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Abstract: In this paper we prove that the set of all continuous solutions of
the nonlinear Volterra integral equation provided with the Henstock—Kurzweil
integral is an Rs. In particular, it is nonempty, compact and connected in the

space of all continuous functions with the topology of uniform convergence.

The Henstock-Kurzweil (shortly: (H-K)) integral (see [4], [6])
which is equivalent to the Denjoy-Perron one, is based on the modifica-
tion of the Riemann original definition. Since the Henstock—Kurzweil
integral allows to integrate the Newton, Riemann and Lebesgue in-
tegrable functions, so it is a convenient tool to investigate so called
generalized solutions of differential equation (see [2], [3], [5], [6], [7])-

The purpose of this paper is to investigate continuous solutions of
the following nonlinear Volterra integral equation

(1) - z(t) = q(t) —i—/f(t,s,:c(s))ds, tel,

where I = [0, a}, a > 0 and the sign ” [ stands for the (H-K)-integral.
In what follows we obtain the topological characterization (in particular
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— the existence) of the continuous solutions set of (1). Our result
generalizes Th. 1 and Th. 4 ([2]).
Assume that T = {(¢,s) : 0 < s < ¢ < a} and

1° ¢: I — (o, B) is a continuous function;
20 f:T x [a, B] — R is a function such that
(i) s — f(t,s,z) is a Lebesgue measurable function for
every z € [o, f] and t € T,
(i) = — f(¢, s, z) is a continuous function for every ¢t € [
and a.e. s € [0,1];

30 there exist functions m : T — R and M : T — R such that for
every t € I the functions m(t,-) and M(t,-) are integrable in
the Henstock-Kurzweil sense on [0, t] and
m(t,s) < f(t,s,z) < M(t,s) for (t,s,z) €T x [, B];

4% there exist functions r(r,t,s), R(7,t,s) (0 < s <t <7 < a)
such that the functions r(r,t,-), R(7,t,-) are (H-K)-integrable
and

r(r,t,8) < f(r,8,z) — f(t,s,z) < R(,t,$);
¢

.
5° lm [[r(7,t,s)ds+ [ m(T,s)ds] =0 and
t

T—t—0t 0

t T
lim [f R(7,t,s)ds+ [ M(r,s)ds] =0 for fixed  or 7.
T—t—0t 0 +

Denote by C(I, [, B]) the topological space of all continuous func-
tions I — [a, B] with the topology of uniform convergence. Now we
prove the following

Theorem. Under the above assumptions there exists an interval J C I
t
such that for B = C(J,[a, B]) and G(z)(t) = q(t) + [ f(t, s, z(s))ds
. 0

(i) G(B) is relatively compact;
(il) G is continuous.
Hence G satisfies the assumptions of the Vidossich Theorem ([8],
Cor. 1.2.) and therefore one has the following
Corollary. The set S of all continuous solutions of (1) is an Ry, i.e. it

15 homeomorphic to the intersection of a decreasing sequence of compact
absolute retracts.

Proof of the Theorem Let oy = 1116119 q(t), b1 = max q(t). Obviously

a1 > o and B; < B. By 59, it is clear that we can choose a number
0 < d < a such that
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¢ ¢
/M(t,s)ds <B- and /m(t,s)dsz oa—ao1
0 0
for every t € [0,d]. Put J = [0,d]. Define
¢
F@)) = /f(t, s,2(s)ds forze€B andtcJ.
| 0

From the inequalities
a=o;+a—o <

< 1&1}1 q(t) + /m(t, s)ds << q(t) + /f(t, s,z(s))ds <
0 0

¢
Sntaeaqu(t)+/M(t,s)d5§§ﬁ1+,ﬁ——,@1:,6 for ze€B,teJ,
0

we infer that G(B) C B. Since
G(z)(1) = G(z)(t) =

= g¢(7) — q(¢) +/f(’l', s,z(s))ds — /f(t, s,z(s))ds =

t

= g(7) - q(t) + / (1, 5,2(5)) — £ (¢, 5, 2(s))lds + / £(7,5,2(s))ds,

t T

a(r) — q(t) + / r(r,t,5)ds + / m(r, s)ds < G(z)(r) — G(z)(t) <

< q(r) — q(t) + / R(r,t,s)ds + / M{(r, )ds

for fixed £ € J and 7 > t (analogously for fixed ¢t € J and 7 < t). By
the above inequalities we infer that the family G(B) is equicontinuous
at t. Since J is compact, G(B) is equiuniformly continuous. In view of
Ascoli’s theorem it is relatively compact which proves (i).

Now, we verify that G is continuous. Let zo € B and let (z,,) be
any sequence such that z, € B forn € N and z,, = z9. Fixt € J. Put
¢n(s) = F(t,8,2n(5)), wo(s) = f(t,s,20(s)) for s € [0,t]. Obviously,
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¢n(8) = @o(s) for a.e. s € [0,¢], as n — oo. Moreover m(t,s) <
< pn(s) < M(t,s) for s € [0,t]. Hence by the well known dominated
convergence theorem for (H-K)-integral (cf. [2]) we get nll)ngo F(zn)(t) =
= F'(z0)(¢). Hence ILm G(z,)(t) = G(z0)(t). In view of equiuniformly
n—0oQ0

continuity of G(B) we deduce that G is continuous which proves (ii). ¢
Remark. Consider the equation (1) with the Lebesgue integral instead
of the (H-K)-one and the function h instead of f. Assume that the func-
tion A : T X [e, ] = R is a Carathéodory function (see the assumption
29). Moreover, suppose that

a) there exist a function p : T — Ry such that for every ¢ € I the
function p(¢,-) is Lebesgue integrable on [0,t] and
| h(t,s,z) |< p(t,s) for (t,s,z) €T x[e, B];
b) there exists a function p(7,t,5) (0 < s <t < 7 < a) such that
| h(T,s,2) — h(t,s,z) |< p(7,t, 8),
t T
c) Lm [(L) [ p(r,¢,8)ds+ (L) [ u(r, s)ds) = 0 for fixed ¢ or T,
T—1—04 0 t
where the sign ”(L) [” stands for the Lebesgue integral.
It is well known that under the above assumptions the equation (1) has
at least one local continuous solution.
Now, let f(¢t,s,z) = h(t,s,z)+m(t, s), (t,s,z) € T X[, B], where
h satisfies the assumptions a)-c) and m : T — R is a function such that

(j) for every t € I, m(t,-) is (H-K)-integrable;
(i) lim [ m(r,s)ds=0 for fixed ¢ or 7;
t

T—t—=0+

¢
(i) lim  f(m(r,s) —mf(t,s))ds =0 for fixed ¢ or 7;
0

T—t—01
 Obviously f satisfies 2° — 5°. But it is clear that k does not have to

satisfy a)—c), m does not have to satisfy (j)—(jjj), in spite of this the
sum h +m = f will satisfy 2° — 5°.
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