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Abstract: We study the continuity of the solutions of parametric general-
ized equations, including Hammerstein integral equations, by using implicit
function theorems for monotone mappings in reflexive Banach spaces.

1. Introduction

The most important results on the surjectivity of monotone oper-
ators and in the same time on the solvability of monotone generalized
equations appeared in the 60’s and 70’s in the papers by F. E. Browder,
G. J. Minty, J. P. Aubin, V. Barbu, R. T. Rockafellar and others.

The study of the sensitivity of the solutions of parametric gener-
alized equations had a great development since 1980. We can mention
the papers by S. M. Robinson, R. T. Rockafellar, B. Kummer, B. Mor-
dukhovich, H. Frankowska, J. B. Penot, Zs. Piles and others. Because
of the importance of variational inequalities, sensitivity analysis for
monotone generalized equations has been studied in many papers (S.
Dafermos (3], W. Alt and I. Kolumbén [1], N. G. Yen [7], G. Kassay
and I. Kolumbén [5]).




130 A. Domokos

In these papers have been used the properties of the metric pro-
jection on nonempty, closed, convex sets in finite dimensional Euclidean
spaces or infinite dimensional Hilbert spaces. These properties cannot
be used in general Banach spaces.

In this paper a main result is stated for reflexive, strictly-convex
Banach spaces with strictly-convex dual. We follow some of the ideas
of G. Kassay [4], used in that paper for completly continuous, single-
valued mappings. As application we study a special class of nonlinear
equations, including the Hammerstein integral equations.

2. The main result

Let X be a reflexive, strictly-convex Banach space with X* strict-
ly-convex and let W be a topological space. Then the following theorem
is true.

Theorem 1. Let F: W x X ~ X* be a set-valued map, let (wo, To) €
€ W x X and let Wy and X, be neighbourhoods of wg and zy. It is
supposed that:
(1) 0¢€ F(’wO,.’Bo),’
(ii) F is consistent in w at (wp,To), i-e. there exists a function B :
: Wo — Ry which is continuous at wo and B(wo) = 0 such that,
+ for all w € Wy, there exists y,, € F(w,zo) satisfying ||yw|| <
< B(w);
(iii) for all w € Wy the set-valued mappings F(w,-) are mazimal-
monotone;
(iv) for all w € Wy the set-valued mappings F(w,-) are uniformly-
monotone on Xy, i.e. there exists an increasing function ¢ :
: Ry — Ry, with ¢(0) = 0 and ¢(r) > 0 when r > 0, such
that
(@] — 23,21 — 22) 2> ¢(||z1 — B2)) |21 — 2,
Vzy, 22 € XoND(F(w,-)), Yz} € F(w, 1) and Vz4 € F(w,xs).
Then there exist neighbourhoods Wi of wg, X1 of o and a unique
mapping x : Wi — X, which is continuous at wo and such that 0 €
€ F(w,z(w)) for all w € Wy and z(wo) = zo.
Remark 1. In [1] an assumption similar to (ii) was used. We can use
another formulation:

(i)’ For all e > 0 there ezist neighbourhoods W, of wy and X, of zg
such that
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F(w,z) C F(wp,x) +eBx-~
forallw e W, and z € X,.

In the case when in Th. 1 we suppose (ii)’ instead of (ii) it is
enough to have uniform-monotonicity for F'(wg, ) and strict-monotoni-
city for F(w,-) when w € Wy. Assumption (ii) says that we have a
selection for F'(-,zq) which is continuous at wg. In the proof of Th. 1
we do not need monotonicity properties of F'(wg, ). We need only that
0 € F(wg,zo). But it is very useful to see the difference between the
positivity of F'(wp,-) and F'(w, ).

The proof of Th. 1 is based on two lemmas. In the following we
take g = 0 and suppose that the assumptions of Th. 1 are satisfied.
Lemma 1. For all numbers 6,¢ with 0 < § < e, B(0,e) C Xo we have

inf {inf {l—li—”(x,x*);x* € F(wo,m)} 5 < ol < e} > 0.

