Mathematica Pannonica

7/2 (1996), 223 - 232

BOUNDED SOLUTIONS OF SCHILLING'S PROBLEM

Janusz Morawiec

Instytut Matematyki, Uniwersytet Ślgski, ul. Bankowa 14, PL-40-007 Katowice, Poland

Received: August 1995

MSC 1991: $39 \mathrm{~B} 12,39 \mathrm{~B} 22$
Keywords: Schilling's problem, bounded and continuous functions.
Abstract: Let n be a positive integer, q_{n} be the unique $x \in\left(\frac{1}{3}, \frac{1}{2}\right)$ with $x^{n+1}-3 x+1=0$, and $q \in\left(0, q_{n}\right]$. We found a set A_{q}^{n} of reals with the following property (P): Every solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation

$$
f(q x)=\frac{1}{4 q}[f(x-1)+f(x+1)+2 f(x)]
$$

which vanishes outside of $\left[-\frac{q}{1-q}, \frac{q}{1-q}\right]$ and is bounded in a neighbourhood of a point of that set vanishes everywhere. It is also observed that for $q \in\left(0, \frac{1}{3}\right]$ the set $\bigcup_{n=1}^{\infty} A_{q}^{n}$, which equals then

$$
\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n} \quad: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}
$$

is the largest one with property (P).

Following R. Schilling [9] we consider solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation

$$
\begin{equation*}
f(q x)=\frac{1}{4 q}[f(x-1)+f(x+1)+2 f(x)] \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(x)=0 \quad \text { for } \quad|x|>Q \tag{2}
\end{equation*}
$$

where q is a fixed number from the open interval $(0,1)$ and

$$
Q=\frac{q}{1-q}
$$

In what follows any solution $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1) satisfying (2) will be called a solution of Schilling's problem.

If

$$
\begin{equation*}
3 q \leq 1-\sqrt[3]{2}+\sqrt[3]{4} \tag{3}
\end{equation*}
$$

then according to [7] the zero function is the only solution of Schilling's problem which is bounded in a neighbourhood of a point of the set

$$
\begin{equation*}
\left\{\varepsilon \sum_{i=1}^{n} q^{i}: \quad n \in \mathbb{N} \cup\{0,+\infty\}, \varepsilon \in\{-1,1\}\right\} \tag{4}
\end{equation*}
$$

This generalizes in particular [1; Th. 1]. It is the aim of the present paper to obtain such a result with the set (4) replaced by a larger one. However, we are not able to enlarge (4) for all q 's satisfying (3) but, on the other hand, for $q \leq \frac{1}{3}$ we succeeded in finding even the largest set to be put in the place of (4) (cf. Cor. 1).

Given a positive integer n and $q \in(0,1)$ consider the set A_{q}^{n} of all the real numbers of the form
(5)

$$
\varepsilon \sum_{l=1}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)+M}+\varepsilon(-1)^{L} \sum_{m=1}^{M} q^{m}
$$

where $\varepsilon \in\{-1,1\}, M, L$ are non-negative integers, $K_{1}, \ldots, K_{L} \in$ $\in\{1, \ldots, n\}$, and $\nu:\{1, \ldots, L\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$. Evidently, the set (4) is a subset of $\mathrm{cl} A_{q}^{n}$. Let us observe also that for $l_{1}, l_{2} \in\{1, \ldots L\}$, $k_{1} \in\left\{1, \ldots, K_{l_{1}}\right\}, k_{2} \in\left\{1, \ldots, K_{l_{2}}\right\}$, if $\left(l_{1}, k_{1}\right) \neq\left(l_{2}, k_{2}\right)$ then (6)

$$
\sum_{m=k_{1}}^{K_{l_{1}}} \nu\left(l_{1}, m\right)+\sum_{j=l_{1}+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m) \neq \sum_{m=k_{2}}^{K_{l_{2}}} \nu\left(l_{2}, m\right)+\sum_{j=l_{2}+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)
$$

The proof of the following fact is left to the reader (cf. also [6; Th. 21(a), (d)]).
Remark 1. If $q \in\left(0, \frac{1}{3}\right]$ then

$$
\operatorname{cl} \bigcup_{n=1}^{\infty} A_{q}^{n}=\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n}: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}
$$

and if $q \in\left[\frac{1}{3}, 1\right)$ then

$$
\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n}: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}=[-Q, Q]
$$

