Mathematica Pannonica 7/2 (1996), 215 – 222

∞ – REGULAR LANGUAGES DEFINED BY A LIMIT OPERATOR

Karel Mikulášek

Department of Mathematics, Technical University, 61669 Brno, Technická 2, Czech Republic

Received: May 1995

MSC 1991: 68 Q 45

 $Keywords: \infty$ -regular language, ∞ -acceptor, transition graph, limit operator.

Abstract: Finite deterministic ∞ -acceptor accepting both finite and infinite words over a finite alphabet is introduced. It is shown that ∞ -regular languages can be defined as sets of ∞ -words accepted by an ∞ -acceptor. A limit operator on regular languages is used to define a special class of ∞ -regular languages. In ∞ -acceptors accepting these languages incidence relations between the sets used for acceptance are determined.

1. Introduction

The paper deals with special classes of ∞ -regular languages. If a finite alphabet Σ is given, then by an ∞ -regular language over Σ we understand the union of a regular and an ω -regular language over Σ . In this paper we show that it is possible to define such languages by means of a single finite-state device. A deterministic machine capable of constructing both finite and infinite sequences is first introduced in [7]. In [4] the structure of the sets constructed in [7] is investigated and in [5] a non-deterministic version of such machines is shown. Another generalization can be found in [3] where the notion of a k-machine is introduced. In [6] generalized non-deterministic acceptors accepting sequences of both finite and infinite length are introduced. Limit operators on regular languages are usefull tools for investigating relations K. Mikulášek

between regular and ω -regular languages. In [8] and [9] they are also used for studying topological properties of ω -languages. The operator lim used in this paper appears e.g. in [1], [2], [6] and [9]. A generalization of some of the results of [6] gives rise to a question of how the structure of ∞ -regular languages defined by inclusions between a limit closure of their words and their ω -words is reflected in the incidence of sets used for accepting words and ω -words.

2. Preliminaries

In this paper, all the numbers are non-negative integers if not specified otherwise. By ω we denote the least infinite ordinal number. A non-empty finite set Σ is called *alphabet* and its elements *letters*. Σ^* denotes the set of all finite sequences of Σ . The empty word is denoted by λ . Its elements are called *words*. For a $u \in \Sigma^*$, we write u = $u_1u_2 \ldots u_n$. For two non-empty words $u = u_1u_2 \ldots u_m$, $v = v_1v_2 \ldots v_k$, we define their *catenation* $u.v = u_1u_2 \ldots u_mv_1v_2 \ldots v_k$. We put: $\lambda.u =$ $u.\lambda = u, u \in \Sigma^*$. The catenation of k identical words $w \in \Sigma^*$ is denoted by w^k .

 Σ^{ω} denotes the set of all infinite sequences over Σ . If $w \in \Sigma^{\omega}$, then we write $w = w_1 w_2 \ldots$ These sequences are called ω -words. For $w \in \Sigma^*$, w^{ω} denotes the ω -word $w.w.\ldots$ We put $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$. The elements of Σ^{∞} are called ∞ -words. We define the catenation of two ∞ -words u, v by using the above definition for $u, v \in \Sigma^*$ and putting $u.v = u_1 u_2 \ldots u_n v_1 v_2 \ldots$, if $u \in \Sigma^*$, $v \in \Sigma^{\omega}$. For $u \in \Sigma^{\omega}$, the catenation is not defined.

For a word $w = w_1 w_2 \dots w_n$, $n \ge 1$, we define its *length* as |w| = nand for $w \in \Sigma^{\omega}$ we put $|w| = \omega$. Finally we put $|\lambda| = 0$.

For a $w \in \Sigma^{\omega}$ we define the set of *left fractions* of w:

If $(w) = \{ u \in \Sigma^* \mid w = u.v, v \in \Sigma^{\omega} \}.$

A subset of Σ^* is called a *language*, a subset of Σ^{ω} an ω -*language* and a subset of Σ^{∞} an ∞ -*language*.

