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Abstract: The problem of finding or describing all solutions f : R — X of
F(E+ )| = ||1F(€) + f(n)]| had its starting point in a lecture given by Prof.
Roman Ger in Graz, where he presented a very special continuous solution
by J. Dhombres. This paper presents a characterization of all continuous
(and all differentiable) solutions of the functional equation. It generalizes the
description in the well-known case, where the norm is strictly convex and
therefore all solutions are additive.

Our first task is looking for some necessary conditions which the
solutions of the functional equality have to fulfil. In order to formu-
late this conditions, we need some preparations. We are always work-
ing in some real normed vector space (X,|| ||) with unitsphere S :=
= {z € X]| ||z|| = 1}. The convex hull of a set A is denoted by
conv(A) or for short conv A and sgn(¢) is the sign of the real num-
ber £.

Lemma 1.

3 =l = [I(L =Xz + Myl = llyl| = 1 <= conv{z,y} C S.
o<kl

Proof. “«=": trivial.
“=": Let z € int conv{z,y}, then there exists a 0 < p < 1 with

z=(1- p)z+ py.
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1. case: 0 < p < A, then 0 < A — p < 1 and one easily can check,
that

1

(1-XNz+ Ay = <1—i\__l£) ((1—u)x+ﬂy)+é{—5y

and therefore

A— L A—p
1=l -+l < (1= 325 ) 10— we+ il + 7
1< |1 — p)z + pyll-
This together with '
(1 = )z + pyl| < @ = )zl + pllyll =1
yields ||(1 — p)z + py|| =1 for every 0 < p < A.
2. case: A < p < 1. Same method. ¢
Lemma 2. Let zy,...,T, € X nonzero vectors, then
z
l|lz1+- -+ za|| = ||z1]| +- -+ ||zn]| = conv{—m—l—,...,—"—} C S.
|lzal] |||l
Proof. “=": Let y; := 127,54 =1,...,n and A; := —M C =
[lz:]] )
22 Hzsll
i=1
. n
= conv{¥y1,..-,Yn} C S implies Y A;y; € C C S, meaning that
i=1
E-’Ez
ZA’LM'L - n
i=1 Z llwzll

“—7. Proof by induction. The case n = 1 is trivial. The step
from n to n + 1 is based on our general assumption

o1+« + To + Tl = l3a]] + -+ ||zl 4 En g,
which implies
lz1 + - 4 zp)| = |31+ + Zn + Zpy1 — Tnga]] 2
> [lz1+ -+ Tpga]l = [|znall =
= |lzall + -+ l|Zngall = |#n41ll =
= ||zl + - + llzall-

Together with ||z1 + - - + znl|| < Z l|zi|| we get || Z zi|| = Z l|z:]]-
By the same reasoning we get for evcry nonempty I - {1 2,. n +1}
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(%) Yozl = Jlall.

iel i€l
: ™ (S
Let y; := ” fpi=1,...,n+l and \; := 12—, thenp:= ) A\jy;isa
_Zl 1A i=1
J:
convex combination of the ¥, .. ., y,+1 and according to our assumption
llpll = 1, i.e. p € S. We will show now, that conv{y,... ,yn+1} CS.
n+1
z € convi{yy,...,Ynt1} => 2z = Y. W;Yi, with V 0< <1
i=1
n-1 :
and > p; = 1. If p; = 0 for some ¢, then there is a nonempty subset
i=1

Ic{l,...,n+1}, #I < n and therefore z € conv{y;|i € I} C S by (x)
and induction hypothesis. Let us therefore assume, that 0 < p; < 1 for
ali=1,...,n+1 and z # p. Consider the line through p and =z:
n-1
y(r) = (1—mp+7z=> (AN(l—7)+pm7)yi =
i=1
n+1

= Z (M + (i — A)T) us

n+1 n+1
Because of Z pi = Y. A; =1 and p # z, there exists an index ip with
=1 i=1

— A < O and another index 7, with ,uh A;; > 0. This implies the
existence of the following “inf” and “sup”:

7_ = inf {

T4 1= sup {

n+1
v /\i+(ui—>\i)’r20}a
i=1

v i + (g )\)TZO}.

