Mathematica Pannonica

$7 / 2(1996), 215-222$

$\infty-$ REGULAR LANGUAGES DEFINED BY A LIMIT OPERATOR

Karel Mikulášek
Department of Mathematics, Technical University, 61669 Brno, Technická 2, Czech Republic

Received: May 1995
MSC 1991: 68 Q 45
Keywords: ∞-regular language, ∞-acceptor, transition graph, limit operator.

Abstract

Finite deterministic ∞-acceptor accepting both finite and infinite words over a finite alphabet is introduced. It is shown that ∞-regular languages can be defined as sets of ∞-words accepted by an ∞-acceptor. A limit operator on regular languages is used to define a special class of ∞-regular languages. In ∞-acceptors accepting these languages incidence relations between the sets used for acceptance are determined.

1. Introduction

The paper deals with special classes of ∞-regular languages. If a finite alphabet Σ is given, then by an ∞-regular language over Σ we understand the union of a regular and an ω-regular language over Σ. In this paper we show that it is possible to define such languages by means of a single finite-state device. A deterministic machine capable of constructing both finite and infinite sequences is first introduced in [7]. In [4] the structure of the sets constructed in [7] is investigated and in [5] a non-deterministic version of such machines is shown. Another generalization can be found in [3] where the notion of a k-machine is introduced. In [6] generalized non-deterministic acceptors accepting sequences of both finite and infinite length are introduced. Limit operators on regular languages are usefull tools for investigating relations
between regular and ω-regular languages. In [8] and [9] they are also used for studying topological properties of ω-languages. The operator lim used in this paper appears e.g. in [1], [2], [6] and [9]. A generalization of some of the results of [6] gives rise to a question of how the structure of ∞-regular languages defined by inclusions between a limit closure of their words and their ω-words is reflected in the incidence of sets used for accepting words and ω-words.

2. Preliminaries

In this paper, all the numbers are non-negative integers if not specified otherwise. By ω we denote the least infinite ordinal number. A non-empty finite set Σ is called alphabet and its elements letters, Σ^{*} denotes the set of all finite sequences of Σ. The empty word is denoted by λ. Its elements are called words. For a. $u \in \Sigma^{*}$, we write $u=$ $u_{1} u_{2} \ldots u_{n}$. For two non-empty words $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{k}$, we define their catenation $u . v=u_{1} u_{2} \ldots u_{m} v_{1} v_{2} \ldots v_{k}$. We put: $\lambda . u=$ $=u \cdot \lambda=u, u \in \Sigma^{*}$. The catenation of k identical words $w \in \Sigma^{*}$ is denoted by w^{k}.
Σ^{ω} denotes the set of all infinite sequences over Σ. If $w \in \Sigma^{\omega}$, then we write $w=w_{1} w_{2} \ldots$. These sequences are called ω-words. For $w \in \Sigma^{*}, w^{\omega}$ denotes the ω-word $w . w \ldots$. We put $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$. The elements of Σ^{∞} are called ∞-words. We define the catenation of two ∞-words u, v by using the above definition for $u, v \in \Sigma^{*}$ and putting $u . v=u_{1} u_{2} \ldots u_{n} v_{1} v_{2} \ldots$, if $u \in \Sigma^{*}, v \in \Sigma^{\omega}$. For $u \in \Sigma^{\omega}$, the catenation is not defined.

For a word $w=w_{1} w_{2} \ldots w_{n}, n \geq 1$, we define its length as $|w|=n$ and for $w \in \Sigma^{\omega}$ we put $|w|=\omega$. Finally we put $|\lambda|=0$.

For a $w \in \Sigma^{\omega}$ we define the set of left fractions of w :
If $(w)=\left\{u \in \Sigma^{*} \mid w=u . v, v \in \Sigma^{\omega}\right\}$.
A subset of Σ^{*} is called a language, a subset of Σ^{ω} an ω-language and a subset of Σ^{∞} an ∞-language.

For an infinite sequence $q=q_{0}, q_{1}, q_{2}, \ldots$ of elements of a finite set Q we define $\operatorname{In}(q)$ as the set of all the elements of Q which occur infinitely many times in q.

In the sequel, we will use the following evident assertion: For an arbitrary sequence $s_{1}, s_{2}, \ldots, s_{k}, k \geq 1$ of elements of $\operatorname{In}(q)$, there are indices $i_{1}<i_{2}<\ldots<i_{k}$ such that $s_{j}=q_{i_{j}}, 1 \leq j \leq k$.