For an infinite sequence $q = q_0, q_1, q_2, \ldots$ of elements of a finite set Q we define In(q) as the set of all the elements of Q which occur infinitely many times in q.

In the sequel, we will use the following evident assertion: For an arbitrary sequence s_1, s_2, \ldots, s_k , $k \ge 1$ of elements of $\operatorname{In}(q)$, there are indices $i_1 < i_2 < \ldots < i_k$ such that $s_j = q_{i_j}$, $1 \le j \le k$.

216

A graph is a triple $D = (U, \tau, H)$ where U is a finite set of nodes, H is a finite set of arcs and $\tau : H \to U \times U$ is an incidence mapping. A graph $D' = (U', \tau', H')$ is a subgraph of a graph $D = (U, \tau, H)$ if $U' \subseteq U, H' \subseteq H$ and $\tau' : H' \to U' \times U'$ is a restriction of τ on H. For $V \subseteq U$, we say that $D_V = (V, \tau', H')$ is the subgraph of D induced by V if H' is a maximum subset of H such that $\tau(h) \in V \times V$ for every $h \in H'$ and τ' is a restriction of τ on H'.

A trace in a graph $D = (U, \tau, H)$ is an alternating sequence of nodes and arcs $u_0, a_1, u_1, a_2, \ldots, a_n, u_n, n \ge 1$ where $\tau(a_i) = (u_{i-1}, u_i)$, $1 \le i \le n$. We say that a graph $D = (U, \tau, H)$ is strong if, for every $u, v \in U$, there is a trace from u to v.

In proofs we will use the following obvious assertion: $D = (U, \tau, H)$ is strong iff, for every $u, v \in U$, there is a trace in D starting in u, ending in v and containing all nodes of U.

3. ∞ -regular languages

Definition 3.1. We say that a five-tuple $A = (Q, \Sigma, \delta, q_0, F)$ is a *finite deterministic acceptor* or, shortly, an *acceptor* if Q is a finite set of states, Σ is an alphabet, $\delta : Q \times \Sigma \to Q$ is a transition function, $q_0 \in Q$ is the initial state and $F \subseteq Q$ is a set of final states. For $w \in \Sigma^*$, $w = a_1.a_2...a_n$, $n \ge 0$, a sequence $q(w) = q_0, q_1, q_2, ..., q_n$ is called the *run* of A on w if $q_i = \delta(q_{i-1}, a_i), 1 \le i \le n$. We put $\delta^*(w) = q_n$. If $\delta^*(w) \in F$ then we say that A accepts w. The set of all words accepted by A is denoted by $\mathcal{L}(A)$. A language $L \subseteq \Sigma^*$ is called *regular* if $L = \mathcal{L}(A)$ for an acceptor A.

Definition 3.2. We say that a five-tuple $A = (Q, \Sigma, \delta, q_0, \Phi)$ is a *finite nite deterministic* ω -acceptor or, shortly, an ω -acceptor if Q is a finite set of states, Σ is an alphabet, $\delta : Q \times \Sigma \to Q$ is a transition function, $q_0 \in Q$ is the initial state and $\Phi \subseteq 2^Q$ is a system of subsets of infinitely many times occurring states. For $w \in \Sigma^{\omega}$, $w = a_1.a_2...$ a sequence $q(w) = q_0, q_1, q_2, ...$ is called the *run* of A on w if $q_i = \delta(q_{i-1}, a_i), 1 \leq i$. We put $\delta^{\omega}(w) = \operatorname{In}(q(w))$. If $\delta^{\omega}(w) \in \Phi$ then we say that A accepts w. The set of all words accepted by A is denoted by $\mathcal{L}(A)$. An ω -language $L \subseteq \Sigma^{\omega}$ is called ω -regular if $L = \mathcal{L}(A)$ for an ω -acceptor A.

