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Abstract: There is given a comprehensive investigation of the bounded reg-
ular plane curves (curves meeting each straight line in at most two points).
The obtained results are used to prove that for a three dimensional Chebyshev
space of continuous functions on a closed interval the following conditions are
equivalent: (i) The space contains elements having zero only at the left end-
point and elements having zero only at the right endpoint of the interval;
(ii) The space contains a Chebyshev space of dimension two; (iii) The space
extends with a point; (iv) The space extends with an interval; (v) The space
extends to a periodic Chebyshev space.

Introduction and main results

Let @ be a topological space and suppose that C(Q) is the vec-
tor space of continuous real valued functions defined on Q. The n-
dimensional subspace L of C(Q) is called a Chebyshev space if every
nonzero function in L possesses at most n — 1 distinct zeros in Q. The
existence in C(Q) of a Chebyshev space of dimension n > 2, implies
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strong conditions on the space Q [8], [7], which restrict it to be home-
omorphic with a subset of S*, the one dimensional topological sphere.
Hence, when ( is connected we can restrict ourselves to Q=1with I
an interval of the real line with endpoints 0 and 1. The case Q = S Lis
covered by the situation I = [0, 1) and the condition that only elements
in the subspace of C(I) with the property lim;_,1 ¥(t) = ¥(0) are con-
sidered. In this case we say that the Chebyshev space is periodic. A
base of a Chebyshev space (of a periodic Chebyshev space) is called a
Chebysheuv system (a periodic Chebyshev system).

We say that a Chebyshev space (or a Chebyshev system) in C(I)
extends with a point if its elements can be defined in a point c autside to
I such that the extended space (system) be a Chebyshev space (system)
on IU{c}. Tt extends with an interval if there exists the interval J C R,
I C J, I # J such that the functions of the space (of the system) can be
extended continuously to J such that the extended space (the extended
system) be a Chebyshev space (a Chebyshev system) too.

The isolated zero to of ¢ € C(I) is called nodal if to € [ I and ¢
change sign at to, or if to € I'\ [ I. It is called nonnodal if to € [ I and
¢ does not change sign at to ([5], p. 22). These notions are starting
points in various results regarding zeros of the functions in a Chebyshev
space. We mention here the very classical ones summarized in
Theorem 0. If L is an n-dimensional Chebyshev space in C(I), p €
€ L\{0}, s1,...,84 € [ I are distirict nonnodal zeros of p, t1,...,tp € I
are distinct nodal zeros of @, then 2q+p < n—1. For arbitrary distinct
points as above with 2¢ + p = n — 1 there ezists a function ¢ € L
with nonnodal zeros at sy, . . .,8,, nodal zeros atty,...,t, and p(t) # 0
elsewhere in I.

(See e.g. the First and the Second theorem of S.N. Bernstein in
[1], or the results in the first chapters of [5].)

If 2¢ +p < n — 1, then there exist Chebyshev spaces of dimension
n and some points as in Th. 0, for which there does not exist a function
with nonnodal zeros at s, ..., s, and nodal zeros at t1,...,1%p (see e.g.'
[1] and [12]). Abakumov and Domrachev give a geometric characteri-
zation of those Chebyshev spaces for which there exists functions with
arbitrary repartitions of zeros, i.e. functions with nonnodal zeros at any
distinct s1,..., 84 € [ I, and nodal zeros at any distinct t1,...,%p € I,
whenever 2q +p < n— 1. These spaces will be called Chebyshev spaces
with arbitrary distributions of zeros (or spaces with the adz property).

The purpose of this paper is to show that for n = 3 these problems
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have a common geometric background. For some results for general n
we mention the papers [9], [10], the paper of Zalik and Zwick [15], the
results of Abakumov and Domrachev [1], and the course of Vinogradov
[14]. The main result can be stated as follows:

Theorem 1. Let {¢1, 2,93} C C[0,1] be a Chebyshev system. Then
the following conditions are equivalent:

(i) : sp{p1, p2, 3} has the adz property.

(i) There exist functions in sp{y1, Y2, 3} vanishing only in 0 and
functions vanishing only in 1.

(ili) The space sp{wi,p2,ps} contains a subspace of dimension
two, which is a Chebyshev space.

(iv) The Chebyshev system {p1, @2, p3} extends with a point.

(v) The Chebyshev system {¢1, 2, p3} extends with an interval.