A graph is a triple $D=(U, \tau, H)$ where U is a finite set of nodes, H is a finite set of arcs and $\tau: H \rightarrow U \times U$ is an incidence mapping. A graph $D^{\prime}=\left(U^{\prime}, \tau^{\prime}, H^{\prime}\right)$ is a subgraph of a graph $D=(U, \tau, H)$ if $U^{\prime} \subseteq U, H^{\prime} \subseteq H$ and $\tau^{\prime}: H^{\prime} \rightarrow U^{\prime} \times U^{\prime}$ is a restriction of τ on H. For $V \subseteq U$, we say that $D_{V}=\left(V, \tau^{\prime}, H^{\prime}\right)$ is the subgraph of D induced by V if H^{\prime} is a maximum subset of H such that $\tau(h) \in V \times V$ for every $h \in H^{\prime}$ and τ^{\prime} is a restriction of τ on H^{\prime}.

A trace in a graph $D=(U, \tau, H)$ is an alternating sequence of nodes and arcs $u_{0}, a_{1}, u_{1}, a_{2}, \ldots, a_{n}, u_{n}, n \geq 1$ where $\tau\left(a_{i}\right)=\left(u_{i-1}, u_{i}\right)$, $1 \leq i \leq n$. We say that a graph $D=(U, \tau, H)$ is strong if, for every $u, v \in U$, there is a trace from u to v.

In proofs we will use the following obvious assertion: $D=(U, \tau, H)$ is strong iff, for every $u, v \in U$, there is a trace in D starting in u, ending in v and containing all nodes of U.

3. ∞-regular languages

Definition 3.1. We say that a five-tuple $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a $f i-$ nite deterministic acceptor or, shortly, an acceptor if Q is a finite set of states, Σ is an alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, $q_{0} \in Q$ is the initial state and $F \subseteq Q$ is a set of final states. For $w \in$ $\in \Sigma^{*}, w=a_{1}, a_{2} \ldots a_{n}, n \geq 0$, a sequence $q(w)=q_{0}, q_{1}, q_{2}, \ldots, q_{n}$ is called the run of A on w if $q_{i}=\delta\left(q_{i-1}, a_{i}\right), 1 \leq i \leq n$. We put $\delta^{*}(w)=$ $=q_{n}$. If $\delta^{*}(w) \in F$ then we say that A accepts w. The set of all words accepted by A is denoted by $\mathcal{L}(A)$. A language $L \subseteq \Sigma^{*}$ is called regular if $L=\mathcal{L}(A)$ for an acceptor A.
Definition 3.2. We say that a five-tuple $A=\left(Q, \Sigma, \delta, q_{0}, \Phi\right)$ is a $f-$ nite deterministic ω-acceptor or, shortly, an ω-acceptor if Q is a finite set of states, Σ is an alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, $q_{0} \in Q$ is the initial state and $\Phi \subseteq 2^{Q}$ is a system of subsets of infinitely many times occurring states. For $w \in \Sigma^{\omega}, w=a_{1} . a_{2} \ldots$ a sequence $q(w)=q_{0}, q_{1}, q_{2}, \ldots$ is called the run of A on w if $q_{i}=$ $=\delta\left(q_{i-1}, a_{i}\right), 1 \leq i$. We put $\delta^{\omega}(w)=\operatorname{In}(q(w))$. If $\delta^{\omega}(w) \in \Phi$ then we say that A accepts w. The set of all words accepted by A is denoted by $\mathcal{L}(A)$. An ω-language $L \subseteq \Sigma^{\omega}$ is called ω-regular if $L=\mathcal{L}(A)$ for an ω-acceptor A.
Note 3.3. Clearly, for a $w \in \Sigma^{\omega}$ the run of an acceptor on w is also defined and so is the run of an ω-acceptor on a $w \in \Sigma^{*}$.