Note 3.3. Clearly, for a $w \in \Sigma^{\omega}$ the run of an acceptor on w is also defined and so is the run of an ω -acceptor on a $w \in \Sigma^*$.

K. Mikulášek

Definition 3.4. An ∞ -language $L \subseteq \Sigma^{\infty}$ is called ∞ -regular if a regular language $L_F \subseteq \Sigma^*$ and an ω -regular language $L_{\omega} \subseteq \Sigma^{\omega}$ exist such that $L = L_F \cup L_{\omega}$.

Definition 3.5. We say that a six-tuple $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ is a *finite deterministic* ∞ -acceptor or, shortly, an ∞ -acceptor if Q is a finite set of states, Σ is an alphabet, $\delta : Q \times \Sigma \to Q$ is a transition function, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is a set of final states and $\Phi \subseteq 2^Q$ is a system of subsets of infinitely many times occurring states.

For $w \in \Sigma^{\infty}$ we define the *run* of A on w using either Definition 3.1 if $w \in \Sigma^*$ or Definition 3.2 if $w \in \Sigma^{\omega}$. Similarly, we put $\delta^{\infty}(w) = \delta^*(w)$ or $\delta^{\infty}(w) = \delta^{\omega}(w)$ depending on whether $w \in \Sigma^*$ or $w \in \Sigma^{\omega}$. If $\delta^{\infty}(w) \in F \cup \Phi$, then we say that A accepts w. The set of all ∞ -words accepted by A is denoted by $\mathcal{L}(A)$, the set of all ω -words accepted by Ais denoted by $\mathcal{L}^{\omega}(A)$ and the set of all words accepted by A is denoted by $\mathcal{L}^F(A)$.

Definition 3.6. Let $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ be an ∞ -acceptor. We say that $G(A) = (Q, \tau, H)$ is the transition graph of A if

 $H = \{(q_i, a, q_j) | q_i, q_j \in Q, a \in \Sigma, q_j = \delta(q_i, a)\}, \quad \tau(q_i, a, q_j) = (q_i, q_j).$ For a $P \subseteq Q$, we denote by G(A, P) the subgraph of the transition graph of A induced by P.

Theorem 3.7. Let $L \subseteq \Sigma^{\infty}$ be an ∞ -regular language. Then there exists an ∞ -acceptor A such that $L = \mathcal{L}^{\infty}(A)$.

Proof. We have $L = L_F \cup L_\omega$ where $L_F \subseteq \Sigma^*$ is regular and $L_\omega \subseteq \subseteq \Sigma^\omega$ is ω -regular. This means that $L_F = \mathcal{L}(B), L_\omega = \mathcal{L}(C)$ where $B = (P, \Sigma, \epsilon, p_0, G)$ is an acceptor and $C = (R, \Sigma, \phi, r_0, \Psi)$ is an ω -acceptor. Let us construct an ∞ -acceptor $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ by putting $Q = P \times R, q_0 = (p_0, r_0), \ \delta((p, r), a) = (\epsilon(p, a), \phi(r, a))$ and $F = \{(p, r) \in Q \mid p \in G\}$. To construct Φ let us consider $w \in L_\omega$. Let (1) $p(w) = p_0, p_1, p_2, \ldots$

be the run of B on w and

(2) $r(w) = r_0, r_1, r_2, \ldots$ the run of C on w. Put

(3) $q(w) = (p_0, r_0), (p_1, r_1), (p_2, r_2), \dots$

and define $\Phi = { \ln(q(w)) | w \in L_{\omega} }$. Φ is finite since, for every $w \in L_{\omega}$, $\ln(q(w)) \subseteq Q$. Let $w \in L$. For a $w \in L_F$ we have $\epsilon^*(w) \in G$, which means that $\delta^{\infty}(w) \in F$ and thus $w \in \mathcal{L}^F(A)$. If $w \in L_{\omega}$, then, using the notation (1), (2) and (3), we see that $\ln(q(w)) \in \Phi$ and thus, since clearly $\delta^{\infty}(w) = \ln(q(w))$, we get $w \in \mathcal{L}^{\omega}(A)$.

