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Abstract: We give sufficient conditions for a p-block of a solvable group to
be an M-block. We also investigate the question how the principal block or

the blocks of maximal defect determine monomiality.

1. The notion of M-blocks was introduced by C. Bessenrodt in
[1]: an M-block is a p-block, in which each irreducible ordinary char-
acter is monomial. In [1] we can find sufficient conditions to guarantee
that a p-block is an M-block. In this note first we give an equivalent
formulation of this theorem for groups of odd order, using the notion of
(p, q)-groups. We also prove the odd order form of the theorem using
weakened conditions. Furthermore, we give a sufficient condition for a
p-block to be an M-block in the case when the group is p-nilpotent.

We show that the fact that the characters in the principal block
are monomial or subnormally monomial (SM) does not imply in general
that these properties would hold for all irreducible characters: one can
find counterexamples even among Frobenius groups, if the prime p does
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not divide the order of the kernel. If p is a divisor of the order of the
kernel, then monomiality (or subnormal monomiality) of characters in
the principal block implies these properties for all the characters.

We prove in certain special cases that in a finite solvable group G,
the monomiality of characters of all p-blocks of maximal defect implies
monomiality for the whole group. In fact this is true

— if all proper subgroups and all proper homomorphic images of
G are M-groups;

— if the p-blocks of maximal defect of every proper subgroup of G
are M-blocks.

Unfortunately this property does not hold in general. We also give
an example to show that the analogous statement for SM is not true
either; namely it can happen that every block of maximal defect is an
SM-block, but the group is not an SM-group.

All groups in this paper are assumed to be finite and solvable.
Unless otherwise stated, characters are ordinary characters over an al-
gebraically closed field K of characteristic 0, and we assume that K
is the field of quotients of a complete discrete valuation ring R with
residue class field F', giving the p-modular system (K, R, F'). For basic
definitions and notations the reader is referred to [4], [11] and [12].

2. Let us recall the above mentioned result of [1]:
Theorem (Bessenrodt). Let G be a finite solvable group and suppose
that G has a normal subgroup N such that:

(1) all chief sections of G/N have odd degree;
(ii) N has quaternion-free, respectively modular, Sylow g-subgroups,
for all g # p.
Then any p-block of G with quaternion-free, respectively modular, defect
group 1is an M -block.

Let G be a group of odd order. Assume that p is a prime divisor
of |G|, such that the order of p mod ¢ is odd for every other prime
divisor g of |G|. Then, according to [16], each p-chief factor of G is an
odd dimensional vector space. Combining this result with Bessenrodt’s

theorem we get:
Proposition 2.1. Let G be a finite solvable group of odd order and p
a prime divisor of |G|. Let N <G be such that:

(i) for each pair v and q of distinct prime divisors of |G/N)|, the
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order of T mod q is odd;
(ii) for each prime divisor q of |N|, if ¢ # p then N has modular
Sylow g-subgroups.
Then every p-block of G with modular defect group is an M -block.
“According to [16], for those prime divisors r of |G|, whose order
mod ¢ is odd for .each other prime divisor g, the r-chief factors are odd
dimensional vector spaces. Thus if we want to formulate a theorem
similar to that of Bessenrodt for the case when |G| is odd, then we
need to require only that for those prime divisors r of |G/N|, whose
order mod ¢ is even for some other prime divisor ¢ of G/N, the r-chief
sections of G/N should be odd dimensional vector spaces. So we can
state the following:
Proposition 2.2. Let G be a finite solvable group of odd order, and let
p be a prime divisor of |G|. Let N <G be such that:
(i) for each pair v and q of distinct prime divisors of |G/N|, for
which the order of r mod q is even, the r-chief factors of every
subgroup of G/N are odd dimensional vector spaces;

(ii) N has modular Sylow g-subgroups for every prime divisor q of
|N| different from p.

Then every p-block of G with modular defect group is an M -block.