(vi) The Chebyshev system {1, p2, @3} extends to a periodic Che-
byshev system on [0, 2).

The equivalence (i)« (ii) follows in fact from Th. 0. The equiva-
lence (iii)«>(iv) is the consequence of a more general result in [9]. The
key of the proof of the whole theorem is the proof of the implication
(ii)=>(iv). The preparatory geometric results in doing this use some
techniques in [1] and [14].

A negative form of this theorem is also worth mentioning. The
principal statements in this line can be summarized as:

Theorem 2. For the Chebyshev system {p1,p2, @3} in C[0,1] the
following assertions (i), (ii) and (iii) are equivalent:

(i) At least one of the following two conditions holds:

(a) Each function of sp{p1, g2, p3} which vanishes at 0, vanishes
in a point of (0,1].

(b) Each function of sp{¢1, 2, p3} which vanishes at 1, vanishes
in a point of [0, 1).

(ii) The Chebyshev space sp{y1, p2,p3} contains no Chebyshev
space of dimension two.

(iii) The Chebyshev system {p1, P2, p3} cannot be extended with
a point.

1. Regular plane sets

The set M C R? is said regular if every line ,d C R? intersects M
in at most two points.
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The investigations on regular sets in the n-dimensional space (a
set B in R™ is regular if every hyperplane intersects it in at most n
points) lie at the confluence of topology and approximation theory (see
e.g. [4], [2], [3] and respectively [8], [7]). From the various local and
global characterization theorems about these sets it follows for instance
that if such a set is compact and connected or it is locally connected and
connected or locally compact and connected, then it is homeomorphic
with a subset of S!, the circle. Hence, when speaking on connected
regular sets we restrict ourselves to regular curves, i.e., curves which
have parametrizations by continuous coordinate functions from I to R
where I is an interval in R with the endpoints 0 and 1. We can assume
also that such a parametrization, say ¥ = (¢1,%2), is injective vector
function on [ I. In this case we can assert, using a result in [13] (see
also [6] p. 59, Problem 12) that ; and 1), are of bounded variation on
each compact interval in I. Thus C is rectificable.

To simplify the exposition we shall consider only regular curves
contained in bounded domains of R?. Hence speaking on regular curves

we assume always this restriction.

Summing our above considerations and agreements we can sup-
pose that a regular curve C:

(a) is a rectificable closed curve in R? without selfintersections, or

(b) is a rectificable nonclosed curve without selfintersections con-
tained in a bounded subset of R2,.

In the case (a) we can parametrize C by U = (¢1,%2) with ¢; €
€ C[0,1], ¥;(0) = ¥;(1), i = 1,2 and ¥ is injective on [0,1).

In the case (b) we can parametrize C by ¥ = (11,12) with ¢; €-
€ C(I),i = 1,2 and ¥ injective on I, where [ is an interval in R with
the endpoints 0 and 1.

It will be seen later (see 3, section 3) that in the case (b) we
can consider that C has the endpoints A and B with : lim; o ¥(¢) =
= A,: lim; ,; ¥(t) = B. Hence, when consider nonclosed regular
curves we shall use these notations. A point in C different from its
endpoints A and B will be said an interior point of C. When C is
closed, every point of its is interior.

We shall present without proofs some simple geometric conse-
quences of the above definition. Their proofs are standard and since
we have to do with plane sets, it is in fact a simplified version of the
machinery used in [10], [1] and [13]. (A detailed version of proofs can
be get in our preprint [11].)
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1.1. Let C be a regular curve with the parametrization ¥ =
= (%1,%2) : I — C. Then in every point ¥(t) € C the convex hull coC
of C has a supporting line d. If ¥(¢) is an interior point of C then d
does not meet C in any other point. We call every supporting line to
coC through points of C supporting line to C.

1.2. Let C be a regular curve with the parametrization ¥. Then
for each point ¥(tg) on C the line ¥(t)¥(t) possesses a limit position
when ¢ tends monotonically to ¢g. The line defined this way is called
lateral tangent of C at ¥(tp). The lateral tangent is a supporting line
to C. When tq € [ I, we have two lateral tangents at ¥(tg) which can
coincide. The curve C is placed in one of the four angles these two
lateral tangents determine. Every point of C different from ¥(t,) is in
the interior of this angle. If ¥(¢y) is one of the endpoints of C, then
there exists only one lateral tangent in it.