Definition 3.4. An ∞-language $L \subseteq \Sigma^{\infty}$ is called ∞-regular if a regular language $L_{F} \subseteq \Sigma^{*}$ and an ω-regular language $L_{\omega} \subseteq \Sigma^{\omega}$ exist such that $L=L_{F} \cup L_{\omega}$.
Definition 3.5. We say that a six-tuple $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ is a finite deterministic ∞-acceptor or, shortly, an ∞-acceptor if Q is a finite set of states, Σ is an alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, $q_{0} \in Q$ is the initial state, $F \subseteq Q$ is a set of final states and $\Phi \subseteq 2^{Q}$ is a system of subsets of infinitely many times occurring states.

For $w \in \Sigma^{\infty}$ we define the run of A on w using either Definition 3.1 if $w \in \Sigma^{*}$ or Definition 3.2 if $w \in \Sigma^{\omega}$. Similarly, we put $\delta^{\infty}(w)=$ $=\delta^{*}(w)$ or $\delta^{\infty}(w)=\delta^{\omega}(w)$ depending on whether $w \in \Sigma^{*}$ or $w \in \Sigma^{\omega}$. If $\delta^{\infty}(w) \in F \cup \Phi$, then we say that A accepts w. The set of all ∞-words accepted by A is denoted by $\mathcal{L}(A)$, the set of all ω-words accepted by A is denoted by $\mathcal{L}^{\omega}(A)$ and the set of all words accepted by A is denoted by $\mathcal{L}^{F}(A)$.
Definition 3.6. Let $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ be an ∞-acceptor. We say that $G(A)=(Q, \tau, H)$ is the transition graph of A if
$H=\left\{\left(q_{i}, a, q_{j}\right) \mid q_{i}, q_{j} \in Q, a \in \Sigma, q_{j}=\delta\left(q_{i}, a\right)\right\}, \quad \tau\left(q_{i}, a, q_{j}\right)=\left(q_{i}, q_{j}\right)$. For a $P \subseteq Q$, we denote by $G(A, P)$ the subgraph of the transition graph of A induced by P.
Theorem 3.7. Let $L \subseteq \Sigma^{\infty}$ be an ∞-regular language. Then there exists an ∞-acceptor A such that $L=\mathcal{L}^{\infty}(A)$.
Proof. We have $L=L_{F} \cup L_{\omega}$ where $L_{F} \subseteq \Sigma^{*}$ is regular and $L_{\omega} \subseteq$ $\subseteq \Sigma^{\omega}$ is ω-regular. This means that $L_{F}=\mathcal{L}(B), L_{\omega}=\mathcal{L}(C)$ where $B=\left(P, \Sigma, \epsilon, p_{0}, G\right)$ is an acceptor and $C=\left(R, \Sigma, \phi, r_{0}, \Psi\right)$ is an ω acceptor. Let us construct an ∞-acceptor $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ by putting $Q=P \times R, q_{0}=\left(p_{0}, r_{0}\right), \delta((p, r), a)=(\epsilon(p, a), \phi(r, a))$ and $F=\{(p, r) \in Q \mid p \in G\}$. To construct Φ let us consider $w \in L_{\omega}$. Let (1)

$$
p(w)=p_{0}, p_{1}, p_{2}, \ldots
$$

be the run of B on w and
(2) $\quad r(w)=r_{0}, r_{1}, r_{2}, \ldots$ the run of C on w. Put
(3) $\quad q(w)=\left(p_{0}, r_{0}\right),\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right), \ldots$
and define $\Phi=\left\{\operatorname{In}(q(w)) \mid w \in L_{\omega}\right\}$. Φ is finite since, for every $w \in L_{\omega}$, $\operatorname{In}(q(w)) \subseteq Q$. Let $w \in L$. For a $w \in L_{F}$ we have $\epsilon^{*}(w) \in G$, which means that $\delta^{\infty}(w) \in F$ and thus $w \in \mathcal{L}^{F}(A)$. If $w \in L_{\omega}$, then, using the notation (1), (2) and (3), we see that $\operatorname{In}(q(w)) \in \Phi$ and thus, since clearly $\delta^{\infty}(w)=\operatorname{In}(q(w))$, we get $w \in \mathcal{L}^{\omega}(A)$.

