Mathematica Pannonica
7/2 (1996), 215 — 222

~ — REGULAR LANGUAGES
DEFINED BY A LIMIT OPERATOR

Karel Mikulasek

Department of Mathematics, Technical University, 61669 Brno,
Technickd 2, Czech Republic

Received: May 1995

MSC 1991: 68 Q 45
Keywords: oo-regular language, co-acceptor, transition graph, limit operator.

Abstract: Finite deterministic oo-acceptor accepting both finite and infinite
words over a finite alphabet is introduced. It is shown that co-regular lan-
guages can be defined as sets of co-words accepted by an co-acceptor. A limit
operator on regular languages is used to define a special class of oo-regular
languages. In co-acceptors accepting these languages incidence relations be-

tween the sets used for acceptance are determined.

1. Introduction

The paper deals with special classes of co-regular languages. If
a finite alphabet ¥ 1s given, then by an co-regular language over ¥ we
understand the union of a regular and an w-regular language over X.
In this paper we show that it is possible to define such languages by
means of a single finite-state device. A deterministic machine capable
of constructing both finite and infinite sequences is first introduced in
[7]. In [4] the structure of the sets constructed in [7] is investigated
and in [5] a non-deterministic version of such machines is shown. An-
other generalization can be found in [3] where the notion of a k-machine
is introduced. In [6] generalized non-deterministic acceptors accepting
sequences of both finite and infinite length are introduced. Limit op-
erators on regular languages are usefull tools for investigating relations
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between regular and w-regular languages. In [8] and [9] they are also
used for studying topological properties of w-languages. The operator
lim used in this paper appears e.g. in [1], [2], [6] and [9]. A general-
ization of some of the results of [6] gives rise to a question of how the
structure of co-regular languages defined by inclusions between a limit
closure of their words and their w-words is reflected in the incidence of
sets used for accepting words and w-words.

2. Preliminaries

In this paper, all the numbers are non-negative integers if not
specified otherwise. By w we denote the least infinite ordinal number.
A non-empty finite set ¥ is called alphabet and its elements letters. 3*
denotes the set of all finite sequences of X. The empty word is denoted
by A. Its elements are called words. For a u € ¥*, we write u =
ujs. .. u,. For two non-empty words u = wjus ... Uy, v = V102 ... Uk,
we define their catenation u.v = ujus ... tpvive ... vx. We put: Au =
= uw.A = u, u € X*. The catenation of %k identical words w € ¥* is
denoted by w”.

% denotes the set of all infinite sequences over X. If w € X%,
then we write w = wyws.... These sequences are called w-words. For
w € X*, w¥ denotes the w-word w.w. . ... We put 2% = X* U X*¥, The
elements of >*° are called co-words. We define the catenation of two
oco-words u, v by using the above definition for u,v € ¥* and putting
UV = UL U . .. Uy U V2 ..., Hu €X* ve XY Foru € XY, the catenation
is not defined.

Fora word w = wiws ... wy, n > 1, we define its length as | w |= n
and for w € ¥* we put | w |= w. Finally we put | A |= 0.

For a w € ¥* we define the set of left fractions of w:

If (w) ={ue¥|w=uv ve ¥}

A subset of ¥* 15 called a language, a subset of X% an w-language
and a subset of ¥ an oco-language.

For an infinite sequence ¢ = go, ¢q1, g2, ... of elements of a finite
set () we define In(g) as the set of all the elements of @@ which occur
infinitely many times in gq.

In the sequel, we will use the following evident assertion: for an
arbitrary sequence 81, 8s,...,5,, k > 1 of elements of In(g), there are
indices 17 <1z < ... <1y such that s; = ¢q;,, 1 <j <k
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A graph is a triple D = (U, 7, H) where U is a finite set of nodes,
H 1s a finite set of arcs and 7: H — U X U 1s an wncidence mapping.
A graph D' = (U', 7', H') is a subgraph of a graph D = (U, r, H) if
U'CUH CHand 7 : H — U x U is a restriction of 7 on H. For
V C U, we say that Dy = (V, 7', H') is the subgraph of D induced by
Vit /' is a maximum subset of I such that 7(h) € V X V for every
h € H' and 7' is a restriction of 7 on H'.