For every positive integer n let q_{n} denote the unique $x \in\left(\frac{1}{3}, \frac{1}{2}\right)$ with

$$
\begin{equation*}
x^{n+1}-3 x+1=0 \tag{7}
\end{equation*}
$$

and observe that if $q \in\left(0, \frac{1}{2}\right)$ then

$$
q \leq q_{n} \quad \text { iff } \quad q^{n+1}-3 q+1 \geq 0
$$

Our main result reads.
Theorem 1. If n is a positive integer and $q \in\left(0, q_{n}\right]$ then the zero function is the only solution of Schilling's problem which is bounded in a neighbourhood of a point of the set $\mathrm{cl} A_{q}^{n}$.

The proof of this theorem is based on four lemmas. However, we start with the following simple remarks.
Remark 2. If f is a solution of Schilling's problem then so is the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by the formula $g(x)=f(-x)$.
Remark 3. Assume f is a solution of Schilling's problem.
If $q \neq \frac{1}{4}$ then $f(-Q)=f(Q)=0$. If $q<\frac{1}{2}$ then $f(0)=0$.
Lemma 1. Assume $q \in\left(0, \frac{1}{2}\right)$. If f is a solution of Schilling's problem then

$$
\begin{equation*}
f\left(q^{N+M} x+\varepsilon \sum_{m=1}^{M} q^{m}\right)=\left(\frac{1}{2}\right)^{M}\left(\frac{1}{2 q}\right)^{N+M} f(x) \tag{8}
\end{equation*}
$$

for all $x \in(Q-1,1-Q)\left(\right.$ for all $x \in[Q-1,1-Q]$ if $\left.q \neq \frac{1}{4}\right)$, for all $\varepsilon \in\{-1,1\}$, and for all non-negative integers M and N.

For $x \in(Q-1,1-Q)$ this was proved in [7] as Lemma 2. In the case of the closed interval $[Q-1,1-Q]$ and $q \neq \frac{1}{4}$ we argue similarly as in the proof of $[7 ;$ Lemma 2] using also $[7 ;$ Remarks 1 and $2(\mathrm{i})] . \diamond$
Lemma 2. Let $n \in \mathbb{N}, q \in\left(0, q_{n}\right]$ and

$$
\begin{aligned}
y & =q^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)} x+ \\
& +\sum_{l=1}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)}
\end{aligned}
$$

where N is a non-negative integer, L is a positive integer, $K_{1}, \ldots, K_{L} \in$ $\in\{1, \ldots, n\}, \nu:\{1, \ldots, L\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$, and $x \in[0,1-Q)(x \in$ $\in[0,1-Q]$ if $\left.q \neq \frac{1}{4}\right)$.

If L is even then $y \in(0,1-Q)$.

If L is odd then $y \in[Q-1,0]\left(y \in(Q-1,0]\right.$ if $\left.q<\frac{1}{3}\right)$.
Proof. Since $q \leq q_{n}<\frac{1}{2}$ we have
(9)

$$
Q<1
$$

Moreover, as q_{n} is a solution of (7),

$$
\begin{equation*}
\sum_{i=1}^{n} q^{i} \leq \sum_{i=1}^{n} q_{n}^{i}=1-\frac{q_{n}}{1-q_{n}} \leq 1-\frac{q}{1-q}=1-Q \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } \quad q<\frac{1}{3} \quad \text { then } \quad \sum_{i=1}^{n} q^{i}<Q<1-Q . \tag{11}
\end{equation*}
$$

Observe also that

$$
\begin{align*}
y= & q^{\nu\left(L, K_{L}\right)}\left(q^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)-\nu\left(L, K_{L}\right)} x+\right. \\
& +\sum_{l=1}^{L-1}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)-\nu\left(L, K_{L}\right)}+ \tag{12}\\
& \left.+(-1)^{L} \sum_{k=1}^{K_{L}-1} q^{\sum_{m=k}^{K_{L}-1} \nu(L, m)}+(-1)^{L}\right),
\end{align*}
$$

$$
y=q^{\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)}\left(q^{N} x-1\right)-
$$

$$
-\sum_{k=2}^{K_{1}} q^{\sum_{m=k}^{K_{1}} \nu(1, m)+\sum_{j=2}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)}+
$$

$$
+\sum_{l=2}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)}
$$

$$
\begin{equation*}
q^{\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)}\left(q^{N} x-1\right)<0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{K_{L}} q^{\sum_{m=k}^{K_{L}} \nu(L, m)} \leq \sum_{k=1}^{K_{L}} q^{\sum_{m=k}^{K_{L} 1}} \leq \sum_{k=1}^{n} q^{k} \tag{15}
\end{equation*}
$$