To prove the inverse inclusion $\mathcal{L}^{\infty}(A) \subseteq L$ let us first take a $w \in$ $\in \mathcal{L}^{F}(A)$. This gives us a run of A on $w:\left(p_{0}, r_{0}\right),\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right), \ldots$ $\ldots,\left(p_{k}, r_{k}\right), \quad k \geq 0$, where $p_{k} \in G$. Then, of course, $p_{0}, p_{1}, p_{2}, \ldots, p_{k}$ is a run of B on w and $w \in \mathcal{L}(B)=L_{F}$. If, on the other hand, $w \in \mathcal{L}^{\omega}(A)$, we get the run of B on $w: p(w)=p_{0}, p_{1}, p_{2}, \ldots$, the run of C on $w: r(w)=r_{0}, r_{1}, r_{2}, \ldots$ and the run of A on $w: q(w)=$ $=\left(p_{0}, r_{0}\right),\left(p_{1}, r_{1}\right),\left(p_{2}, r_{2}\right), \ldots$ with $\delta^{\infty}(w) \in \Phi$. This means that there is a $w^{\prime} \in \mathcal{L}(C)$ such that

$$
\begin{equation*}
\operatorname{In}(q(w))=\operatorname{In}\left(q\left(w^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

where again $p\left(w^{\prime}\right)=p_{0}, p_{1}^{\prime}, p_{2}^{\prime}, \ldots$ is the run of B on $w, r\left(w^{\prime}\right)=$ $=r_{0}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots$ is the run of C on w and $q\left(w^{\prime}\right)=\left(p_{0}, r_{0}\right),\left(p_{1}^{\prime}, r_{1}^{\prime}\right)$, $\left(p_{2}^{\prime}, r_{2}^{\prime}\right), \ldots$ is the run of A on w. Let $s \in \operatorname{In}(r(w))$. This means that s occurs infinitely many times in $r(w)$ and thus a p_{i} exists such that $\left(p_{i}, s\right)$ occurs infinitely many times in $q(w)$ or $\left(p_{i}, s\right) \in \operatorname{In}(q(w))$ and (4) gives us $\left(p_{i}, s\right) \in \operatorname{In}\left(q\left(w^{\prime}\right)\right)$. Then s must occur infinitely many times in $r\left(w^{\prime}\right)$, which implies $s \in \operatorname{In}\left(r\left(w^{\prime}\right)\right)$ and $\operatorname{In}(r(w)) \subseteq \operatorname{In}\left(r\left(w^{\prime}\right)\right)$. However $\operatorname{In}\left(r\left(w^{\prime}\right)\right) \subseteq \operatorname{In}(r(w))$ can be proved in much the same way. The equality $\operatorname{In}(r(w))=\operatorname{In}\left(r\left(w^{\prime}\right)\right)$ then implies $w \in \mathcal{L}(C)=L_{\omega} . \diamond$

4. Limit ∞-regular languages

Definition 4.1. Let $L \subseteq \Sigma^{*}$. Put $\lim L=\left\{w \in \Sigma^{\omega} \mid \operatorname{card}(\operatorname{lf}(w) \cap L)=\right.$ $=\omega\}$. The operator lim maps the set of all languages over Σ into the set of all ω-languages over Σ.
Note 4.2. In [1] this operator is denoted by L^{δ} and in [8] it is called δ-limit. We use the notation as introduced in [2] and [6].
Lemma 4.3. Let $w \in \Sigma^{\omega}$ and $L \subseteq \Sigma^{*}$. Then $w \in \lim L$ iff a sequence w_{1}, w_{2}, \ldots of words from L exists such that

$$
\left|w_{i}\right|<\left|w_{j}\right|, i<j, w_{i} \in \operatorname{lf}(w), i \geq 1
$$

Proof. The proof follows directly from Def. 4.1. \diamond
Definition 4.4. We say that an ∞-acceptor $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ is concise if $\mathcal{L}^{F}(A) \neq \emptyset, \mathcal{L}^{\omega}(A) \neq \emptyset$ and, for any $A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}, \Phi\right)$, $A^{\prime \prime}=\left(Q, \Sigma, \delta, q_{0}, F, \Phi^{\prime \prime}\right)$ where $F^{\prime} \subset F, \Phi^{\prime \prime} \subset \Phi$, we have $\mathcal{L}^{F}\left(A^{\prime}\right) \subset$ $\subset \mathcal{L}^{F}(A), \mathcal{L}^{\omega}\left(A^{\prime \prime}\right) \subset \mathcal{L}^{\omega}(A)$.
Lemma 4.5. Let $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ be a concise ∞-acceptor. Then the following conditions are equivalent:

1. $\lim \mathcal{L}^{F}(A) \subseteq \mathcal{L}^{\omega}(A)$;
2. if, for an $S \subseteq Q, G(A, S)$ is strong and $S \cap F \neq \emptyset$, then $S \in \Phi$.