A trace in a graph D = (U, r, ) is an alternating sequence of
nodes and arcs ug, ar, uy, @s, ..., an, Uy, 7 > 1 where 7(a;) = (uj—1, u;),
1 <1 < n. We say that a graph D = (U, 7, H) is strong if, for every
u, v € U, there 18 a trace from u to v.

In proofs we will use the following obvious assertion: D) = (U, 7, H)
15 strong off, for every u,v € U, there s a trace in 1) starting n u,
ending in v and contarming all nodes of U.

3. oc-regular languages

Definition 3.1. We say that a five-tuple A = (Q, X%, 4, q0, F') is a fi-
mite determunistic acceptor or, shortly, an acceptor if () 1s a finite set
of states, X 1s an alphabet, 6 : @ x ¥ — @ 1s a transition function,
go € @ is the initial state and F' C @ is a set of final states. For w €
€Y w = ar.as...a,, n > 0, a sequence q(w) = qo,q1,92,.-. ,qn 18
called the run of A on w if ¢; = 8(gi—1,a;), 1 <i < n. We put §*(w) =
= q,. If §*(w) € F then we say that A accepts w. The set of all words
accepted by A is denoted by £(A). A language L C X* is called regular
if I = L£(A) for an acceptor A.

Definition 3.2. We say that a five-tuple A = (@, %, 4, qo, ®) is a fi-
mite determinmistic w-acceptor or, shortly, an w-acceptor if @ is a finite
set of states, Y is an alphabet, § : ) X ¥ — @ is a transition func-
tion, go € Q is the initial state and ® C 29 is a system of subsets
of infinitely many times occurring states. For w € X%, w = aj.az...
a sequence g(w) = qo,q1,42,... is called the run of A on w if ¢ =
= &(gi—1,0a:), 1 <i. We put §¥(w) = In(g(w)). If §*(w) € ® then we
say that A accepts w. The set of all words accepted by A 1s denoted
by £(A). An w-language L C X¥ is called w-regular if L = £(A) for an
w-acceptor A.

Note 3.3. Clearly, for a w € ¥ the run of an acceptor on w is also
defined and so 1s the run of an w-acceptor on a w € X*.
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Definition 3.4. An co-language L C X is called co-regular if a regular
language Ly C X* and an w-regular language L, C ¥ exast such that
L=LpUlL,.

Definition 3.5. We say that a six-tuple A = (Q,X,4,q0, F, ®) is a
finite determanistic oo-acceptor or, shortly, an co-acceptor if Q) is a fi-
nite set of states, > is an alphabet, § : @ X ¥ — @ is a transition
function, ¢o € @ is the initial state, F' C @ is a set of final states
and ® C 29 is a system of subsets of infinitely many times occurring
states.

For w € ¥*° we define the run of A on w using either Definition 3.1
if w € ¥* or Definition 3.2 if w € X%, Similarly, we put 6°(w) =
= §*(w) or §*(w) = §*(w) depending on whether w € ¥* or w € ¥¥.
If §°°(w) € FU®, then we say that A accepts w. The set of all co-words
accepted by A is denoted by L£{A), the set of all w-words accepted by A
is denoted by £¥(A) and the set of all words accepted by A is denoted
by £ (A).

Definition 3.6. Let A = (Q, X, 4, q0, F, ®) be an oco-acceptor. We say
that G(A) = (Q, 7, H) is the transition graph of A if

= {(Qia a, Qj)|Qia q; c Qv a € Ev q; = 5(‘]1’: a)}a T(Qia a, qj) = (Qia QJ)'
For a P C @, we denote by G(A, P) the subgraph of the transition
graph of A induced by P.

Theorem 3.7. Let L C X% be an oc-reqular language. Then there
exists an oo-acceptor A such that I = L£L%°(A).