218

 ∞ -regular languages

To prove the inverse inclusion $\mathcal{L}^{\infty}(A) \subseteq L$ let us first take a $w \in \mathcal{L}^{F}(A)$. This gives us a run of A on w: $(p_{0}, r_{0}), (p_{1}, r_{1}), (p_{2}, r_{2}), \ldots$ $\dots, (p_{k}, r_{k}), \quad k \geq 0$, where $p_{k} \in G$. Then, of course, $p_{0}, p_{1}, p_{2}, \ldots, p_{k}$ is a run of B on w and $w \in \mathcal{L}(B) = L_{F}$. If, on the other hand, $w \in \mathcal{L}^{\omega}(A)$, we get the run of B on w: $p(w) = p_{0}, p_{1}, p_{2}, \ldots$, the run of C on w: $r(w) = r_{0}, r_{1}, r_{2}, \ldots$ and the run of A on w: q(w) = $= (p_{0}, r_{0}), (p_{1}, r_{1}), (p_{2}, r_{2}), \ldots$ with $\delta^{\infty}(w) \in \Phi$. This means that there is a $w' \in \mathcal{L}(C)$ such that

 $\ln(q(w)) = \ln(q(w'))$

where again $p(w') = p_0, p'_1, p'_2, \ldots$ is the run of B on $w, r(w') = r_0, r'_1, r'_2, \ldots$ is the run of C on w and $q(w') = (p_0, r_0), (p'_1, r'_1), (p'_2, r'_2), \ldots$ is the run of A on w. Let $s \in \text{In}(r(w))$. This means that s occurs infinitely many times in r(w) and thus a p_i exists such that (p_i, s) occurs infinitely many times in q(w) or $(p_i, s) \in \text{In}(q(w))$ and (4) gives us $(p_i, s) \in \text{In}(q(w'))$. Then s must occur infinitely many times in r(w'), which implies $s \in \text{In}(r(w'))$ and $\text{In}(r(w)) \subseteq \text{In}(r(w'))$. However $\text{In}(r(w')) \subseteq \text{In}(r(w))$ can be proved in much the same way. The equality In(r(w)) = In(r(w')) then implies $w \in \mathcal{L}(C) = L_{\omega}$.

4. Limit ∞ -regular languages

(4)

Definition 4.1. Let $L \subseteq \Sigma^*$. Put $\lim L = \{w \in \Sigma^{\omega} \mid \operatorname{card}(\operatorname{lf}(w) \cap L) = = \omega\}$. The operator lim maps the set of all languages over Σ into the set of all ω -languages over Σ .

Note 4.2. In [1] this operator is denoted by L^{δ} and in [8] it is called δ -limit. We use the notation as introduced in [2] and [6].

Lemma 4.3. Let $w \in \Sigma^{\omega}$ and $L \subseteq \Sigma^*$. Then $w \in \lim L$ iff a sequence w_1, w_2, \ldots of words from L exists such that

 $|w_i| < |w_j|, i < j, w_i \in lf(w), i \ge 1.$

Proof. The proof follows directly from Def. 4.1. \Diamond

Definition 4.4. We say that an ∞ -acceptor $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ is concise if $\mathcal{L}^F(A) \neq \emptyset, \mathcal{L}^{\omega}(A) \neq \emptyset$ and, for any $A' = (Q, \Sigma, \delta, q_0, F', \Phi),$ $A'' = (Q, \Sigma, \delta, q_0, F, \Phi'')$ where $F' \subset F, \Phi'' \subset \Phi$, we have $\mathcal{L}^F(A') \subset \mathcal{L}^F(A), \mathcal{L}^{\omega}(A'') \subset \mathcal{L}^{\omega}(A).$

Lemma 4.5. Let $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ be a concise ∞ -acceptor. Then the following conditions are equivalent:

- 1. $\lim \mathcal{L}^F(A) \subseteq \mathcal{L}^{\omega}(A);$
- 2. if, for an $S \subseteq Q$, G(A, S) is strong and $S \cap F \neq \emptyset$, then $S \in \Phi$.

