integers such that d > 4 and 0 <
<t<(d-1)(d—2)/2—2. Set g:=(d—1)(d—2)/2 —t. Fiz integers
a(l) > 0, a(2) > 0 and a(3) > 0. Let X be the normalization of the
general member of A(d,t). The following facts holds:

(1) if a(l) +a(2) > g+ 2 then X has no Weierstrass pair of type
> (a(1),a(2));
(ii) ifa(l)+a(2) > g+1 then X has only finitely many Weierstrass
pairs of type > (a(1),a(2));
(iii) if a(1) + a(2) + a(3) > g+ 2 then X has no Weierstrass triple
of type > (a(1),a(2),a(3));
(iv) if a(1) + a(2) + a(3) > g + 1 then X has only finitely many
Weierstrass triples of type > (a(1),a(2),a(3));
(iv) if a(1)+a(2) +a(3) > g then X has no 2-dimensional family of
Weierstrass triples of type > (a(1),a(2),a(3)).
Fix P € P? and positive integers z, m. Set M(P,z) := {Z :
: Z is a curvilinear length z subscheme of P? with Z..q = {P}}. By
the theory of the local Hilbert scheme (see [8] or [9] or [4]) M(P,z2)
is smooth and irreducible of dimension z — 1. If z < (m + 1)(m +
+2)/2 and w > 0, set M(P,z;m,w) = {Z : Z is a curvilinear
length z subscheme of P? with Z,,q = {P}, h*(P?,1z(m)) = w} and
M(P,z;m,w) :={Z : Z is a curvilinear length z subscheme of P? with
Zrea = {P} and h'(P?%,1z(t)) > w}; we use the same notation also for
z> (m+1)(m+2)/2, but of course if w < (m+1)(m +2)/2 — z, then
M(P,z;m,w) = 0. If z < (m+2)(m + 1)/2, set M(P,2)(*):={Z ¢
€ M(P, Z): every degree m plane curve containing Z is singular at P};
set M(P,z;m,w)(*) == M(P,z;m,w) UM(P,z)(*). Set M(P,(m +
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+1)(m+2)/2;m,*) :={Z € M(P,(m+1)(m+2)/2) : Z is contained
in a plane curve of degree m which is singular at P}. More generally,
fix strictly positive integers y, 2(1),..., 2(y), m, w with ZKKy z(i) <
< (m+1)(m + 2)/2 and y distinct points P;,1 < i < y, of P2 Set
M(Py,...,Py;2(1),...,2(y)) == {Z : Z is a curvilinear subscheme of
P? with y connected components Z(1),..., Z(y) with length(Z(3)) =
= 2(i) and Z(i)rea = F;}. By the theory of the local Hilbert scheme
(see [8] or [9] or [4]) M(P,...,Py; 2(1),...,2(y)) is smooth and irre-
ducible of dimension Zl<i<y z(i)—y. Set M(Py,...,Py; 2(1),...,2(y);
sm,w):={Z € M(Py,...,P,; 2(1),...,2(y)) : h*(P%,1z(m)) > w} and
M(Py,...,Py;2(1),...,2(y); myw) = {Z € M(Py,...,Py;2(1),...
-1 2(y)) : KH(P2,I5(m)) = w}. I 2(1)+- - +2(y) < (m+1)(m+2)/2,
set M(Py,...,Py;2(1),...,2(y); m)(*):={Z € M(P,...,Py; 2(1),..
...,2(y); m) such that every degree m plane curve containing Z is
singular at at least one point P;} and M(Pi,...,Py; 2(1),...,2(y);
smy,w)(*) = M(Py,...,Py;2(1),...,2(y); m,w) U M(Py,...,Py;
;2(1),...,2(y); m)(*). For all integers z(i), 1 <1 <y, with 2(¢) > 0 for
every ¢ and 5 ;<. 2(1) = (m+2)(m+1)/2, set M(Py,..., Py; 2(1),...
s 2(y);m, ¥ = {Z € M(Py,...,Py; 2(1),...,2(y)) : Z is contained
in a degree m plane curve which is singular at one of the points P;}.
Lemma 1.2. (a) For all integers z, m with z < (m + 1)(m + 2)/
J/2M (P, z;m,1) has codimension > 1 in M (P, z);

(b) for all integers z with z < (m+1)(m +2)/2 M(P, z; m,2)(*)
has codimension > 2 in M(P, z);