Let ¥(t9) € C. The closed angle containing C determined by the
lateral tangents at W(tg) is called the tangent cone of C at U(ty). If
VU(to) is an endpoint of C, then this cone is always a closed semispace.

Denote by Q(C) the intersection of all the tangent cones of C.
Then Q(C) is a closed convex set containing C, hence coC C Q(C).

A set M C R? is called a mazimal regular set, if it is regular and
it is not a proper subset of any other regular set.

C is a mazimal regular curve if it is a regular curve and is also a
maximal regular set.

1.3. If C is a maximal regular curve then

Q(C) = coC.

1.4. If Q(C) # coC, then C cannot be a maximal regular curve.

1.5. If C is a regular curve such that one of its endpoints, say A4,
is not contained in C, then C U{A} is a regular curve.

1.6. If C is a regular curve with the property that there exists a
direction v such that every line parallel with v can intersect C at most
once, then C cannot be a maximal regular curve.

1.7. A regular curve with the endpoints A and B, contained in
a strip determined by two parallel lines through A and B cannot be
maximal.

1.8. The regular curve C is maximal if it holds one of the following
two conditions:

(a) C is a closed curve.

(b) C is not a closed curve, it contains its endpoints, and at least
one of the lateral tangents in the endpoints of C contains the other
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endpoint.

Observe that there exist two types of nonclosed maximal regular
curves. For the first type the tangent line in one of the endpoints, say A
contains the other endpoint B, but it is not tangent to the curve in this
point (Fig. 1 (c)). For the second type the curve possesses a common
tangent line at the endpoints A and B (Fig. 1 (8)).

(o) B
Fig. 1.

1.9. If C is a nonclosed regular curve containing its endpoints A
and B which is not maximal, then it must hold one of the following
cases:

(a) The lateral tangents d; and dy at A, respectively at B are
different and parallel (see Fig. 2 (a)).

(b) The lateral tangents d; and dy have a common point P ¢
¢ {A, B} and C is contained in the triangle ABC (see Fig. 2 (8)).

(c) The lateral tangents d; and d; have a common point P ¢
¢ {A, B} and C is contained in the closure of the complement with
respect to the angle APB of the triangle APB (see Fig. 2 (v)).

Fig. 2

1.10. From 1.3, 1.8 and 1.9 it follows that C is a maximal regular
curve if and only if
Q(C) =coC.
1.11. Suppose that C is a maximal regular curve which is not
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closed. Let A and B be the endpoints of C. Then at least one of the
following two conditions holds:

(a) Each line through A meets C in a point different from A.

(b) Each line through B meets C in a point different from B.

1.12. Suppose that C is a regular curve which is not maximal.

(a) If C contains its endpoints then it can be extended by an arc
to a closed regular curve.

(b) If C does not contain both its endpoints, then one of the fol-
lowing two alternatives hold:

(b1) C can be extended with one or with two points to a maximal
regular curve.

(b2) C can be extended with an arc to a closed regular curve.

2. Vectorial independent sets in the space

The set M C R? is called vectorial independent if every three
distinct elements every of its three are linearly independent vectors.

Consider in R? the Cartesian coordinate system Ozyz.

2.1. f M c Hy = {(1,y,2) : y,z € R}, then M 1is vectorial
independent if and only if it is a regular set in the plane H;.
Proof. The set M is vectorial independent if and only if each plane
through the origin of Ozyz intersects it in at most two points. Let H
be an arbitrary plane of this type. Then H N M = (H N H;) N M since
M isin Hy. But d = HN H; is a line in H; and when H varies, it runs
over the lines in this plane, wherefrom our assertion is immediate. ¢

2.2. Suppose that the curve C is in the plane Hy defined in 2.1.
Then C is a mazimal reqular curve in Hy if and only if it 1s a mazrimal
vectorial independent set in R® in the sense that it is not a proper subset
of any vectorial independent set of this space.
Proof. Suppose that C is a maximal regular curve in the plane H;, but
it is not a maximal vectorial independent set in R3, that is, there exists
a vector P ¢ C such that C U {P} is vectorial independent.

Suppose first that P = (0, yo, 20). Each plane through O and P
can meet C once. Since Hy = {(0,y, 2) : y,z € R} is parallel with H;,
a plane H through O meets Hy and H; in parallel lines. Suppose that
P ¢ H. Then the intersection line of H and H will be parallel with the
direction of the segment OP. Since H can meet C only once, we arrive
to the conclusion that each line in H; parallel with OP can meet C only
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once. But then C cannot be a maximal regular curve in the plane H;
by 1.6.