Proof. Let the first condition hold and let $S \subseteq Q$ be such that $G(A, S)$ is strong and $S \cap F \neq \emptyset$. Let $f \in S \cap F$. Since A is concise, there is a word $u \in \mathcal{L}^{F}(A)$ such that $\delta^{\infty}(u)=f . G(A, S)$ being strong and $f \in S$ implies that there is a trace in $G(A, S)$
$c_{1},\left(c_{1}, a_{1}, c_{2}\right), c_{2},\left(c_{2}, a_{2}, c_{3}\right), \ldots,\left(c_{k-1}, a_{k-1}, c_{k}\right), c_{k}, \quad k>1$
such that it contains all the nodes of $G(A, S)$ and $c_{1}=c_{k}=f$. Let us now consider a sequence of words w_{1}, w_{2}, \ldots where $w_{i}=u .\left(a_{1}, a_{2} \ldots\right.$ $\left.\ldots a_{k-1}\right)^{i}$ and an ω-word $w=u .\left(a_{1} a_{2} \ldots a_{k-1}\right)^{\omega}$. It is easy to see that $w_{i} \in \mathcal{L}^{F}(A), w_{i} \in \operatorname{lf}(w), i \geq 1$ and $\left|w_{i}\right|<\left|w_{j}\right|, i<j$, which, by Lemma 4.3, implies $w \in \lim \mathcal{L}^{F}(A)$. It is also obvious that $\left\{c_{1}, c_{2}, \ldots\right.$ $\left.\ldots, c_{k}\right\}$ is exactly the set of states occurring infinitely many times in the run of A on w and thus $\delta^{\infty}(w)=S$. However, by the assumption, $w \in \mathcal{L}^{\omega}(A)$ and thus $S \in \Phi$.

Let the second condition hold and $w \in \lim \mathcal{L}^{F}(A)$. By Lemma 4.3, we get a sequence of words $w_{1}, w_{2}, \ldots, w_{i} \in \operatorname{lf}(w), i \geq 1$ such that $\left|w_{i}\right|<\left|w_{j}\right|, i<j$. Let us consider an infinite sequence of states from F
(5) $\quad f_{1}, f_{2}, \ldots, \quad f_{i}=\delta^{\infty}\left(w_{i}\right), \quad i \geq 1$.

Since F is finite, there is an f which occurs infinitely many times in (5). Denote by
(6)

$$
q(w)=q_{0}, q_{1}, q_{2}, \ldots
$$

the run of A on w. Since, clearly, (5) is a subsequence of (6), we have $f \in \operatorname{In}(q(w)) . G\left(A, \operatorname{In}(q(w))\right.$ is strong and $\left|w_{i}\right|<\left|w_{j}\right|$ implies that it has at least one arc and so we get $\operatorname{In}(q(w)) \in \Phi$ by the assumption and finally $w \in \mathcal{L}^{\omega}(A) . \widehat{\nabla}$
Lemma 4.6. Let $A=\left(Q, \Sigma, \delta, q_{0}, F, \Phi\right)$ be a concise ∞-acceptor. Then the following conditions are equivalent:

1. $\lim \mathcal{L}^{F}(A) \supseteq \mathcal{L}^{\omega}(A)$;
2. $F_{i} \cap F \neq \emptyset$ for every $F_{i} \in \Phi$.

Proof. Let the first condition hold and let $F_{i} \in \Phi$. As A is concise, there exists a $w \in \mathcal{L}^{\omega}(A)$ such that $\delta^{\infty}(w)=F_{i}$. By the assumption then $w \in \lim \mathcal{L}^{F}(A)$ and, by Lemma 4.3, there exists a sequence of words

$$
w_{1}, w_{2}, \ldots, w_{i} \in \operatorname{lf}(w), \quad w_{i} \in \mathcal{L}^{F}(A), \quad i \geq 1
$$

such that $\left|w_{i}\right|<\left|w_{j}\right|, i<j$. Thus we have $\delta^{\infty}\left(w_{i}\right) \in F, i \geq 1$ and since F is finite, there must be an $f \in F$ which occurs infinitely many times in the sequence

$$
\begin{equation*}
\delta^{\infty}\left(w_{1}\right), \delta^{\infty}\left(w_{2}\right), \ldots \tag{7}
\end{equation*}
$$

Let

$$
q(w)=q_{0}, q_{1}, q_{2}, \ldots
$$

be the run of A on w. It is easy to see that (7) is a subsequence of (8), which means that $f \in \operatorname{In}\left((q(w))=\delta^{\infty}(w)=F_{i}\right.$. Therefore $F \cap F_{i} \neq \emptyset$ and the second condition holds.