(¢) M(P,(m + 1)(m + 2)/2; m,**) has codimension > 2 in
M(P,(m+1)(m+2)/2).
Proof. The first assertion is trivial because M (P, z) is irreducible. The
second assertion is trivial for all pairs (z,m) with z < m. In partic-
ular we may assume m > 3. Fix m > 3. By induction on m it is
sufficient to prove the second assertion when z > m(m +1)/2 — 1. By
induction on z (for the fixed integer m) we may assume the result for
all integers 2’ < z. By the theory of the local Hilbert scheme (see [8]
or [9] or [4]) for every W € M(P,z — 1) the algebraic set q(W) :=
= {B € M(P,z) : W C B} is irreducible and one-dimensional; q(W)
will be called the prolongation set of W and every element of ¢(W)
will be called a length z prolongation (or just a prolongation) of W.
Every Z € M (P, z) is the prolongation of some W € M (P, z—1). Since
M(P,z — 1;m,2)(*) has codimension at least two in M(P,z — 1) by
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the inductive assumption, the set of all prolongations of elements of
M(P, z—1; m,2)(*) has codimension at least two in M (P, z). Hence to
prove part (b) of the lemma it is sufficient to prove the following two
assertions:

(i) for every W € M(P,z — 1) \ M(P,z — 1; m,2)(*) a general
Z € q(W) is not an element of M (P, z; m,2)(*);

(i) for a general W € M(P,z— 1)\ M(P,z—1;m,2)(*) no Z €
€ g(W) is an element of M (P, z; m, 2)(*¥).

Proof of (i). Fix W € M(P,z— 1)\ M(P,z — 1; m,2)(*) and let
D be a degree m plane curve with W € D and P € Dyeg. There is
a unique prolongation, Z’, of W which is contained in D. For every
other prolongation, Z, of W we have h°(P2,Iz(m)) < hO(P2, Iy (m))
and hence Z ¢ M (P, z; m,2). Since h°(P2,Iy(m)) > 2 there exists a
degree m plane curve D’ with D' # D, W Cc D' and P € D;eq- The
prolongation, Z”, of W along D’ is obviously an element of M (P 2)\
\ M (P, 2)(*). Smce Z" # 7' we have Z" ¢ M(P,z;m,2). Hence we
conclude by the semicontinuity of cohomology and the openness of the
condition “to be contained in a degree m curve smooth at P” among
zero-dimensional subschemes with constant cohomology.

Proof of (ii). Let D be an integral plane curve with deg(D) =
= m and see D as embedded in P(H°(D,Op(m))) by the complete
linear system H°(D,Op(m)). Since we are in characteristic zero, for
a general () € D the osculating hyperplane to D in P(H°(D, Op(m)))
has contact of order h9(D, Op(m))—1 = m(m+3)/2 with D at Q. This
means that k®(D, Op(m)(—(m(m + 3)/2)Q)) = 0. Up to an element
of Aut(P?) (i.e. changing D) we may assume P = Q. Let W be the
Cartier divisor of order z— 1 on D and Z the Cartier divisor of order 2
on D. Z is a prolongation of W and the vanishing of h®(D, Op(m)(—
—(m(m + 3)/2)Q)) implies h°(D,Op(m)(—Z)) < h® (D,Op(-W)).
Hence h°(P?,Iz(m)) < h°(P2, Iy (m)). By semicontinuity the same
properties (existence of D and good postulation) are true for elements
in an open subset, 2, of M (P, Z). We want to find A € Q such that
there exists a degree m plane curve D’ with P ordinary node of D' and
A contained in one of the two smooth branches of D' at P. We will
show by induction on the integer y that for every integer y with 1 < y <
< (m+2)(m+1)/2—2 a general B € M(P,y) is contained in one of the
two smooth branches of a plane curve D” which has P as an ordinary
node. This assertion is trivial if y < 2. Assume that it is true for the
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integer ¢’ := y—1 > 2 and take such a pair (B, D") with B € M(P,y—
— 1). By the generality of B we may assume that B is contained in
a degree m plane curve which is smooth at P. If y —1 > 3 call B’
the prolongation of B along the smooth branch of D containing B; if
y — 1 = 2 we take as D" a curve such that the Zariski tangent space of
B’ is one of the two lines of the tangent cone of D" at P and call B’ the
prolongation of B along this branch of D”. For any zero-dimensional
scheme J with Jyeq = {P} and 2 < length(J) < (m+2)(m-+1)/2 the set
of all equations of the plane curves containing J which are singular at P
is either H°(P2,17(m)) or a hyperplane of H°(P2,1;(m)) because any
plane curve containing J has the tangent line to J at P in its tangent
cone at P. Hence for J = B this set is a linear space of dimension at
least 2 whose general member is a curve with an ordinary node at P.
Hence we may repeat the proof of (i) and obtain A € 2 contained in a
degree m curve with an ordinary node at P; here we use that y — 1 <
<z—2<(m+2)(m+1)/2—3. Now we may conclude the proof of (ii)
and hence of part (b) of the lemma. Call ® the open non-empty subset
of Q corresponding to the schemes, W, contained in a degree m curve
D" with an ordinary node at P and with (P2, Iy (m)) = 0. Take
Z € q(W). If Z is not the prolongation of W along the corresponding
branch of D", then h®(P2,Iz(m)) < h°(P2%,1z(m)) < hO(P2, Iy (m))
and Z € M(z,m) because the set of degree m curves singular at P
is a hyperplane of the hyperplane of P(HO(P?2, Iy (m))) parametrizing
the curves which are singular at P. Now we may prove also the third
assertion. Fix W € M(P,(z+ 1)(z +2)/2 — 1). If there is Z € ¢(W)
such that Z € M (P, (z+1)(2+2)/2; m, **), then W € M(P, (z+1)(z+
+2)/2—1;m,2)(*). Hence part (c) follows from part (b) for the integer
z=(m+2)(m+1)/2-1. ¢
The same inductive proof gives the following results.