Y If P = (z0,Y0,20) with o # 0, then let @} be the intersection
with H; of the line through O engendered by P. If it were be Q € C,
then P and some point of C would be on a line through O, which is
impossible. Hence we must have Q ¢ C. Since C U {Q} C Hi, and this
set is vectorial independent in R3, it must be a regular set in H; by 2.1.
Thus C cannot be a maximal regular curve in Hj.

Suppose now that C C H; is a maximal vectorial independent set
in the space R3. Then by 2.1, it must be a maximal regular curve in
the plane H;. ¢

3. Chebyshev systems of three functions

Let us consider the Chebyshev system of bounded functions
{p1,¥2, p3} € C(I), where I is an interval with the endpoints 0 and 1
in R.

We distinguish the case when I is semiclosed, e.g., I =[0,1) and
lim; 1 ;(t) = ¢;(0), ¢ = 1,2,3. In this case (and in the similar case
when the role of 0 and 1 is inverted), we can identify our system with
a Chebyshev system on S!, the circle, and in this case it is called a
periodic Chebyshev system.

It is well known that the Chebyshev (or Haar) system {1, ©3, @3} C
C C(I) can be characterized by the fact that the matrix

p1(t1) @2(t1) @s(t)
o1(t2) a(ta) ws(ta)
p1(ts) a(ts) s(ts)
is nonsingular whenever t1, t5, t3 are distinct points of I.

Let us consider the space R® endowed with the Cartesian reference
system Ozyz. The above characterization of the Chebyshev system can
be transposed in the following assertion:

3.1. The functions 1, @2, w3 € C(I) form a Chebyshev system
if and only if the function ® = (1,2, p3) : I — R3 is injective and
®(I) is a vectorial independent set in the space R3.

This assertion together with 2.1. gives:

3.2. The function system {1,41,%2} € C(I) is a Chebyshev sys- .
tem if and only if ¥ = (1,1,%2) : I — R® is an injective function and
U(I) is a regular curve in the plane Hy = {(1,y,2) : y,z € R} of the
space R3. :
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Conversely, if C is an arbitrary regular curve in the plane Hy,
then for each continuous injective parametrization ¥ = (1,1, pa) of it,
{1,% 92} is a Chebyshev system.

The above functional characterization of regular curves yields the
following result:

3.3. IfC is a regular curve in a bounded domain of the plane Hy of
R? defined in 2.1, and if ¥ = (1,41, 13) 4s its injective parametrization
with ¢; € C(I),i = 1,2 then A = lim;_,o ¥(t) and B = lim;_,; U(¢)
ezist. The points A and B are called the endpoints of the curve C.
Proof. According to 3.2, {1,11,12} is a Chebyshev system, and since
C is a bounded set there exist the real numbers a; = liminf; ,q i (t)
and b; = limsup,_,o ¥;(t) (¢ = 1,2). If it were for some i a; < b;, then
the function

$(0) = wi(e) — 45

would have an infinite number of zeros when t — 0. But this is impos-
sible since 9 € sp{1,¥1,v¥2}. ¢

In accordance with the terminology introduced in section 1, we
shall consider only regular curves which are bounded. This corresponds
with the condition that only Chebyshev systems of bounded functions
are considered (see the beginning of this section).

3.4. The Chebyshev system {1,%1,12} can be extended with a
point if and only if the regular curve C = U(I), (¥ = (1,41,%2)) in the
plane H; defined in 3.2, is not mazimal.

Proof. If the Chebyshev system {1,1,12} can be extended to ¢ ¢ I,
then if we put P = ¥(c), the set CU{P}, P ¢ C is vectorial independent
in the space R®. Thus by 2.2, C cannot be a maximal regular curve.

Conversely, if C is not a maximal regular curve then for a point
P € Hi such that C U {P} is a regular set, by putting ¥(c) = P for
some point ¢ € I, we get that C U { P} is vectorial independent by 2.1,
and hence by 3.1, the system {1, 1,12} so extended is a Chebyshev
system on I U {c} O

3.5. Let {1,71,9%2} C C(I) be a Ohebyshev system with 1y, ¥
bounded functions, ¥ = (1,1,9).

(a) If I =(0,1) and
lim ¥(t) = lim ¥(2),

t—1

t—0
then {1,%1,%2} can be extended to [0,1) as a periodic Chebyshev system.