Let (p,b q) denote a minimal non-p-nilpotent group as it is described
by a theorem of Ito in [9]. (For the notation see [2].) Then (p,q) has
a normal Sylow p-subgroup P, which is special, and a cytlic Sylow ¢-
subgroup, whose ¢g-th power is in the center of the group. Let us recall
that in [2] G > (p,q) meant that G contains such a subgroup, so G is
not p-nilpotent. Otherwise we write G # (p,q). In [2] it was shown that
if G # (p, q), then this property is inherited by homomorphic images.

For showing the connection between p-chief factors and (p, q)-
groups we prove the following lemma, which was stated already in [3].
Lemma 2.3. Let G be a solvable group of odd order and let p be a
prime divisor of |G|. Then each p-chief factor of every subgroup of G
is an odd dimensional vector space over GF(p) if and only if G % (p,q)
for all prime divisors q of |G| for which the order of p mod q 1is even.
Proof. Let us suppose first that each p-chief factor of every subgroup
of G is odd dimensional. If there would be such a (p,g)-subgroup U
in G then U = PQ, where P<aU, Q =< z > and z? € Z(U), P is
special and < = > / < 27 > acts faithfully and irreducibly on P/P'.
Then by Satz 3.10 in Chapter II of [9], dimgr(y) P/P’" = o(p) mod g,
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which is, by assumption, even. This contradicts the assumption on the
dimension of p-chief factors of subgroups of G.

Let us suppose now that G # (p, q) for all prime divisors ¢ of |G|
for which the order of p mod ¢ is even. We prove that the p-chief factors
of the subgroups of G are odd dimensional. Let us assume that G is a
counterexample of minimal order. Then the statement is true for every
proper subgroup of G. By [2] the conditions G # (p, q) are inherited by
factors, so by induction the statement is true for every proper factor of
G. Thus we may assume that the even dimensional p-chief factor of G is
a minimal normal subgroup L of G. Let S be a Sylow g-subgroup of G
for a prime g such that the order of p mod ¢ is even. Then § < Cg (L),
otherwise (p,q) < LS would hold. Let G = G/Cg(L). Then all the
prime divisors ¢ # p of |G| have the property that the order of p mod ¢
is odd. As G is contained in the group of automorphisms of L we can
form the semidirect product of L by G. For the prime divisors ¢ # p
of this group we also have that the order of p mod g is odd. So, by
[16], all p-chief factors of GK are odd dimensional, which contradicts
the assumptions on L. ¢

We can now reformulate the assumption (i) in Prop. 2.2 using the
result of the above lemma: we will require that for all prime divisors
r # q of |G/N| for which the order of r mod ¢ is even, G/N # (r,q).
Proposition 2.4. Let G be a finite solvable group of odd order, and p
a prime divisor of |G|. Let N <G be such that

(i) for each pair of distinct prime divisors r and g of |G/N| for
which the order of r mod q is even, G/N % (r,q);
(ii) N has modular Sylow g-subgroups for every prime divisor q of
|N| different from p.
Then every p-block of G with modular defect group is an M -block.
We will prove below that we can also weaken the assumptlon in
(i), assuming it only for primes r # p.
Theorem 2.5. Let G be a finite solvable group of odd order and p a
prime divisor of |G|. Let N <G be such that:
(i) for each pair of distinct prime divisors v and q of G/N such
that 7 # p and the order of r mod q is even, G/N % (r,q);
(ii) N has modular Sylow g-subgroups for all prime divisors q of |V
different from p.
Then every p-block of G with modular defect group is an M -block.
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Proof. Let us take a block B of G with modular defect group and
let x € Irr(B) be an irreducible character. Similarly to the proof of
Th. 2.12 in [1], one can assume by Fong Reduction that the defect group
of the block B is a Sylow p-subgroup of G. Since the assumptions are
inherited by subgroups and homomorphic images, we may assume that
x is faithful and primitive. As in the proof of Theorem 2.12 in [1], we
can show that NV is abelian.