Lemma 1.3. Fiz integers z(1) > 0,2(2) > 0 and m > 4 with z(1) +
+ 2(2) € (m + 1)(m + 2)/2. Fiz distinct points P, and P» of P2
Then M(Py, Py; 2(1),2(2); m,1) has codimension > 1 in M (P, Ps;
2(1),2(2); m) and M(Py, Pp; 2(1),2(2); m,2)(*) has codimension > 2
in M(Py,Py;2(1),2(2)). If 2(1) + 2(2) = (m + 2)(m + 1)/2, then
M(Py, Py; 2(1), 2(2); m,**)  has codimension >2 in M(Py,Py;
z(1), 2(2)).

Lemma 1.4. Fiz integers z(1) > 0, 2(2) > 0, 2(3) > 0 and m > 4
with z(1) + 2(2) + 2(3) < (m+1)(m + 2)/2. Fiz 3 non collinear points
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P1,P, and P3 of P?. Then M(Py, Py, Ps; 2(1),2(2),2(3);m,1) has
codimension > 1 in M(Py, Py, P3; 2(1), 2(2),2(3)) and M(Py, Py, Ps;
z(1),2(2),2(3); m,2)(*) has codimension >2 in M(Py,P,, Ps;
2(1),2(2),2(3)). If 2(1) + 2(2) + 2(3) = (m +2)(m +1)/2, then
M(P1, Py, P3(1), 2(2); 2(3); m, **) has codimension > 2 in M(Py, Py;
z(1), 2(2)).

Lemma 1.5. Fiz integers z(1) > 0, 2(2) > 0, 2(3) > 0 and m > 4 with
2(1)+2(2)+2(3) < (m+1)(m+2)/2. Fiz3 collinear points Py, Py and
Py of P2. Then M(Py, P2, Ps; 2(1),2(2),2(3); m,1) has codimension
21 in M(Py, P2, P3; 2(1), 2(2), 2(3)) and M(Py, Py, Ps; 2(1), 2(2), 2(3);
m, 2)(*) has codimension >2 in M (P, Py, Ps; 2(1), 2(2), 2(3)). If z(1)+
+2(2H2(3) = (m+2)(m+1)/2, then M(Py, P3, P3;2(1), 2(2); 2(3) ;m,**)
has codimension > 2 in M(Py, Py, P3; 2(1), 2(2), 2(3)).

We do not know how many points of the plane we may control in
this way for large m.

Proof of Th. 0.1. We divide the proof into 3 steps. In the third step
we pass from the statement “only ordinary Weierstrass points” to the
statement “only normal Weierstrass points”.