Proof. We have L = Lg U L, where L C ¥* is regular and L, C
C X% is w-regular. This means that Lp = £(B), L, = £(C) where
B = (P,X,¢ po,G) is an acceptor and € = (R, X, ¢, ro, W) is an w-
acceptor. Let us construct an co-acceptor 4 = (@, X, 4, g0, F, P) by
putting Q=PxR q= (PO,'FO); 5((17: r),a) = (E(p,a),¢(7°, a)) and
F={(p,r) € Q| pe G} Toconstruct ® let us consider w € L,,. Let

(1) p(w):p07p17p27"'

be the run of B on w and

(2) r(w) = ro,r1, P2, . ..

the run of € on w. Put

(3) Q(w) — (pOarO)a(p17r1)7(p27r2),---

and define ¢ = {In(g(w)) | w € L, }. ® is finite since, for every w € L,
In(q(w)) € Q. Let w € L. For a w € Ly we have ¢"(w) € G, which
means that 6°°(w) € F and thus w € £F(A4). If w € L, then, using
the notation (1), (2) and (3), we see that In(g(w)) € ® and thus, since
clearly §°°(w) = In(g(w)), we get w € L¥(A).
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To prove the inverse inclusion £°°(A) C L let us first take a w €
€ LF(A). This gives us a run of A on w: (po, 7o), (p1,71), (p2,72), ...
ooy (pryrE), k>0, where pp € GG. Then, of course, po, p1,p2,- .-, Pk
is a run of B on w and w € L(B) = Lp. If, on the other hand,
w € LY(A), we get the run of B on w: p(w) = po,p1,p2,..., the
run of €' on w: r(w) = rg,r1,72,... and the run of A on w: ¢(w) =
= (po, ra), (p1,71), (p2, 72),... with §*°(w) € ®. This means that there
is a w' € £(C') such that
(W Ing(w)) = In{g(w')
where again p(w') = po,pl,p5,... is the tun of B on w, r(w') =
= 1,7, 75, ... 1s the run of C' on w and g(w') = (po, ra), (P}, "),
(ph,75),... is the run of A on w. Let s € In(r(w)). This means that
s occurs infinitely many times in »(w) and thus a p; exists such that
(pi, 8) occurs infinitely many times in g(w) or (p;, §) € In(g(w)) and (4)
gives us (p;, s) € In(¢(w’)). Then s must occur infinitely many times in
r(w'), which implies s € In(»(w')) and In(r(w)) C In(r(w')). However
In(r(w')) C In(r(w)) can be proved in much the same way. The equality
In(r(w)) = In(r(w')) then implies w € L(C) = L. &

4. Limit cc-regular languages

Definition 4.1. Let L. C¥*. Put lim L = {w € ¥¥ | card(If (w) N L) =
= w}. The operator lim maps the set of all languages over X into the
set of all w-languages over .
Note 4.2. In [1] this operator is denoted by L° and in [8] it is called
§-limit. We use the notation as introduced in [2] and [6].
Lemma 4.3. Let w € X% and L C X*. Then w € lim L off a sequence
wi, Wwa, ... of words from I exists such that

| wi |<|wj |, < g, w; € f(w), i > 1.

Proof. The proof follows directly from Def. 4.1. {
Definition 4.4. We say that an oco-acceptor A = (Q, X, 4, g0, F, P) is
concise if LF(A) £ B, LY(A) # B and, for any A’ = (Q, X, 4, qo, F', ®),
A" =(Q,X,6, g0, F, ") where F' C F, ®" C ®, we have £F(A") C
C LF(A), LY(A") C L¥(A).
Lemma 4.5. Let A = (Q, %, 8, qo, F, P) be a concise oo-acceptor. Then
the following conditions are equivalent:

1. lim £ (A) C £¥(A);