K. Mikulášek

Proof. Let the first condition hold and let $S \subseteq Q$ be such that G(A, S)is strong and $S \cap F \neq \emptyset$. Let $f \in S \cap F$. Since A is concise, there is a word $u \in \mathcal{L}^F(A)$ such that $\delta^{\infty}(u) = f$. G(A, S) being strong and $f \in S$ implies that there is a trace in G(A, S)

 $c_1, (c_1, a_1, c_2), c_2, (c_2, a_2, c_3), \dots, (c_{k-1}, a_{k-1}, c_k), c_k, k > 1$ such that it contains all the nodes of G(A, S) and $c_1 = c_k = f$. Let us now consider a sequence of words w_1, w_2, \ldots where $w_i = u.(a_1.a_2.\ldots)$ $(\ldots a_{k-1})^i$ and an ω -word $w = u (a_1 a_2 \dots a_{k-1})^\omega$. It is easy to see that $w_i \in \mathcal{L}^F(A), w_i \in \mathrm{lf}(w), \ i \geq 1 \text{ and } | w_i | < | w_j |, i < j, \text{ which, by}$ Lemma 4.3, implies $w \in \lim \mathcal{L}^F(A)$. It is also obvious that $\{c_1, c_2, \ldots\}$ \ldots, c_k is exactly the set of states occurring infinitely many times in the run of A on w and thus $\delta^{\infty}(w) = S$. However, by the assumption, $w \in \mathcal{L}^{\omega}(A)$ and thus $S \in \Phi$.

Let the second condition hold and $w \in \lim \mathcal{L}^F(A)$. By Lemma 4.3, we get a sequence of words $w_1, w_2, \ldots, w_i \in lf(w), i \geq 1$ such that $|w_i| < |w_j|$, i < j. Let us consider an infinite sequence of states from F

(5) $f_1, f_2, \ldots, \quad f_i = \delta^{\infty}(w_i), \quad i \ge 1.$ Since F is finite, there is an f which occurs infinitely many times in (5).

Denote by (6)

 $q(w) = q_0, q_1, q_2, \ldots$

the run of A on w. Since, clearly, (5) is a subsequence of (6), we have $f \in \text{In}(q(w))$. G(A, In(q(w))) is strong and $|w_i| < |w_j|$ implies that it has at least one arc and so we get $In(q(w)) \in \Phi$ by the assumption and finally $w \in \mathcal{L}^{\omega}(A)$.

Lemma 4.6. Let $A = (Q, \Sigma, \delta, q_0, F, \Phi)$ be a concise ∞ -acceptor. Then the following conditions are equivalent:

1. $\lim \mathcal{L}^F(A) \supseteq \mathcal{L}^{\omega}(A);$

2. $F_i \cap F \neq \emptyset$ for every $F_i \in \Phi$.

Proof. Let the first condition hold and let $F_i \in \Phi$. As A is concise, there exists a $w \in \mathcal{L}^{\omega}(A)$ such that $\delta^{\infty}(w) = F_i$. By the assumption then $w \in \lim \mathcal{L}^{F}(A)$ and, by Lemma 4.3, there exists a sequence of words

 $w_1, w_2, \ldots, w_i \in \mathrm{lf}(w), \quad w_i \in \mathcal{L}^F(A), \quad i \ge 1$

such that $|w_i| < |w_j|, i < j$. Thus we have $\delta^{\infty}(w_i) \in F, i \geq 1$ and since F is finite, there must be an $f \in F$ which occurs infinitely many times in the sequence

(7)
$$\delta^{\infty}(w_1), \delta^{\infty}(w_2), \ldots$$

Let

220

(8)
$$q(w) = q_0, q_1, q_2, \dots$$

be the run of A on w. It is easy to see that (7) is a subsequence of (8), which means that $f \in \text{In}((q(w)) = \delta^{\infty}(w) = F_i$. Therefore $F \cap F_i \neq \emptyset$ and the second condition holds.