Suppose first L is even. Applying (13), (14), (6), (15), (9) and (10) we obtain

$$
\begin{aligned}
y< & \sum_{l=2}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)} \leq \\
\leq & \sum_{l=2}^{L-2} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)}- \\
& -\sum_{k=1}^{K_{L-1}} q^{\sum_{m=k}^{K_{L-1}} \nu(L-1, m)+\sum_{m=1}^{K_{L} \nu(L, m)}+\sum_{k=1}^{K_{L}} q^{\sum_{m=k}^{K_{L}} \nu(L, m)} \leq} \\
\leq & \sum_{i=1}^{\infty} q^{\nu\left(L-1, K_{L-1}\right)+\sum_{m=1}^{K_{L}} \nu(L, m)+i}- \\
& -q^{\nu\left(L-1, K_{L-1}\right)+\sum_{m=1}^{K_{L}} \nu(L, m)}+\sum_{k=1}^{n} q^{k}= \\
= & q^{\nu\left(L-1, K_{L-1}\right)+\sum_{m=1}^{K_{L} \nu(L, m)}(Q-1)+\sum_{k=1}^{n} q^{k}<\sum_{k=1}^{n} q^{k} \leq 1-Q} .
\end{aligned}
$$

whereas (12), (6) and (9) give

$$
y \geq q^{\nu\left(L, K_{L}\right)}\left(-\sum_{i=1}^{\infty} q^{i}+1\right)=q^{\nu\left(L, K_{L}\right)}(-Q+1)>0
$$

Suppose now L is odd. If $L=1$ then using the definition of y, (15) and (10) we see that

$$
y \geq-\sum_{k=1}^{K_{1}} q^{\sum_{m=k}^{K_{1}} \nu(1, m)} \geq-\sum_{k=1}^{n} q^{k} \geq Q-1
$$

with the last inequality being strict if $q<\frac{1}{3}$ (cf. (11)). If $L \geq 3$ then on account of the definition of $y,(6),(15),(9)$ and (10) we have

$$
\begin{aligned}
y \geq & -\sum_{l=1}^{L-2} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)}+ \\
& +\sum_{k=1}^{K_{L-1}} q^{\sum_{m=k}^{K_{L}-1} \nu(L-1, m)+\sum_{m=1}^{K_{L}} \nu(L, m)}-\sum_{k=1}^{K_{L}} q^{\sum_{m=k}^{K_{L}} \nu(L, m)} \geq \\
\geq & -\sum_{i=1}^{\infty} q^{\nu\left(L-1, K_{L-1}\right)+\sum_{m=1}^{K_{L} \nu(L, m)+i}}+
\end{aligned}
$$

$$
\begin{aligned}
& +q^{\nu\left(L-1, K_{L-1}\right)+\sum_{m=1}^{K_{L}} \nu(L, m)}-\sum_{k=1}^{K_{L}} q^{k} \\
> & -\sum_{k=1}^{n} q^{k} \geq Q-1
\end{aligned}
$$

Finally, if L is odd then taking into account (12) and (6) we obtain

$$
y \leq q^{\nu\left(L, K_{L}\right)}\left(x+\sum_{i=1}^{\infty} q^{i}-1\right) \leq q^{\nu\left(L, K_{L}\right)}[(1-Q)+Q-1]=0
$$

Lemma 3. Assume $n \in \mathbb{N}$ and $q \in\left(0, q_{n}\right]$. If f is a solution of Schilling's problem then for every $x \in[0,1-Q)$, for every non-negative integers M, L and N, for every $K_{1}, \ldots, K_{L} \in\{1, \ldots, n\}$, and for every $\nu:\{1, \ldots, L\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$ we have

$$
\begin{aligned}
& f\left(q^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)+M} x+\right. \\
& +\sum_{l=1}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)+M}+ \\
& \left.+(-1)^{L} \sum_{m=1}^{M} q^{m}\right)= \\
& =\left(\frac{1}{2}\right)^{\sum_{l=1}^{L} K_{l}+M}\left(\frac{1}{2 q}\right)^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)+M} f(x)
\end{aligned}
$$

Proof. According to Lemma 1, (16) holds for $L=0$. Assume L is a positive integer.