2.9f, for an S C Q, G(A,S) 1s strong and SN F #, then S € P.
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Proof. Let the first condition hold and let S C @ be such that G(A, S)
is strong and SN F # 0. Let f € SN F. Since A is concise, there is a
word u € L¥(A) such that 6°°(u) = f. G(A,S) being strong and f € S
implies that there is a trace in G(A4, 5)

c1,(c1, a1, 02), c2, (62, a0, ¢3), ..., (€k—1,ap-1,Ck) ck, k>1
such that it contains all the nodes of G(A,S) and ¢; = ¢ = f. Let us
now consider a sequence of words wy, we,... where w; = u.(aj.as...
. ..ak_l)i and an w-word w = u.(ajas...ap_1)¥. It is easy to see that

w; € LY(A),w; € W(w), ¢ > 1 and | w; |<| w; |,7 < j, which, by
Lemma 4.3, implies w € lim £ (A). It is also obvious that {ci,co, ...
., cr} is exactly the set of states occurring infinitely many times in
the run of A on w and thus §°°(w) = S. However, by the assumption,

w € LY(A) and thus S € ©.
Let the second condition hold and w € lim £"(A). By Lemma 4.3,

we get a sequence of words wiy, wa, ..., w; € If(w), i > 1 such that
| w;i |<] w; |, ¢ < j. Let us consider an infinite sequence of states
from

(5) fl:f?a"': fi:(soo(wi)7 1’21
Since F is finite, there is an f which occurs infinitely many times in (5).
Denote by
(6) q(w) = qo0,91, 42, - - -
the run of A on w. Since, clearly, (5) is a subsequence of (6), we have
J €ln(g(w)). G(A,In(g(w)) is strong and | w; |<| w; | implies that it
has at least one arc and so we get In(g(w)) € ¢ by the assumption and
finally w € £L¥(A). &
Lemma 4.6. Let A = (Q, X, 4, qo, F, ®) be a concise oo-acceptor. Then
the following conditions are equivalent:

L lim £F(A) D £¥(A);

2. ;N F #0 for every F; € .
Proof. Let the first condition hold and let F; € . As A 1s concise,
there exists a w € L£Y(A) such that §*(w) = F;. By the assumption
then w € lim£¥(A) and, by Lemma 4.3, there exists a sequence of
words

wi, wa, ..., w; €(w), w; € LY(A), i>1

such that | w; |<| wj |, < j. Thus we have §°(w;) € F,i > 1 and since
F' 1s finite, there must be an f € F' which occurs infinitely many times
in the sequence
(7) 5 (1), 5% (w3), ..
Let
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(8) g(w) = qo0,q1, 92, - -
be the run of A on w. It is easy to see that (7) is a subsequence of (8),
which means that [ € In((g(w)) = §°°(w) = F;. Therefore F'NF; # 0
and the second condition holds.

If the second condition holds and w € £¥(A), then §°(w) = F; €
€ ®. Since F;NE # 0, there exists an f € F; N F which occurs infinitely
many times in the run of A on w and thus there is a sequence

wy, wa, ..., w;€lf(w),w; € LF(A), i>1
such that | w; |[<| w; |,4 < j. Then, by Lemma 4.3, w € lim £F (4). ¢
Definition 4.7. Let D = (U, 7, IT) be a graph. For every v € U, we

define a system of subsets of U: a(D,v) ={V C U |ve VAGD,V)
is strong}. Fora W C U, we put (D, W)= |J o(D,v).
veW

Theorem 4.8. Let A =(Q,%, 8, F,®) be a concise oco-acceptor. Then
the following conditions are equivalent:

1. im £ (A) = £¥(A);

2. &=0(G(A), F).
Proof. Let the first condition hold and F; € ®. Then G(A, F}) is strong
since A is concise. By Lemma 4.6 we have F;NF # 0 with an f € F;NF
such that F; € o(G(A), f). This means that F; € o(G(A), F'). For an
F; € o(G(A), F), G(A, F;) is strong and F; N F # @. Thus, by Lemma
4.5, we get F; € .

If & = o(G(A), F), then, for every S C @ such that G(A,S)

is strong and SNF # 0, S € a(G(A), F) = ® and, by Lemma 4.5,
lim £F(A) C £¥(A). Next if I} € @, then I} € o(G(4), F') implies
F;NF # 0 and, by Lemma 4.6, we get £~(A) C im £ (A). ¢
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