STEP 1. Here we assume g > (d — 2)(d — 3)/2. Set z := (d —
—1)(d—2)/2 —g. Hence 0 < z < d— 3. Fix a general S ¢ P2 and
set A(S, d) := { integral nodal degree d plane curves with S as singular
locus}. Let D(S,d—3) be the set of all degree d—3 curves containing S.
If z in an integer > 0, set C(9,2) := {(P,Z): P € (P?2\S) and Z is a
curvilinear length z subscheme of P2 with Z,.q = {P}}. By the theory
of the local Hilbert scheme (see [8] or [9] or [4]) C(S, 2) is smooth and
irreducible of dimension z+1. Let I'(d, S, s) := {(C, P, Z) : C € A(S, d),
(P,Z) € C(S,z) and Z C C} be the incidence correspondence. Let
m1(z) : I'(d, S,2) = A(S,d) and mo(z) : I'(d,S,2z) - C(s,z) be the
projections. We will use C(S,z) for 2 = g — 1, g and g + 1. Since
h°(P?,0p2(d — 3)) = g + =, for every (P,Z) € C(S,g — 1), there is
A€ D(S,d-3) with Z C A. Set C(S, 2,=) := {(P, Z) € C(S, z): there
is A€ D(S,d—3) with Z C A}.

Claim. For every z > g +1C(S, z,=) has codimension > 2 in C(S, z).

Proof of the Claim. First we assume z = 0, i.e. S = 0. By the first
assertion of Lemma 1.2 C(0, g, =) is a proper subset of C(, g). We will
use the notion of prolongation introduced in the proof of Lemma 1.2.
For every W € C(0,g9) \ C(0,g,=) and every prolongation, Z, of W
we have Z € C(0,g + 1) \ C(0,g + 1,=). Hence to check the claim
for C(0,g + 1,=) it is sufficient to prove the existence of an algebraic
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subset I' of C(0, g) with codimension at least two in C(0, g) and such
that for every W € (C(0,g) \T') a general prolongation of W does not
belong to C(0,g + 1,=). Set ' := M(P,d — 3; g,2)(*). By part (c) of
Lemma 1.2 we have dim(M(P,d - 3; g — 1,2)(*)) < g — 2. Hence we
obtain dim(I') < g — 1, as wanted. Now assume 2z > g + 1 and that
codim(C (@, z — 1)\ C(0,z — 1,=)) > 2. For every W € C(0,z — 1)\
\C(®, z—1,=) and every prolongation, Z, of W we have Z € C(0), z) \
\ C(0,z,=). Hence every element of C(0), z,=) is the prolongation of
some element of C((),z — 1,=). Thus every irreducible component of
C(0, z,=) has dimension at most dim(C(@,z — 1,=)) + 1 and hence
C(®, z,=) has codimension at least two by the claim for the integer z —
—1. Now we will prove by induction on z the case z > 0. Assume z # 0
and that the Claim is true for z — 1. Take S’ C P2 with card($’) =
=z —1 and S’ general. Fix one general point Z(7), 1 < ¢ < o, of every
irreducible component of C(S’, z,=). Note that for a general @ € P?
and every 0-dimensional scheme W we have h%(P?, Iy siuig) (d—3)) =
= max{0, h°(P2, LIyyus/(d — 3)) — 1}. Apply this trivial observation for
every Z(i), 1 < i < a and set S := S’ U {Q} with @Q general. Since
C(S',z) and C(S, z) are open subschemes of C(0), z) and passing from
z—1 to z we drop by 1 the geometric genus, we obtain the Claim for the
pairs (z, z) with z > g+ 2. Now assume z = g+ 1. The proof just given
works if we know that the set C(S8',g+1,=)" = {(P,Z2) € C(S',9+1):
there is A € D(S’,d—3) with Z C A} is a proper subset of C(S’,g+1).
This is easily shown by induction, but it is a triviality, just meaning
that the general point of the normalization, X', of a general plane curve
of degree d with £ — 1 nodes is not a Weierstrass point of X'; indeed in
characteristic 0 every smooth curve of genus > 2 has only finitely many
Weierstrass points. ¢

Since 3z < (d+ 2)(d + 1)/2 and (z,d) # (9,6), A(S,d) is a non
empty open subset of a projective space of dimension d(d + 3)/2 — 3z
([1], Prop. 4.1). Since 3z < 3d := h°(P2, Opz(d)) — h°(P2, Op2(d — 3))
and a curve has dimension 1, using the Claim and its proof we will
check that a general C € A(S,d) contains no scheme Z with Z,q a
point of C'\ S, length(Z) > g + 1 and Z contained in a degree d — 3
adjoint curve to C. Fix S, an integer z > g+ 1 and P € (P2\ 9).
Set U(P,S,z) := {C € A(S,d) : P € C and the length z subscheme
of C supported by P is contained in a degree d — 3 curve containing
S}. Since S is general and z is small, H?(P?,I5(d)) has no base point