Consider first the case $M=0$.
Let $L=1$. Equality (16) takes then the form

$$
\begin{align*}
& f\left(q^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} x-\sum_{k=1}^{K_{1}} q^{\sum_{m=k}^{K_{1}} \nu(1, m)}\right)= \tag{17}\\
& =\left(\frac{1}{2}\right)^{K_{1}}\left(\frac{1}{2 q}\right)^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} f(x)
\end{align*}
$$

and making use of Lemma 1 we see that if $K_{1}=0$ then (17) holds for all $x \in(Q-1,1-Q)$ (for all $x \in[Q-1,1-Q]$ if $\left.q \neq \frac{1}{4}\right)$ and for every non-negative integer N. Fix now a $K_{1} \in\{0, \ldots, n-1\}$ and suppose that (17) is satisfied for every non-negative integer N, for every
$\nu:\{1\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$, and for all $x \in[0,1-Q$) (for all $x \in[0,1-Q]$ if $q \neq \frac{1}{4}$). Let $N \in \mathbb{N} \cup\{0\}, \nu:\{1\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$ and $x \in[0,1-Q)$ $\left(x \in[0,1-Q]\right.$ if $\left.q \neq \frac{1}{4}\right)$. Putting

$$
z=q^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} x-\sum_{k=1}^{K_{1}} q^{\sum_{m=k}^{K_{1}} \nu(1, m)}-1
$$

we have
(18)

$$
z \leq x-1
$$

and, according to Lemma 2, $y:=q z \in[Q-1,0]$ (and $y \in(Q-1,0]$ if $q<\frac{1}{3}$). This jointly with the definition of z, Lemma 1 , (1), (17), (2), Remark 3 and (17) gives

$$
\begin{aligned}
& f\left(q^{N+\sum_{k=1}^{K_{1}+1} \nu(1, k)} x-\sum_{k=1}^{K_{1}+1} q^{\sum_{m=k}^{K_{1}+1} \nu(1, m)}\right)= \\
& =f\left(q^{\nu\left(1, K_{1}+1\right)-1} y\right)==\left(\frac{1}{2 q}\right)^{\nu\left(1, K_{1}+1\right)-1} f(y)= \\
& =\left(\frac{1}{2 q}\right)^{\nu\left(1, K_{1}+1\right)-1} \frac{1}{4 q}[f(z-1)+f(z+1)+2 f(z)]= \\
& =\left(\frac{1}{2 q}\right)^{\nu\left(1, K_{1}+1\right)} \frac{1}{2} f(z+1)= \\
& =\left(\frac{1}{2 q}\right)^{\nu\left(1, K_{1}+1\right)} \frac{1}{2}\left(\frac{1}{2}\right)^{K_{1}}\left(\frac{1}{2 q}\right)^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} f(x)= \\
& =\left(\frac{1}{2}\right)^{K_{1}+1}\left(\frac{1}{2 q}\right)^{N+\sum_{k=1}^{K_{1}+1} \nu(1, k)} f(x) .
\end{aligned}
$$

Hence (17) holds for every $K_{1} \in\{1, \ldots, n\}$, for every non-negative integer N, for every $\nu:\{1\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$, and for all $x \in[0,1-Q)$ (for all $x \in[0,1-Q]$ if $q \neq \frac{1}{4}$). Consequently, taking into account Remark 2 we have also

$$
\begin{align*}
& f\left(q^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} x+\sum_{k=1}^{K_{1}} q^{\sum_{m=k}^{K_{1}} \nu(1, m)}\right)= \tag{19}\\
& =\left(\frac{1}{2}\right)^{K_{1}}\left(\frac{1}{2 q}\right)^{N+\sum_{k=1}^{K_{1}} \nu(1, k)} f(x)
\end{align*}
$$

for every $K_{1} \in\{1, \ldots, n\}$, for every non-negative integer $N, \nu:\{1\} \times$ $\times\{1, \ldots, n\} \rightarrow \mathbb{N}$, and for all $x \in(Q-1,0]$ (for all $x \in[Q-1,0]$ if $\left.q \neq \frac{1}{4}\right)$.