We prove by induction that if for a group G the Sylow p-subgroup
is modular, N < G is abelian, and (i) holds for G/N, then G is mono-
mial. Otherwise let x € Irr(G) be a non-monomial character. By
induction yx is faithful and primitive and G is a minimal non-M-group.
According to the characterization by Price (see [14]), G = Fit(G)A,
where Fit(G) is an extraspecial r-group of exponent r for some prime
r, A is a cyclic group of order ¢ for some prime, and Fit(G)/Z(G)
is a faithful irreducible A-module. So by Satz 3.10 in Chapter II of
[9], dimg () Fit(G)/Z(G) = o(r) mod g, which is even, since the fac-
tor is a nonsingular symplectic G-module. Here r # p, because of
the assumption on the Sylow p-subgroup of G. As G/Z(G) is not r-
nilpotent, G/Z(G) > (r,q). Since N is abelian, it is contained in Z(G),
so G/N > (r,q), too. This contradicts the assumptions of the second
part of the proof. But then we get that the group G in the first part of
the proof is monomial.

3. Some properties of groups can be checked already using charac-
ters of the principal block or blocks of maximal defect, see for example
[13]. In this section we shall investigate how the behaviour of blocks of
maximal defect or that of the principal block determines whether the
group is monomial or subnormally monomial.

It is not true that if all characters of the principal block are mono-
mial then the group is a monomial group. For example, if G = SL(2, 3),
for p = 3 the principal block, Bo(G) consists of three linear characters,
so it is an M-block, but G is not an M-group. In general, for every
p-nilpotent group G we have that Bo(G) = Irr (G/O0p (G)) is an M-
block, as all p-groups are monomial. So if G itself is not an M-group
then we again have a counterexample. Moreover, the following result
is true.

Proposition 3.1. Let G be a solvable p-nilpotent group. Then every
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p-block containing a linear character is an M-block. If G/Op(G) is
abelian, then every block containing a monomial character is an M-
block, and every block containing a subnormally monomial character
contains only SM -characters, in other words, it is an SM-block.
Proof. Let H = Op(G), B a block of G and A € Irr(B) a linear
character. So Ag® is the only projective indecomposable character in
B. According to Gallagher’s Theorem (see [11]), Ag® = 32 B(1)(B)N),
where @ is running through Irr(G/H). Since G/H is a p-group, each
0 is monomial. As all x € Irr(B) occur as constituents of A z%, so we
have that x has the form B\ = (vz/gA £)€ for some subgroup L and
linear character v. Thus B is an M-block.

Let G/H now be abelian. Then if x € Irr(B) and (xz,¢) # 0,

then for each other 9 € Irr(B) we have (¢¥g, @) # 0, too. By [15], ¥ =
= Ax for some linear character A € Irr(G/H). Thus, if x is monomial,
then so is 9. If x is SM then so is 9. ¢
Remark 3.2. The above statement is not true for arbitrary groups.
For G = SL(2,3) and p = 2 we have Oy (G) = 1, so Bo(G) = Irr(G).
Thus the principal block is not an M-block. Also, it is easy to see
that in general an M-block in a p-nilpotent group does not necessarily
contain a linear character. This is shown for p = 2 by the following
example.
Example 3.3. Take the extraspecial group of order 33 and exponent 3,
extended by an order 2 automorphism, which acts on its commuta-
tor factorgroup reducibly. For p = 2 the principal block contains only
linear characters, so it is an SM-block, but this group is not subnor-
mally monomial. However it is supersolvable, so it is an M-group.
This group is 2-nilpotent. It has defect zero M-characters of degree 2,
so their blocks are M-blocks which do not contain any linear charac-
ter.

In the special case, when G is a Frobenius group the behaviour of
the principal block sometimes determines whether the group is mono-
mial (or subnormally monomial):

Theorem 3.4. Let G be a solvable Frobenius group with kernel N, and
let p be a prime divisor of |G|. If p is a divisor of |N|, then the following
statements are equivalent:
(i) Bo(G) is an M -block.
(ii) G is a monomial group.
(iif) G is a subnormally monomial group.
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(iv) Bo(G) is a block containing only subnormally monomaial char-
acters.