(b) If I =(0,1) and




72 A.B. Németh

lim U(t) # lim ¥(¢),

t—0 t—1
then {1,%1,%s} can be extended to a Chebyshev system in the space
Clo, 1].

[ gc) If I =1[0,1), then {1,%1,%a} is whether a periodic Chebyshev
system, or it can be extended to a Chebyshev system in the space C|0, 1].
Proof. (a) In this case the regular curve C = ¥(I) does not contain
its endpoints A = lim;_,o ¥(¢) and B = lim,,; ¥(t). According to 1.5,
C U {A} is a regular curve. It is closed, since A = B. Put ¥(0) = A.
Then ¥ : [0,1) — R® is injective and continuous, hence {1,%1,%2}
extended this way is a periodic Chebyshev system.

(b) We can apply this case twice the assertion 1.5 to conclude
that the curve C U AU B is a regular curve. Now putting ¥(0) = A
and ¥(1) = B, ¥ : [0,1] — R® will be continuous, injective, hence
{1,%1,%3} in this way extended will be a Chebyshev system in the
space C[0,1].

(c) The proof of this case is contained in fact in the proofs of (a)
and (b). O

3.6. Let {1,992} C C(I) be a Chebyshev system with 1, P2
bounded functions. Suppose that it can be extended with a point.

(a) If I = [0,1], then {1,%1,%2} can be extended to a periodic
Chebyshev system on [0, 2).

(b) If I = (0,1) we have one of the following variants:

(bl) The system can be extended to a periodic Chebyshev system
on [0,1).

(b2) The system can be extended to a Chebyshev system in the
space C|0, 1] which cannot be extended further with any point.

(b3) The system can be extended to a periodic Chebyshev system
on [0, 2).

(c) If I =10,1) or I = (0,1], then we have the alternatives:

(c1) The system can be extended to a Chebyshev system in the
space C[0, 1], which cannot be extended further with any point.

(c2) The system can be extended to a periodic Chebyshev system
on [0,2).
Proof. (a) The regular curve C = ¥([0, 1]) contains its endpoints A and
B and is not maximal by 3.4. In this case we are within the condition
of the assertion 1.12 (a) and hence there exists a curve C; with the
endpoints A and B'such that C U(; is a closed regular curve I'. Let
us take a continuous injective parametrization T = (1,v1,v2) : [1,2] =
— R3, of C; with (1) = B and T(2) = A. Let be



Regular plane sets and Chebyshev systems 73

wit), iftelo1],

= { vi(t), ifte(0,2),

Then (1,&;,£2) will be a continuous parametrization of I', which is

injective on [0, 2). Since I is a closed regular curve, we have by 3.2 that
{1,&1,&2} is a periodic Chebyshev system on [0, 2).

(b) The case (b1) follows from 3.5 (a). From 3.5 (b) we have that if
3.5 (a) does not hold, then the system can be extended to a Chebyshev
system on [0, 1]. If it cannot be extended with any point, we have the
situation (b2). If it extends with a point, we use (a) to conclude (b3).

(c) The proof of this case is contained in fact in the proof of (b). ¢

Proof of Theorem 1. By Th. 0, there exists a function in
sp{¢1, P2, p3} which has a nonnodal zero at 1/3, is positive elsewhere
in [0, 1], and there exists a function with a nonnodal zero at 2/3 which
is positive elsewhere in [0,1]. By summing these two functions, we
obtain a positive function in sp{pi, p2,v3}. Hence we can suppose,
passing if necessary to another basis, that the function ¢, is strictly
positive. Thus ¥ = @o/p; and s = 3/p; are continuous functions
on [0,1]. Let us see that {1,1, %2} is a Chebyshev system. Take ¢ €
& sp{1, 41,42} \ {0} arbitrarily. Then g3 € sp{p1, @2, @s} \ {0} and
the number of zeros of ¥ and of 17 is the same, since ¢; is strictly
positive. Hence ¢ can have at most two zeros, which proves our claim.

Let us suppose that {1,7,12} has been extended to a periodic
Chebyshev system on [0,2). We extend ¢; to a continuous positive
function on [0, 2] with the property that ¢1(2) = ©1(0). Let us define
@2 and @3 on the interval [1,2) by putting @2 = 191, Y3 = P1¥2.
Then {(,01,Q01¢1,(,01’(/12} = {gol,(pz,(pg,} will be a periodic Chebyshev
system on [0, 2).