Proof. Let z € X with ¢ < ||z]| <¢, and let z* € F(wo, z). Then
> > i =
@.5%) 2 pllialllell 2 int_olr)s=d >0,
S0

inf {inf{ﬁ(x,m*) cxt € F(wo,x)} 0 < lz]| < 5} >d>0. ¢

Lemma 2. LetT : X ~» X* be a mazimal-monotone set-valued map.
For all integers k > 1 let P, : X* — X be the single-valued mapping
defined by P, = (J + kT)™}, where J : X — X* is the normalized
duality mapping defined by '

J(z) = {z* € X* : (z*, ) = ||=[?, |=*]| = |||},
which in our case of a reflerive, strictly-convexr Banach space with
strictly-convex dual, is single-valued and bijective. If a sequence (zy),
with Tg+1 = Pi(Jxy), is bounded, then there exists € X such that
0 € T(z') and (zx) has a subsequence weakly converging to = .
Proof. We will use the mappings (Jr : X — X™ defined by

Qu(w) = 7 (J(2) = T o Pro J(z)

Then 0 € T'(z) if and only if 0 € Qx(z). We have

1 1 1 1
1Qx(@)ll < LI (Xl + LT (Pe(T @)l = gllznll + £ llwwall -
Taking into account that the sequence (zj) is bounded, we have

Qr(zr) >0 when k — oo.
We have Qi(z) € T(Py(J(z))), because of
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PyoJ(z) = (J+kT) Y (J(z)) &
& J(z)eJoPyoJ(z)+ kT (PyolJ(z)) &

o %(J(:c) — JoPyoJ(z) €T (PyolJ(x)).
The space X being reflexive, we can suppose that there exists a sub-
sequence of (z1) (denoted also by (zy)), such that zx — z € X. The
monotonicity of T implies that
(z — PgoJ(zk),y — Qr(zx)) >0
forall k € N,z € X,y € T'(z). Using the weak convergence of (zx) and
the strong convergence of (Qx (%)), we conclude that
(‘T - ‘7’.I7 y) _>.. 0

for all z € X,y € T(z). The maximal monotonicity of T implies that
0eT(z). O

Proof of Th. 1. Let 0 < § < € be such that B(zg,e) C Xo . We
define the function f: W x X — R by

F(w,z) = inf {lTalﬂ@ o) 3" € F(w,z)}.

From Lemma, 1 we have
inf  f(wg,z) =d > 0.
0<|z]|<e

Let z € X be such that § < ||z]| < e, let w € Wy and z* € F(w,x).
Assumption (ii) implies the existence of y,, € F(w,0) with ||y,| <
< B(w). Then

¢ (=) llzll < (2, 2% — yo) < (z,57) + B(w)
and hence

(z,2%) = o (|2]) =] — eB(w) = ¢(6)5 — eB(w).

We can find a neighbourhood W' C Wy of wg such that ef(w) < 2 for
allw € W' . Then L

s Jwe)2d=g5=5>0
for all w € W'.- We can suppose that D(F(w,-)) = B(0,¢), otherwise
we replace F'(w, ) with F'(w, ) +Np(,)(-), where Np(q ) is the normal
cone operator to B(0,¢). Let w € W' be arbitrarily chosen. We denote

Py(z) = (J + kF(w, "))~ (J(2)).
Put z; = 0 and zg41 = Pi(zg) for all & > 1. We will prove that
lzkll <6, for all k> 1.

We suppose that this is not true. Let kg be the first integer such

that ||zx,|| < 6 and [|zg,+1|] > J. Then
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' Thko+1 = (J + kOF(wv '))—1 (J(‘Tko)) -
which implies that
J (-'L'ko)- eJ ($k0-+1) -+ k()F (w, mkg—i—l) .

Hence Zg,+1 € D(F(w,-) and ||zg,+1]| < €. Then, there exists ugy41 €

€ F(w,Zg,+1), such that

J(Tko) = J(Tho+1) + FoUko+1-

Then we have
N (@re) HllZko+1ll = (Trot1s T (Zko)) = (Thot1, J(Tro+1) + KoUko+1) =

= (Thot1s I (Tho+1)) + ko{Tho+1, k1) 2 l|Tko+1ll” + kog > |leroall*.

Consequently , , '
orall = 1 @) > lorgsall > 5,

which is a contradiction. .

So we have proved that the sequence (zx) is bounded. In view of
Lemma 2 we can find £ € X such that 0 € F(w,z), and we can also
find a subsequence of (z)) weakly converging to z. The ball B(0,4)
being weakly compact, we have z € B(0, 9).

In consequence, if we fix 1 > & > 0 with B(0,e1) € Xop, then,
for all 0 < § < €, we can find a neighbourhood W;s of wp such that
for all w € Wj there exists a unique z5(w) € X with ||zs(w)|] < d and
0 € F(w,zs(w)). '

Next we define z : W, — B(0,¢) by z(w) = z.(w) and we take
Wy = W, X1 = B(0,¢).