Proof. (i) = (ii). Let x € Irr(G). If Ker(x) # N then x = ¢ for
some ¢ € Irr(N), so x is monomial, since IV is nilpotent. If Ker(x) >
> N then (xn,1n) # 0. But 1y € Bo(N). Let P be a defect group
of Bg(N). As Cg(P) < N, it follows from Brauer’s first main theorem
that Bo(N)¢ = By(G), and that By(G) is the only block of G which
covers Bo(IN). So x € Bo(G) and thus, x is a monomial character.
The implication (ii) == (iii) follows easily (see [7]), while (iii) =
= (iv) and (iv) = (i) are trivial.
Example 3.5. Let G be a Frobenius group with kernel N and comple-
ment H and let us assume that the prime p does not divide |NV|. Then it
may happen that By(G) is an M-block, but G is not monomial. Namely,
if p does not divide |IN|, then the p-blocks of G are the p-blocks of H,
together with those blocks of G of zero defect, which contain exactly
one irreducible ordinary character of G not containing N in its kernel.
So if we take a Frobenius group G with complement SL(2,3), then for
p = 3 we shall get that Bo(G) is an M-block, but G is not an M-group.
Proof: If x € Irr(G) and Ker x 2 N, then x = ¢C for some ¢ € Irr(INV).
So p divides x(1) and x is of defect zero, so it is the single irreducible
ordinary character in its block. If x € Irr(G) and Kerx > N, then
let us suppose that y belongs to a p-block B of G. Since (|N|,p) = 1,
Irr (Bo(N)) = {1n}, and since B covers Bo(NV), for each ¢ € Irr(B),
we have that Kery > N. We claim that By = {xu|x € Irr(B)} gives a
block of H. Let ¢,% € B. Then

¢(h)|G : Ca(h)| _ $(h)|G : Ca(h)]
¢(1) N p(1)
Since Cq(h) < H, |G : Cg(h)| = |G : H||H : Cg(h)| and since
(IG: H|,p) =1, we get
¢(W)H : Cr(h)| _ »(MH : Cu(h)]
$(1) B ¥(1)
This means that ¢ and 1) belong to the same p-block b of H. So B C b.
Let z and y be a p-regular and a p-singular element of H, respectively.
Then we have ) cp, x(2)X(Y) = Dyen x(z)x(y) = 0, by the block
ortogonality relation. By the theorem of Osima (see e.g. [12]), By is a
union of blocks of H, so By = b. In particular, we get that x € Bo(G)
if and only if yz € Bo(H). In this case, if Bo(H) is an M-block and H

(mod p).

(mod p).
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is non-monomial, then By(G) is an M-block and G is non-monomial.
Thus, if we take a Frobenius group G with complement SL(2,3), then
for p = 3, Bo(G) is an M-block, but G is not an M-group. ¢

Thus, in order to guarantee monomiality, we need to assume more.

In some special cases we can prove that if in a group G each p-block of
maximal defect is an M-block, then the group is an M-group.
Proposition 3.6. Let G be a solvable group for which every p-block of
mazimal defect of every subgroup is an M-block. Then G is a subgroup-
closed M -group.
Proof. We shall prove the statement by induction on the order of G.
Let us suppose that G is a group satisfying the assumptions, and assume
that we already have proved the statement for groups of smaller size.
Thus, in particular, every proper subgroup of G is an M-group. By
Th. 1.5 in Chapter X of [4], if G is, p-solvable then G has one block if
and only if Oy (G) = 1. Thus, if O (G) = 1 then the statement holds
trivially.

Assume now that O, (G) # 1. Let B be a block of non-maximal
defect and let x € Irr(G) be a character belonging to the block B.
Then, by Clifford’s Theorem, X0,/(G) = e  B;. If the inertiagroup
T = Ig(f) < G, where 8 = B, then x is induced from a character of
T'. By induction, T is monomial, so x is also monomial.

If, on the other hand, T' = G, then we use Fong Reduction, as it
is described in Section 1. of [6]. According to Lemma 1A in [6], every
block of the representation group H of B has maximal defect. Note
that G/Op (G) ~ H/O, (H), and if B” is the block of H corresponding
to B then their defect groups are isomorphic. Thus, we get that B also
has maximal defect, contradicting our assumption. ¢

Next, we prove that if every proper subgroup and every proper
section of a solvable group G is an M-group and each block of maximal
defect of G is an M-block, then G is an M-group, too.