According to the definition of 7_, 7, we conclude, that y(7_), y(74)
are convex combinations of at most n vectors of the y1,...,Yn+1, and
therefore by induction hypothesis y(7_), y(7+) € S. But p = y(0) €
€ S is an inner point of conv{y(r_),y(r4+)} and hence z € conv{y(r_),
y(1t4)} C S by Lemma 1. ¢

Lemma 3. Every solution f : R — X of ||f(€+n)|| = ||F(&) + F(mIl
has the following properties:




120 P. Schépf

L v f(=€)=-f(&);

" geRr

2. v v |If(&O = sl fE)l;
KEQ £€R
3. v [1£(&) + F(m)ll = |If(m)|] + sgn € sgnn|| £(£)]]-
£,mEQ,[€]<|n]#£0
Proof. Ad 1.

F Ol = 170+ 0)]| = |I£(0) + f(0)]] =
= [12f (0)|l = 21|17 (0)|| = f(0) = o.

0=FONI=IfE= Ol =IfE+ (=Nl =
=[IF )+ F(=OI = £(§) = f(=&) = 0= f(=€) = ~f(9).

Ad 2. 1. step: By induction we show
v v (I < nlIFEII.

£eER neN

The case n = 1 is trivial. Now let us do the induction step from n to
n+ 1.

1f((n+DEN = [1£(n&) + F(E)]] <
< |IF @O+ 1O < nllF O+ IF @ = (n+ D)]IF ()]

2. step: Now we are going to show

v Y (RO = nllf(E)]]-
£eR neN

The case n = 1 is trivial. Our induction step requires the case n = 2
and therefore, we have to prove it.

WF @O = I+ O =11£(&) + £ = 12F () = 2/ F(E)]I-

Our induction hypothesis is

v v [lf(m&)l] = ml|f ()]l

1<m<n £€R

For the induction step we have to distinguish two cases.

1. case: n 41 = 2k with k € N. This implies £ < n and our induction
hypothesis yields

1f((n +D)E)| = 11£(2k&)]| = 21| (k)| = 2K/ F )| = (n + DI F(E)]-

2. case: n+1=2k+1 with kK € N. We have k+ 1 < n and with our
induction hypothesis we get
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1 ((n+ DO = 11£ (2% +2)& = )| = |If 2k + Déx (=E))]] =
= [[f 2+ 1)) + (=Dl = [If 2k +1)§) - F©O)| >
2 [[FCE+DON=F O =2/ (& + DO -I£ () =
=2(k+ DA = NIF I = (n+ DI EII-

Because of ||f((n+ 1)&)|| < (n+ 1)||f(€)]] we get the desired equality.

3. step: Now let us show

Vv If I = &l £(O)]]-

0<KEQ £€R

Let & := 2, m,n € N, then [[f(2&)|| = m||f(zIl. But ||f(€)]l =
= [|f(nz&)l = nl|f(3€)]| and therefore ||f(Z€)]] = 2|7 (£)]]-
4. step: We show

AR 1 (&I = Il 7]

Let k € QQ, then
1 (RO = [1f (sgnl)[[E)]] = || sgn(=) f(lxlE)]| =
= [[f (& = Il £(E)]]-

Ad 3. 1. case: We show

ot o W@+ £l = 1A+ [1F .
<gneQ.

I1F &) + Fmll = [IF €+l = €+ mIf (DI} =
| = LSO+ allr I = AN+ 1F (-

2. case: We show

v A€ = Fmll = IIF I = I m)l-

0<£<neQ

WF@m) = FOI=1f =8l = -l f DI =

=0l (I = NI = [IF Il = NF -

3. case: Let £,n € Q and |¢| < |n|. We show

7 (m) + FON = I ()] + sgn € sgnnl|f (€)]]-
Without loss of generality £ # 0 # n;
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() + FEI = [|f(sgnnln]) + f(sgnéléD|| =

— || sgunf(inl)+sen A (IED] = Hf<|n|>+sg“f f(lfl)” -

sgnn
= ||f(|nl) + sgn&sgnn||f(|€]) =
= [|F(mIl +sgn&sgnn||fE)]]- ¢

Theorem 1. Every continuous solution: f: R — X of [|[f(§+n)|| =
= || (&) + f(n)|| has the following properties. ‘

L v f(=€)=-1(&);
¢eRr

2. v_ {IfEmll = IENFmIl;
&meR

!