Fix now a positive integer L and suppose that (16) holds with $M=$ $=0$ for every $K_{1}, \ldots, K_{L} \in\{1, \ldots, n\}$, for every non-negative integer $N, \nu:\{1, \ldots, L\} \times\{1, \ldots, n\} \rightarrow \mathbb{N}$, and for all $x \in[0,1-Q$) (for all $x \in[0,1-Q]$ if $\left.q \neq \frac{1}{4}\right)$. Defining y as in Lemma 2 and making use of Lemma 2, (17) and (19) with x replaced by y, and (16) with $M=0$ we obtain

$$
\begin{aligned}
& f\left(q^{N+\sum_{l=1}^{L+1} \sum_{k=1}^{K_{l}} \nu(l, k)} x+\right. \\
& \left.\quad+\sum_{l=1}^{L+1}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L+1} \sum_{m=1}^{K_{j}} \nu(j, m)}\right)= \\
& =f\left(q^{\sum_{k=1}^{K_{L+1}} \nu(L+1, k)} y+(-1)^{L+1} \sum_{k=1}^{K_{L+1}} q^{\sum_{m=k}^{K_{L+1}} \nu(L+1, m)}\right)= \\
& =\left(\frac{1}{2}\right)^{K_{L+1}}\left(\frac{1}{2 q}\right)^{\sum_{k=1}^{K_{L+1}} \nu(L+1, k)} f(y)= \\
& =\left(\frac{1}{2}\right)^{K_{L+1}}\left(\frac{1}{2 q}\right)^{\sum_{k=1}^{K_{L+1}} \nu(L+1, k)}\left(\frac{1}{2}\right)^{\sum_{l=1}^{L} K_{l}} . \\
& \quad \cdot\left(\frac{1}{2 q}\right)^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l} \nu(l, k)}} f(x)= \\
& =\left(\frac{1}{2}\right)^{\sum_{l=1}^{L+1} K_{l}}\left(\frac{1}{2 q}\right)^{N+\sum_{l=1}^{L+1} \sum_{k=1}^{K_{l}} \nu(l, k)} f(x) .
\end{aligned}
$$

This ends the proof of (16) in the case where $M=0$.
If M is a positive integer then defining once more y as in Lemma. 2 and making use of this lemma, (8) with $N=0$ and x replaced by y, and (16) with $M=0$ we get

$$
\begin{aligned}
& f\left(q^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)+M} x+\right. \\
& \left.+\sum_{l=1}^{L}(-1)^{l} \sum_{k=1}^{K_{l}} q^{\sum_{m=k}^{K_{l}} \nu(l, m)+\sum_{j=l+1}^{L} \sum_{m=1}^{K_{j}} \nu(j, m)+M}+(-1)^{L} \sum_{m=1}^{M} q^{m}\right)= \\
& =f\left(q^{M} y+(-1)^{L} \sum_{m=1}^{M} q^{m}\right)=\left(\frac{1}{2}\right)^{M}\left(\frac{1}{2 q}\right)^{M} f(y)= \\
& =\left(\frac{1}{2}\right)^{\sum_{l=1}^{L} K_{l}+M}\left(\frac{1}{2 q}\right)^{N+\sum_{l=1}^{L} \sum_{k=1}^{K_{l}} \nu(l, k)+M} f(x) . \diamond
\end{aligned}
$$

The fourth lemma is just [7; Lemma 1].
Lemma 4. Assume $q \in\left(0, \frac{1}{2}\right)$. If a solution of Schilling's problem vanishes either on the interval $(-q, 0)$ or on the interval $(0, q)$ then it vanishes everywhere.
Proof of Theorem 1. Suppose f is a solution of Schilling's problem bounded in a neighbourhood of a point $x_{0} \in \operatorname{cl} A_{q}^{n}$. We may (and we do) assume that x_{0} is of the form (5), where $\varepsilon \in\{-1,1\}, M, L$ are non-negative integers, $K_{1}, \ldots, K_{L} \in\{1, \ldots, n\}$, and $\nu:\{1, \ldots, L\} \times$ $\times\{1, \ldots, n\} \rightarrow \mathbb{N}$. Moreover, according to Remark 2, we may (and we do) assume $\varepsilon=1$.