Proposition 3.7. Let G be a solvable minimal non-M -group. Then G
contains a block of mazimal defect which is not an M -block.

Proof. Let us suppose that, contary to our statement, G is a solvable
minimal non-M-group and every block of maximal defect in G is an
M-block. Then Op(G) > 1, as otherwise there would be only one
block, and then G would be an M-group. Let N = Oy (G). Let x €
€ Irr(G) be a non-monomial character belonging to a block B. Then,
if 8 € Irr(N) is a constituent of xp, then its inertia group could not
be smaller than G, as otherwise x would be induced from a proper
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subgroup, which is an M-group. Thus, § is invariant in G. But then,
similarly to the argument above, we would get, by Fong Reduction,
that B is of maximal defect, and. this is a contradiction. ¢

Unfortunately, in general the monomiality of blocks of maximal
defect does not guarantee monomiality. The following example is due
to Professor Howlett.

Example 3.8. Let G = ED be the semidirect product of an extraspe-
cial group E of order 5% and exponent 5 and of the dihedral group D
of order 6 acting on F faithfully, with the property that its involutions
are inverting Z(E). Each 2-block of maximal defect of G is an M-
block. However the degree 10 characters in Irr(G) are not monomial. |
Proof: Professor Howlett shows that if ¥ belongs to a block of maximal
defect, then its kernel contains Z(E). First of all, x(1) is odd. If A
is an irreducible constituent of xz(g), then each involution t € D is
contained in the inertiagroup I (), as otherwise x could be induced
from a subgroup of index divisible by 2, and this is impossible. Let z €
€ Z(E). Then A(tzt™!) = A(z71), so 1 = A([t, 27!]) = A(272). Hence
272 € Ker x and thus Z(E) < Ker x. Since G/Z(E) has abelian Sylow
subgroups, x is monomial. As G does not contain a subgroup of index
10, the degree 10 characters in Irr(G) are not monomial.{

Another possibility for the proof is to construct such a group,
and use the functions of the GAP system to check monomiality. The
following construction is due to Baldzs Szegedy. Consider the group G
with the following presentation:

G=(a,b,z,ta® =0 =[a,b° =1, ¥ =12 =1, zt =27,
a‘* = a*, b =b, a® = a®b, b° = a3b?, [a,b]’ = [a,b]7Y).
One can easily check, using the GAP system (cf. [16]), that this group
has the required properties. One defines it as an FpGroup with the above
generators and relators. With the function LowIndexSubgroupFpGroup,
one can determine that there is no subgroup of index 10 in it, so the
degree 10 irreducible characters of this group are not monomial. With
the function OperationCosetsFpGroup, one makes a permutationgroup
from this group, and then with the function AgGroup, one transforms
it into an AgGroup. In this form the function CharTable works very
quickly, and we get the charactertable of our group. With the function
PrimeBlocks one determines the 2-blocks, and their defects. It turns
out that the blocks of maximal defect are: the principal block, contain-
ing two linear characters, and four other blocks, containing two degree
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3 characters each. Then one applies TestMonomialQuick, to prove that
these characters are monomial.

Example 3.9. There exists a monomial, but not subnormally mono-
mial group such that for some p each p-block of maximal defect con-
sists of SM characters. Namely, there exists a supersolvable, and thus
monomial group which is not SM, but each block of maximal defect
is an SM-block. Take the Borel subgroup of GL(3,3) and p = 2. Its
blocks of maximal defect contain only linear characters, so they are
SM-blocks, however it has characters of degree 6 which are not SM.
Proof: The statement can be easily checked by GAP, using the function
TestSubnormallyMonomial. ¢

Remark 3.10. As Ex. 3.8 and Prop. 3.6 show, the property of having
only M-blocks as blocks of maximal defect in a group is not inherited
by subgroups. The property that each block of maximal defect is an
SM-block is not inherited by subgroups either: the group described
in Ex. 3.3 is a subgroup of the group described in Ex. 3.9, and it has
2-blocks of maximal defect, which are not SM.
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