3. \ 1£(&) + fF(l = 1 F (| + sgn&sgnn|| f(E)]];
£ mER &< n]

4, iff;éO,thenconv{HfEng ()||§<n, E,nER}CS

Proof. Ad 1-3, Lemma 3 and continuity of f.
Ad 4. Let us assume that f # 0. By 1. and 2. we infer, that
f is injective and therefore f(n) — f(€) # 0 if £ < n. We must show,
that the convex hull of finitely many vectors ”;—8’7’%—%, &< my,t=
=1,...,n is contained in S. For this task consider the set of arguments
A:={&mli =1,...,n} = {oq,...,an} with oy < @z <+ < o,
if all & > 0 or if all ; < 0. If there are indices ¢ and j with & < 0
and n; > 0, then 4 := {&,nili = 1,...,n} U {0}, ie. oy < @z--- <
<o =0< - < ap. Letn = agy and § = oy then we can
write
k(i)—-1
M — & = Qi) — Qi) = Z (aj41 — ).
j=l(i)
1. step: We want to show, that
D := conv{ flags) = Floy) ‘ =1,. } cS.
1 f(ej+1) — Flag)l]

By Lemma 2, we only have to show, that

m—1 m—1
ST (Flazar) = Fle)| = D I (@) = Flap)ll-
j=1 =1

This is done by the following formal manipulations with the aid of
Th. 1.3.
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3

(f(ag+1) = f(ay))

1

|= [1f (em) = flaa)ll =

J

(|| f(am)l] = |[f(ea)ll, f0< o <am
Wflam)l| + 1 f(e)]], a1 <0<oam
L f ()] = 1f(am)ll, ifor <am<0

( m—1

Z(Hf(%a || = 11f(epll)

i

-1 m—1

_ S Ul = (gl + D (1F (gl = 11 (e)ID,
=4 o —
remember oy =0 and f(0) =o

(IIf(aJ)H — [1f (j0)])

I
ey

N
3 .,
]
-

1f (el = 117 (@)l

-1 . m-—1

= < £ () = Flega)ll) + Y [1F(eg41) = Flaa)ll;
=1 j=l
m—1

1F () - f(ay+1)||

\ j=1
~1
= Z (aj+1) = flay)ll
hence D C S.
2. step: Formula (%) of Lemma 2 allows the conclusion
k(i)—1 k(i)—1
() S (flag) = Fl@))|| = D I1F(ags) = Fleg)l]
7=U(%) 3=1(i)

and hence (again by Lemma 2)
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n . = conv f(aj+1) - f(aj) ; . ;
izl Di = {Ilf(aj-{-l)*f(aj)nll()g‘?Sk( )} cS
With (**) we get
k(%_l (flajt1) — flay)
Flm) = F(&) =) 7+ I
L (m) = FEE)I  [Je@—1
! > (flajn) = flay))

J=I(i)

k(i)—1

_ |[f (1) = floy)] flaj1) ~ fay)
= 2 7@z~ Flagll <™
=i _Z | f(ej+1) = flog)l]
Because of

oo L) = f(&)
i=1 ||f(m) — F(&)]]
and the convexity of D, we conclude

F(m) = £(&)
“m”hum» ﬂ@u'_l }C& 0

Corollary 1. Let f: R — X be a solution of ||f(€ +n)|| = ||f(€) +
+ f(n)|| and assume, that II;EE 3” is an ezposed point of S (i.e. the

eD;cDcS

mazimal convez subset C of S containing this point is {Hf(g 1l }) for
some & € R\ {0}. Then

L F&+m) = £+ f(n)

Proof. Without loss of generality we may assume & > 0. Th. 1 (4)

then says, that conv {ﬂ%‘f > 0} C S and therefore II;:ESII =
_ (1) _  f(&o)

= TFON = Mo for every >0, ie.
f(1) @)
ggo f&) = ||f(€)||Hf( o = &[[fF (D] ||f(1)H = £f(1).

But by Lemma 3 (1) we get
v f(&) =¢f(D),

£€ER
which implies additivity of f. ¢
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Theorem 2. Let f: R — X a function satisfying the following condi-
tions

L. v f(=§=-f(),
£ER
2. gﬂyeR FEMI = 1L F I,

v flm) —f(&)  flm) — f(&)
3w%ﬂ&%ﬂ““{wmwwﬁmwmmrf@m}C&

Then f is continuous and

o T M EEml =117 + £l

Remark. Condition 3 in Th. 2 is weaker than condition 4 in Th. 1.