If the second condition holds and $w \in \mathcal{L}^{\omega}(A)$, then $\delta^{\infty}(w)=F_{i} \in$ $\in \Phi$. Since $F_{i} \cap F \neq \emptyset$, there exists an $f \in F_{i} \cap F$ which occurs infinitely many times in the run of A on w and thus there is a sequence

$$
w_{1}, w_{2}, \ldots, \quad w_{i} \in \operatorname{lf}(w), w_{i} \in \mathcal{L}^{F}(A), \quad i \geq 1
$$

such that $\left|w_{i}\right|<\left|w_{j}\right|, i<j$. Then, by Lemma $4.3, w \in \lim \mathcal{L}^{F}(A) . \diamond$
Definition 4.7. Let $D=(U, \tau, H)$ be a graph. For every $v \in U$, we define a system of subsets of $U: \sigma(D, v)=\{V \subseteq U \mid v \in V \wedge G(D, V)$ is strong $\}$. For a $W \subseteq U$, we put $\sigma(D, W)=\bigcup_{v \in W} \sigma(D, v)$.
Theorem 4.8. Let $A=(Q, \Sigma, \delta, F, \Phi)$ be a concise ∞-acceptor. Then the following conditions are equivalent:

1. $\lim \mathcal{L}^{F}(A)=\mathcal{L}^{\omega}(A) ;$
2. $\Phi=\sigma(G(A), F)$.

Proof. Let the first condition hold and $F_{i} \in \Phi$. Then $G\left(A, F_{i}\right)$ is strong since A is concise. By Lemma 4.6 we have $F_{i} \cap F \neq \emptyset$ with an $f \in F_{i} \cap F$ such that $F_{i} \in \sigma(G(A), f)$. This means that $F_{i} \in \sigma(G(A), F)$. For an $F_{i} \in \sigma(G(A), F), G\left(A, F_{i}\right)$ is strong and $F_{i} \cap F \neq \emptyset$. Thus, by Lemma 4.5, we get $F_{i} \in \Phi$.

If $\Phi=\sigma(G(A), F)$, then, for every $S \subseteq Q$ such that $G(A, S)$ is strong and $S \cap F \neq \emptyset, S \in \sigma(G(A), F)=\Phi$ and, by Lemma 4.5, $\lim \mathcal{L}^{F}(A) \subseteq \mathcal{L}^{\omega}(A)$. Next if $F_{i} \in \Phi$, then $F_{i} \in \sigma(G(A), F)$ implies $F_{i} \cap F \neq \emptyset$ and, by Lemma 4.6 , we get $\mathcal{L}^{\omega}(A) \subseteq \lim \mathcal{L}^{F}(A) . \diamond$

References

[1] DAVIS, M.: Infinitary Games of Perfect Information, in: Advances in Game theory, Princeton Univ. Press, Princeton N. J. 1964, 89-101.
[2] EILENBERG, S.: Automata, Languages and Machines, Volume A, New York, Academic Press 1974.
[3] GRODZKI, Z.: The k-machines, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18/7 (1970), 399-402.
[4] KWASOWIEC, S.: Generable Sets, Information and Control 17 (1970), 257264.
[5] MEZNÍK, I.: G-machines and Generable Sets, Information and Control 20 (1972), No 5, 499-509.
[6] NOVOTNY, M.: Sets Constructed by Acceptors, Information and Control, 26 (1974), 116-133.
[7] PAWLAK, Z.: Stored Program Computers, Algorytmy 10 (1969), 7-22.
[8] STEIGER, L.: Research in the Theory of ω-languages, J. Inf. Process. Cybern. EIK 8/9 23 (1987), 415-439.
[9] STEIGER, L.: Hierarchies of Recursive w-languages, Elektron. Inf. Verarb. Kybern. EIK 5/6 22 (1986), 219-241