Weierstrass points on plane curves ’ . 275

outside S and hence h°(P?,Isy(py(d)) = R®(PP? 15(d)) — 1. Hence
by the Claim we obtain that U(P, S, z) has codimension > 3 in A(S, d)
for a general P € (P?\ S). There is at most a one-dimensional subset
Q of P2\ S such that for every P ¢ Q U(P, S, z) has codimension 2
in A(S, d); here we use that in the proof of the Claim we may take as
point ) any point outside a suitable one-dimensional subset of P2. For
every P € (P?\ S)U(P, S, ) is a proper subset of A(S,d) because for
d >4 and x < d - 3 and for a general SH°(P?,Is(d — 3)) has no base
point outside S. Varying P in P2\ S and looking at the dimensions of
the fibers of the projection m5(z), we conclude the checking.

Let X be the normalization of a general C € A(S, d). Now we will
check that for every P € S there is C' € A(S, d) such that the two local
branches of C' at P have a length g scheme Z € M(P,g;d — 3,0)' as
intersection with the (g — 1)*® infinitesimal neighborhood of P in P2.
Since this is an open condition, it is sufficient to prove it for one P € S.
By Lemma 1.2 we know that M(P,g;d — 3,1) is a proper closed sub-
scheme of the irreducible variety M (P, g). Take a general Z € M (P, g).
Since S\ {P} is general, we have h%(P2,Izy(s\{p})(d — 3)) = 0. Since
3(x—1)+14g < (d®+3d)/2 there is U € A(S,d) with Z C U, conclud-
ing the checking. Hence for a general C' € A(S,d) the counterimages
of the nodes of C' are not Weierstrass points of X. Alternatively, one
could use the proof of (ii) made in the proof of Lemma 1.2. Hence X
has only normal Weierstrass points.

STEP 2. Now we assume g < (d — 2)(d — 3)/2. Let y be the
unique integer with 4 < y < d and such that (y — 2)(y —3)/2 < g <
< (y—1)(y—2)/2. Set z:= (y—1)(y—2)/2—g. Hence 0 < z <
< y — 3. We apply the first part of the proof to the pair of integers
(y,z). We obtain an irreducible degree y plane curve T' with z nodes
as only singularities and whose normalization, Z, is a smooth genus g
curve with only normal Weierstrass points; to obtain “normal” instead
of “ordinary”, see Step 3. We fix d — y general lines D;, 1 <i < d —y,
and set Y := T U (Ui<i<a—yD;). Hence Y is a nodal curve. For each
integer 7 with 1 < ¢ < d — y we fix one point, say P;, of T'N D;. With
the language of the theory of nodal plane curves (see [11]) we take the
points F;, 1 <4 < d — y, as unassigned nodes of Y, while we take the
remaining (d — 1)(d — 2)/2 — g singular points of Y as assigned nodes.
By the theory in [11] there is a one-dimensional family of plane curves
with Y as a special fiber, with an irreducible nodal curve of geometric
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genus g as a general fiber and such that the total space of this flat family
of plane curves has (d — 1)(d — 2)/2 — g disjoint sections which on the
general fiber have as images the singular points and on the special fiber
Y have as images the assigned nodes. After a further base change we
may take a partial normalization of the total space along these sections.
We obtain a one-dimensional smoothing of the union, W, of Z and d —
— 1y smooth rational curve, R;, each of them intersecting Z at one point
(corresponding to the point P; through the normalization map Z — T').
Note that W is a curve of compact type and that, with the terminology
of [5], the curves R; are rational tails. Now we apply the theory of limit
linear series of Eisenbud-Harris ([5] and [6]).