If $x \in[0,1-Q)$ is fixed then the left-hand side of (16) is bounded with respect to N whereas the right-hand side is bounded iff $f(x)=0$. This shows that f vanishes on $[0,1-Q$). Hence and from (10) it follows that f vanishes, in particular, on $[0, q)$ which jointly with Lemma 4 proves that f vanishes everywhere. $\widehat{\nabla}$

To formulate a corollary accept the following definition.
Definition 1. Let $q \in(0,1)$ and $x \in[-Q, Q]$. We say that $x \in B_{q}$ (resp. $x \in C_{q}$) if and only if the zero function is the only solution of Schilling's problem which is bounded in a neighbourhood of x (resp. continuous at x).

We will use also the following result of W. Förg-Rob; cf. [6; Theorems $20,21,23-26$ and 28$]$ and Remark 1.

If $q \in(0,1)$ and f is a solution of Schilling's problem then

$$
\operatorname{supp} f \subset\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n} \quad: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}
$$

and for every $q \in\left(0, \frac{1}{3}\right]$ the Schilling's problem has a nonzero solution. Corollary 1. If $q \in\left(0, \frac{1}{3}\right]$ then

$$
B_{q}=C_{q}=\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n} \quad: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}
$$

Proof. Obviously $B_{q} \subset C_{q}$, whereas the above quoted result of W . Förg-Rob gives

$$
C_{q} \subset\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n} \quad: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\}
$$

Moreover, applying Remark 1 and Th. 1 we obtain that

$$
\left\{\sum_{n=1}^{\infty} \varepsilon(n) q^{n} \quad: \quad \varepsilon \in\{-1,0,1\}^{\mathbb{N}}\right\} \subset B_{q} . \diamond
$$

Applying Lemma 3 (formula (16) with $x=0$ and Remark 2) and Remark 3 we obtain also the following result.
Theorem 2. If n is a positive integer and $q \in\left(0, q_{n}\right]$ then any solution of Schilling's problem vanishes on the set A_{q}^{n}.

The reader interested in further results on Schilling's problem is referred to [2] by K. Baron, A. Simon and P. Volkmann, [3] by K. Baron and P. Volkmann, [4] by J. M. Borwein and R. Girgensohn, [5] by G. Derfel and R. Schilling, [6] by W. Förg-Rob and [8].

Acknowledgement. This research was supported by the Silesian University Mathematics Department (Iterative Functional Equations program).

References

[1] BARON, K.: On a problem of R. Schilling, Berichte der Mathematisch-statistischen Sektion in der Forschungsgesellschaft Joanneum-Graz, Bericht Nr. 286 (1988).
[2] BARON, K., SIMON, A. et VOLKMANN, P.: Solutions d'une équation fonctionnelle dans l'espace des distributions tempérées, Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématiques. (Paris) 319 (1994), 1249-1252.
[3] BARON, K. et VOLKMANN, P.: Unicité pour une équation fonctionnelle, Rocznik Naukowo-Dydaktyczny WSP w Krakowie. Prace Matematyczne 13 (1993), 53-56.
[4] BORWEIN, J. M. and GIRGENSOHN, R.; Functional equations and distribution functions, Results in Mathematics 26 (1994), 229-237.
[5] DERFEL, G. and SCHILLING, R.: Spatially chaotic configurations and functional equations with rescaling, Manuscript.
[6] FÖRG-ROB, W.: On a problem of R. Schilling, Mathematica Pannonica 5/1 (1994), I 29-65, II: 145-168.
[7] MORAWIEC, J.: On bounded solutions of a problem of R. Schilling, Annales Mathematicae Silesianae 8 (1994), 97-101.
[8] MORAWIEC, J.: On continuous solutions of a problem of R. Schilling, Results in Mathematics 27 (1995), 381-386.
[9] SCHILLING, R.: Spatially chaotic structures, in: H. Thomas (editor), Nonlinear Dynamics in Solids, Springer, Berlin, 1992, 213-241.