By similar reasonings it follows that all the properties of the
Chebyshev system {1, ¢2, p3} which occur in Th. 1, have their cor-
respondents for the Chebyshev system {1,1,2} defined above, and
conversely. Hence it is sufficient to prove Th. 1 for the Chebyshev
system {1,1, 1} which we shall do in what follows.

The implications (vi)=>(v)=>(iv) are obvious.

(iv)=>(iii). Suppose that {1,1, s} extends to [0, 1]U{c} with ¢ ¢
¢ [0,1]. Consider the elements 1 of the extended space having the prop-
erty 1(c) = 0. These form a two dimensional subspace of sp{1, 1, ¥2}.
Each nonzero element 1 of this subspace can vanish at most once in
[0,1]. Hence, restricted to [0, 1] it will be a Chebyshev space of dimen-
sion two.

i=1,2.
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(iii)=(i). If sp{1,%1, 2} possesses a subspace Lo of dimension
two, which is a Chebyshev space, then for each tq € [0, 1], there exists
an element of Lo having a nodal zero at £ and is different from zero on
[0,1]\ {to}. We have seen above that every Chebyshev space of three
functions contains elements which differ from zero throughout. From
Th. 0 it follows that sp{1, %1, %2} contains elements with nonnodal zero
at any to € (0,1). In conclusion, the Chebyshev space sp{l,1, %2}
possesses the adz property.

(i)=-(ii) is obvious.

(ii)=>(iv). Assume the contrary: the Chebyshev system {I, 1, ¢z}
cannot be extended with any point. Then by 3.4, C = ¥([0, 1]) where
U = (1,41, %2), is 2 maximal regular curve in the plane H; = {(1,y,2) :
y, 2 € R} of R®. According to 1.11 at least one of the following condition
holds:

(a) Each line through A = ¥(0) in H; meets C in a point ¥(t)
with ¢ € (0,1].

(b) Each line through B = ¥(1) in H; meets C in a point ¥(t)
with ¢ € [0, 1).

Suppose (a) holds and let be ¢ € sp{1,41, %2} a function which
vanishes at 0, ¥ = ¢; + cat)1 + co)3. Then the plane H through 0 with
the normal vector ¢ = (cy, ca, c3) contains A = ¥(0). Thus HNH; is a
line through A, which by (a) meets C in a point ¥(¢) with ¢ € (0,1]. But
then ¥(t) € H and consequently (c, U(t)) = ¢1 + cath1(t) + c392(t) = 0.
We have concluded this way that a function v € sp{1,%1, %2} which
vanishes at 0, vanishes in another point in (0,1]. But this contradicts

The proof of (iv)=-(vi), is contained in the assertion 3.6 (a).

This completes the proof of Th. 1. ¢
Remark. Observe that in the statement of Th. 1 condition (i) (the
requirement of the adz property) can be weakened as

(i’) The Chebyshev space sp{¢1, 2, ps} contains elements van-
ishing only at 0 and contains elements vanishing only at 1.

Proof of Theorem 2. The same reasoning as that at the beginning of
the proof of Th. 1 shows that it suffices to consider Chebyshev systems
of form {1,141, ¥2}.

We have shown in the proof of (iv)=-(iii) of Th. 1, that if {1, 11, 13}
extends with a point, then the space sp{1, 11,2} possesses a two di-
mensional Chebyshev subspace, Wherefrom we have the proof of (ii)=
=>(iii) of Th. 2.
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If the Chebyshev space sp{1, 11,2} possesses a Chebyshev sub-
space of dimension two, then (i) of Th. 2 cannot hold. This shows
(1)=(ii).

Finally, if (i) of Th. 2 does not hold, by (a) there exists a function
¢1+ca1 + 312 vanishing only at 0. Let H be the hyperplane through
O in R® with the normal ¢ = (ci, 2, ¢c3). The line d; = H N H, meets
the regular curve C = ¥([0, 1]) of the plane H; = {(1,y,2) : y, z € R}
only at A = ¥(0). We can get by (b) similarly a line d; in the plane Hj,
which meets C only at B = ¥(1). We are then in one of the situations
(@), (B) or (y) of Fig. 2 and thus by 1.8 the regular curve C cannot be
maximal. But then, by 3.4, (iii) cannot hold. This proves (iii)=>(i) and
completes the proof of Th. 2. ¢
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