Proof. The third condition can reformulated (according Lemma 2) as
follows

17 () ~ F(E2) + Fnn) — FEDI = |1 ma) = FEI| + 11 n) — FEDIL

Now let ¢, € R\ {0}, £ < 7, then we have to distinguish four
cases.

1. case: 0 < &< n Ifwedefine §g =& =0<n =& <1ny =m, then
we get by 2 and 3.

£ (m) + £ = IF I+ =
allfF (N +ENFI = (+OUFOI = [If(n+ O
2. case: 0 < (£ <n. Hwedefine & =0<m =& =—-€E< =1,
then we get by 1, 2 and 3.
LFI = 11f () — F(=€) + F(=&) = FO)I| = ||f(m) — F (=& + | F (=&

() + FEN = NF@I = IFEON =nllf Ol = IO =
= (n+ NI = [1f(n+EI].

3. case: 0 << —& Ifwedefineég =0<m =& =n<n=-¢
then we can use the second case to get

£ () + FEOI = [If(n+ Ol
4. case: £ < n < 0. Because of 0 < —n < —& we can use the first case
to get the desired functional relation.
To see continuity of f, we only have to lock into the following line.

1£(€+38) = FON = IF Ol = I8l IF (DI ;=2 0 O
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Theorem 3. Let (X, || ||) be a Banach space. Every nonzero differen-
tiable solution f : R — X of ||F(€+n)|| = ||F(&) + f(n)]| has beside
all properties stated in Th. 1 for continuous solutions the following
properties

1. v f(=¢&=f,
£eR

2. v |G =IfDI >0,
£ER

f(n) = f(€)
5 con { FSple e cat(come { 7= Fegle <} s
Proof. Ad 1. Th 1 (1) says f(—¢&) = —f(£) and therefore (=€) =

= f(£)-
Ad 2. Let £,6 € R and § # 0, then
£ +6) = FEI = IFOI = 18l [IF DI
and therefore ||f/(¢)|] = ||F(1)|], with [|f(1)|| > 0 because f is a non-
constant function.
Ad 3. It is easy to see, that

8 f(E+6)—f(E) .
He ) - _ ||f(€+5) 7O if5>0
f+5 — /(€ f@ ),
H e —re—pyr T0<°
and therefore by Th. 3 (2) and Th. 1 (4)
F(E+0)— 1(©)
PO O :
EOREGIE ED ETiG] A
5

where cl(C) is the topological closure of the convex set C C S from
Th. 1(4) cl(C) is convex and contained in S because S is a closed set

in X. Therefore we have conv {T];(—(f)—)”‘{ € R} cS.¢

Theorem 4. Let (X, || ||) be a Banach space and f : R — X, f(0) =
f(1) # 0 a differentiable function satisfymg

1. ggmz F(=€) = (&) and 2. conv{Hf ”’SER} cS.

Then f is a solution of ||f(§+ )|l = [I£(€) + F()Il.
Proof. We only have to show, that f fulfills three conditions of Th. 1.
The function £ — f(—£) + f(&) is differentiable and therefore we get
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1f (=€) + £(§) — 2f(0)]| <
<€ =0fsup{|| = f'(=m) + F(NI0<T<E} =0
f(—=€) = —f(&). From 2. we get ||f'(€)|| = ||f(1)]] and hence
FOI = 1€~ O[lF (DI}, ie. [IFEI = €11 (1)]]. The following

1@e) = Ial i 17 (DI = el 1o

shows, that Th. 2 (2) is fulfilled. Let D be the convex set in 2, then we
can infer, that

s Fm) = 1) ellfm) — F(OlllD C S.
Since cl D is convex, we see, that Th. 2 (3) is satisfied. ¢
Remark. We also have discontinuous solutions. If  : R —+ R is a
discontinuous solution of the Cauchy equation a(§ + n) = a(€) + a(n)
and f : R — X is a continuous solution of ||f(¢ + n)|| = ||f(&) +
+ f(n)]] with f(1) # 0, then f o o is a discontinuous solution of our
functional equation, because ||f(a(£))|| = |a(€)|]|f(1)]|]- It seems to be
an open problem, whether every discontinuous solution of our functional
equation has this special form.

HJ‘( )—

line
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