STEP 3. Let X be the normalization of a general C € A(S,d).
We checked at the end of Step 1 that the points of X going to the
nodes of C are not Weierstrass points of X. Take a point ¢ of X whose
image, P, in C is a smooth point of C. It is sufficient to check that
hO(X,0x((g—1)Q)) = 1 and h}(X,Ix((9+1)Q)) = 0 because if these
equalities are satisfied either h9(X,Ox(gQ)) = 2 (i.e. @ is a normal
Weierstrass point) or h?(X,0x(gQ)) = 1 (i.e. Q is not a Weierstrass
point). The assertion on h%(X,0x((g — 1)Q)) (resp. h*(X,0x((g +
+1)Q))) is true for a general C € A(S, d) by the Claim concerning the
codimension of C(S,g—1,=) (resp. C(S,g+1,=)). Then the inductive
proof given in Step 2 works for normal Weierstrass points. §
Proof of Th. 1.1. Using Lemma 1.3, 1.4 and 1.5 instead of Lemma 1.2
in the proof of Th. 0.1 we obtain Th. 1.1; to apply Lemma 1.5 for the
proof of parts (iii), (iv) and (v) of Th. 1.1 note that the set of collinear
triples of points of P2 has dimension 5. ¢

We believe that the interested reader may use the same method
to prove the existence of nodal plane curves with a certain type of non
normal Weierstrass points in the following way. We fix integers d, ¢ as
in the statement of Th.0.1 and a general S C P2 with card(S) = ¢. Set
g := (d—1)(d—2)/2~t. We fix an integer z with g+1 < z < (d®*+3d)—t
and a general P € (P%\S). We look for a curvilinear subscheme Z with
Zeea = {P}, length(Z) = z and with h°(P?,1z(d — 3)) # 0, say with
hP(P2,1z(d—3)) = 1. This is easy: just use a smooth degree d—3 curve
Y with S C Y and P C Y. By Bertini’s theorem it is easy (at least for
certain d, t and z) to show that a general degree d curve C with Z C C
and with S C Sing(C) is an irreducible nodal curve with S = Sing(C).
Let X be the normalization of C. By construction P is a non-ordinary
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Weierstrass point of X such that 2P is a special divisor of X. We need
to check that for general Z (i.e. for general Y) and the general such C
the divisor (z+1)P is a non-special divisor of X. Again, this is easy for
certain d, t and z. By construction z+ 1 would be the last gap value of
P as Weierstrass point of X. It would be nice to prove the existence of
(Z,X) such that, with this constraint, the gap sequence of P has the
smallest weight, i.e. the gap sequence is 1,...,9 — 1,z -+ 1. To obtain
this result it is sufficient to find Z such that h°(P2,Isyz: (d — 3)) = 1,
where Z' is the unique subscheme of Z with length(Z’) = g — 1. Then
we would like to check as in the proof of Th. 0.1 that P is the only
non-normal Weierstrass point of X. Again, this is easy for certain d, ¢
and z, but we do not know if such result is true in full generality. Note
that the checking of the two conditions “gap sequence 1,...,g—1,2z+1”
and “P is the only non-normal Weierstrass point of X are independent
and that both are open conditions. The interested reader may do the
same on the Hirzebruch surfaces Fe, e > 0.

References

[1] ARBARELLO, E. and CORNALBA, M.: Footnotes to a paper of Beniamino
Segre, Math. Ann. 256 (1981), 341-362.

{2] ARBARELLO, E., CORNALBA, M., GRIFFITHS, P. and HARRIS, J.: Ge-
ometry of Algebraic Curves, Vol. 1, Springer-Verlag, New York, 1985.

[3] BALLICO, E., KEEM, CH. and KEEM, S. J.: Weierstrass multiple points and
ramification points of smooth projective curves, Ann. Mat. Pura Appl. (to
appear).

[4] BRIANCON, J.: Description de Hilb®C{z,y}, Invent. Math. 41 (1977), 45—
89.

[5] EISENBUD, D. and HARRIS, J.: Limit linear series: Basic theory, Invent.
Math. 85 (1986), 337-371.

[6] EISENBUD, D. and HARRIS, J.: Existence, decomposition and limits of cer-
tain Weierstrass points, Invent. Math. 87 (1987), 495-515.

[7] HARRIS, J.: On the Severi problem, Invent. Math. 84 (1986), 445-461.

[8] IARROBINO, A.: Punctual Hilbert schemes, Bull. Amer. Math. Soc. T8
(1972), 819-823.

[9] TARROBINO, A.: Punctual Hilbert schemes, Memoirs Amer. Math. Soc.
188 (1977).

[10] KIM, S. J.: On the index of the Weierstrass semigroup of a pair of points on
a curve, Arch. Math. 62 (1994), 73-82.

[11] TANNENBAUM, A.: Families of algebraic curves with nodes, Compositio
Math. 41 (1980), 107-126.