If the second condition holds and $w \in \mathcal{L}^{\omega}(A)$, then $\delta^{\infty}(w) = F_i \in \Phi$. Since $F_i \cap F \neq \emptyset$, there exists an $f \in F_i \cap F$ which occurs infinitely many times in the run of A on w and thus there is a sequence

 $w_1, w_2, \ldots, \quad w_i \in \mathrm{lf}(w), w_i \in \mathcal{L}^F(A), \quad i \ge 1$

such that $|w_i| < |w_j|, i < j$. Then, by Lemma 4.3, $w \in \lim \mathcal{L}^F(A)$. **Definition 4.7.** Let $D = (U, \tau, H)$ be a graph. For every $v \in U$, we define a system of subsets of U: $\sigma(D, v) = \{V \subseteq U \mid v \in V \land G(D, V) \text{ is strong}\}$. For a $W \subseteq U$, we put $\sigma(D, W) = \bigcup_{v \in W} \sigma(D, v)$.

Theorem 4.8. Let $A = (Q, \Sigma, \delta, F, \Phi)$ be a concise ∞ -acceptor. Then the following conditions are equivalent:

- 1. $\lim \mathcal{L}^F(A) = \mathcal{L}^{\omega}(A);$
- 2. $\Phi = \sigma(G(A), F).$

Proof. Let the first condition hold and $F_i \in \Phi$. Then $G(A, F_i)$ is strong since A is concise. By Lemma 4.6 we have $F_i \cap F \neq \emptyset$ with an $f \in F_i \cap F$ such that $F_i \in \sigma(G(A), f)$. This means that $F_i \in \sigma(G(A), F)$. For an $F_i \in \sigma(G(A), F)$, $G(A, F_i)$ is strong and $F_i \cap F \neq \emptyset$. Thus, by Lemma 4.5, we get $F_i \in \Phi$.

If $\Phi = \sigma(G(A), F)$, then, for every $S \subseteq Q$ such that G(A, S)is strong and $S \cap F \neq \emptyset$, $S \in \sigma(G(A), F) = \Phi$ and, by Lemma 4.5, $\lim \mathcal{L}^F(A) \subseteq \mathcal{L}^{\omega}(A)$. Next if $F_i \in \Phi$, then $F_i \in \sigma(G(A), F)$ implies $F_i \cap F \neq \emptyset$ and, by Lemma 4.6, we get $\mathcal{L}^{\omega}(A) \subseteq \lim \mathcal{L}^F(A)$.

References

- DAVIS, M.: Infinitary Games of Perfect Information, in: Advances in Game theory, Princeton Univ. Press, Princeton N. J. 1964, 89-101.
- [2] EILENBERG, S.: Automata, Languages and Machines, Volume A, New York, Academic Press 1974.
- [3] GRODZKI, Z.: The k-machines, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18/7 (1970), 399-402.
- [4] KWASOWIEC, S.: Generable Sets, Information and Control 17 (1970), 257-264.

- [5] MEZNÍK, I.: G-machines and Generable Sets, Information and Control 20 (1972), No 5, 499-509.
- [6] NOVOTNÝ, M.: Sets Constructed by Acceptors, Information and Control, 26 (1974), 116-133.
- [7] PAWLAK, Z.: Stored Program Computers, Algorytmy 10 (1969), 7-22.
- [8] STEIGER, L.: Research in the Theory of ω-languages, J. Inf. Process. Cybern. EIK 8/9 23 (1987), 415-439.
- [9] STEIGER, L.: Hierarchies of Recursive ω-languages, Elektron. Inf. Verarb. Kybern. EIK 5/6 22 (1986), 219-241.