The mapping z is continuous at 0. Indeed, let 0 < 61 < . Then
there exists a neighbourhood Wj;, of wy and a unique mapping s,
with the above mentioned properties. In accordance with the unicity
we have z5, (w) = z(w), and from this we get. ||z(w)|| < 61, for all
weW.N W51. O
Corollary 1. Let (W,d) be a metric space. In addition to the hypotesis
of Th. 1 suppose that the following two conditions are satisfied:

(v) T(wo,-) is strongly-monotone on Xo with a constant a > 0, t.e.
for all z1,zo € Xo and for all z3 € T(wo,z1),z5 € T{wp, T2)
we have

(% = 55,51 — @2) > aljas - za]]”.
(vi) There exist a neighbourhood U of 0x- and A > 0 such that
T(w,z)NU C T(wo,z) + Ad(w, wo) Bx~
for all x € Xo,w € Wy, i.e. the mappings T(-, ) are pseudo-
Lipschitz continuous at wy.
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Then, the unique mapping = : Wy — X from Th. 1 is Lipschitz-
continuous at wy.
Proof. Let w € W;. Then there exists z(w) € X; such that 0 €
T'(w,z(w)). Using the assumption (vi) we can choose u € T'(wp, z(w))
such that |Ju|| < Ad(w,wp). Then

al|z(w) — 2ol < (u — 0, z(w) — zo) <
< lufl - flz(w) — zol| < Ad(w, wo)||z(w) — o]
and hence
lo(w) - zoll < 2d(w, w). 9

3. Application

Now we will study the continuity of the solution of the following
equation

(1) . w=u+GoH(),
which can be written in equivalent form
(2) 0€ H(u) — G w — u),

where X is a reflexive, strictly-convex Banach space with strictly-convex
dual, and H : X —» X* G : X* — X. This kind of equatlons includes
the Hammerstein 1ntegral equations of the form

3) M@+/K@wﬁ@m@W@=M@,

where (a,b) C R is bounded, X = L?(a,b),p>1,1/p+1/qg=1,
b

Huw=F@mu»Gum:/K@www@.

The following two results from [6], show that there is possible to include
the equations of the form (3) in the class of the equations of the form 1).
Proposition 1. IfF : (a,b) xR — R satisfies the following properties:

(1) F(-,r) is measurable for all r € R,
(2) F(=,-) is continuous for almost all z € (a,D),
(3) there ezist g € L9(a,b) and c > 0 such that
|F(z,7)| < g(z) +clrP7H,
(4) (F(z,r) — F(z,72))(r1 —72) >0 for all z € (a,b), r1,72 € R,
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then H 1is a well-defined monotone, continuous operator from LP(a,b)
to L(a,b).
Proposition 2. Suppose that p—q > 1 and

1

q

b
/ |K(z,y)|%z | <c for almost all y € (a,b),

b
/|K(x,y)|p_qdy <d for almost all =z € (a,b).

Then G is a linear, continuous (not necessarily compact) operator from
L(a,b) to LP(a,b).

Theorem 2. Let H : X — X* be a uniformly-monotone and contin-
uwous mapping with D(T) = X, let G : X* — X be a strictly-monotone
and linear mapping with D(T) = X*. Then there exists a unique con-
tinuous mapping v : X — X such that, for all w € X, u(w) is the
unique solution of (1).

Proof. The existence of a solution has been discussed in many papers or
books ([2], [6]). In our case, for all w € X there exists a unique solution
u(w) € X. Since @G is linear and monotone, it is continuous and because
of D(T) = X*, it is maximal-monotone. So, the mappings T(w,) =
= —G~}(w~—") are single-valued, monotone, linear and continuous. The
sums H (-)+7'(w, -) are uniformly-monotone and maximal-monotone for
all w € X. The continuity of G~! implies assumption (ii). If we choose
~a wp € X arbitrarily, we can find a neighbourhood Wy of wy and a
unique mapping u,, defined on Wy, which is continuous at wp and
such that, for all w € Wy, uy,(w) is the unique solution of (1). So,
U (W) = u(w) for all w € Wy, and u is continuous at wq. ¢

Remark 2. In the case when G is a nonlinear set-valued mapping and
if we suppose that G is uniformly-monotone, then we can obtain the
same conclusions as in Th. 2. _
Remark 3. When H and G are strongly-monotone, H is Lipschitz-
continuous on X, we can use Cor. 1 to prove the Lipschitz-continuity
of the solution mapping.
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