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Abstract: It is shown that real functions f and g defined on an arbitrary
interval I can be separated by a monotonic function iff

fltz + (1 = t)y) < max{g(r),g(y)}

gltr + (1 —t)y) > min {f(z), f(y)}

forall z,y € I and ¢ € [0,1]. Some results on the existence of monotonic selec-

and

tions of multifunctions and on the Hyers—Ulam stability of the monotonicity

are also presented.

1. Introduction

The aim of this note is to characterize real functions f, g defined
on an interval [ C R which can be separated by a monotonic function.
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This problem is connected with quasiconvex and quasiconcave functions
and leads to functional inequalities

Flte+ (1 —t)y) < max{g(=), g(y)}

g(te + (1 = t)y) > min {f(2), f(y)}.
The first of them appeared previously in a paper of J. Smolarz [3] and
is equivalent to the fact that there exist a quasiconvex function A :
: I — R such that f < h < g. The results presented by us are
related to a sandwich theorem obtained recently by K. Nikodem and
Sz. Wasowicz [2]. It states that there exists an affine function separating

f and g iff

and

fte 4+ (1 —t)y) <tgla) + (1 —t)gly)
and
glte + (1= y) > tf(x) + (1 — 1) f(y).
The first of the above inequalities implies that f and g can be separated
by a convex function (cf. K. Baron, J. Matkowski and K. Nikodem [1]).
As an application of our separation theorem we obtain a result on
the existence of monotonic selections of multifunctions whose values are
compact intervals in R. We also get a stability result of Hyers—Ulam
type for monotonic functions.
Let us recall that a function f: [ — R is quasiconvex if
F(te+ (1= t)y) <max{f(), f)}, #yel, teo1]
it 1s quasiconcave if
f(t:n +(1 - t)y) > min{f(af), f(y)}, zyel, tel0,1]
Obviously, a function f : I — [ 1s monotonic iff it 1s quasiconvex and
quasiconcave.

2. A separation theorem

Our main result reads as follows.
Theorem. Let I C R be an arbitrary interval and f, g : [ — R be
grven functions. The following properties are equivalent:
(a) there is a monotonic function h: 1 — R such that f < h < g;
(b) there are functions by, ho : I — R, hy —quasiconcave, ho-quasicon-
vex, such that f < hy < g and f < hs < g;
(c) there are functions hy, ho : I — R, hy —quasiconcave, hs—quasi-
conver, such that f < hy < hs < g1
(d) for all 2, y €I and t € [0,1] the following inequalities hold
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fte + (1 —t)y) < max{g(z),9(y)}
g(te + (1 —t)y) >min{f(z), f(y)}.

Proof. Implication (a)==(d) follows from the fact that every monotonic

(1)

function is both quasiconvex and quasiconcave.
To prove that (d) implies (c) consider the functions hy, hs : [ —
— [R defined by

(2) ha(u) := sup { min{f(x), f(y)} 2 Su <y z,y €}
(3) ho(u) := inf { max{g(z), g(y)} 2 Su <y, e,y €I}
By (1) the definitions are correct and

(4) f(u) < ho(u) and  hi(u) < g(u)

for every u € I. Moreover, f < h; and ho < g. We will show that
hy < ho, hi1 1s quasiconcave and hso 1s quasiconvex. Suppose, contrary
to our claim, that there exist w € [ such that hi(w) > ho(w). Then
there exist @ < w < y and u < w < v such that
(5) min { f(@), f(y)} > max {g(u), g(v)}.
If # < u, then from (2) and (5) it follows that

hi(n) > min { (), 7(3)} > glu)
which contradicts (4). If u < @, then from (5) and (3) we get

() > max {g(u), g(v)} > ho(=),
contrary to (4). These contradictions show that iy < ho.

Now we will prove that hs is quasiconvex (the quasiconcavity of

follows similarly). Suppose that it is false. Then there exist & < u <y

such that
y)}-
v < y < é such that
(6) ho(u) > max {g ,g(3

and
(7). 9(8)}.
However o < u < §, which implies that
o) < max {g(a), g(5)}.

This contradicts (6) and proves that hs is quasiconvex.

Implication (¢)==-(b) is obvious.

To prove that (b) implies (a) assume first that sup{f(z) : z <
< 2} < oo and inf{g(z) : z < #} > —oo for any « € [. Define m;,
mo: [ — R by

ha(u) > max {ha(z), ho
By the definition of hs we can find a < & <
) g

my(x) := sup {f(z) cz < :(5}

ma(x) 1= inf{g(z) cz < :c}
It is evident that f < mj, me < g, m; is nondecreasing and ms 18
nonincreasing. We will show that at least one of these functions sepa-
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rates f and g. Assume the contrary. Then there are a, b € [ such that
my(a) > gla) and mo(b) < f(b). Without less of generality we may
assume that a < b (otherwise we change f to —f and g to —g, which
interchanges the roles of hy, ks and my, ms). Let

(7) 0 < e < 5 min{mi(a) — gla), F(5) = (D)}
By the definition of m; and mo there are @1, @52 € [, 21 < a, 3 < b
such that
(8) f(z1) > mifa) —e and  g(z2) < ma(b) +e.
If 1 < @o, then 25, @ € [#1, 5] and by (b), (7) and (8) we get
hl(l’g) < g(ﬂfg) < mg(b) +e< f(b) < hl(b)
and
h(a) < gla) <mi(a) —e < f(z1) < hi(z),
which contradicts the quasiconcavity of hy on [z1,b]. If #5 < @1, then
#1 € [#2,a] and by (8), the definition of ms and (7) we obtain
ho(zo) < glz2) <mo(b) +e<gla) +¢
ho(a) < gla) < gla) +e
and
ha(zy) > flo1) > mi(a) —e > gla) + &,
which contradicts the quasiconvexity of ks on [z, al.

Thus in any case we get a contradiction showing that at least one
of the functions my, ms separates f and g.

Now we will deal with the existence of the functions mq, ms. As
f is bounded from above by hs and therefore by max {hg(a), ho (ﬂ)} on
every compact interval [, 5] C I (and similarly g by k1 from below),
the only possibility for the nonexistence of m; (or ms) is given if f
(respectively g) is unbounded at the left border point of /. We need to
consider the following three cases.

(i) Suppose that sup {f(z) : 2 < 2} = oo and inf {g(z) : z <
< :(5} = —oo for some « € [. Then, by the arguments given above, for
any y < @ we have sup { f(z) : » <y} = oo and inf {g(z) : » < y} =
= —oo. Thus there is a point z; < # such that f(z;) > 0. Furthermore,
we can find a point zp < z; such that g(zo) < 0, and a point z3 < zo
such that f(z3) > 0. Since f < hy < g, this is a contradiction to the
quasiconcavity of hq.

(ii) Suppose that sup {f(z) : z < @} = oo for some z € I and mo
exists. Fix &g € [ and choose yg < g such that f(yo) > g(xo). For any
y € I, y < yo, we may restrict ms to the interval [y, o) N [ and define
m as previously on this interval. Because yg < x¢ and f(yo) > g(z0),
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the function m; can not separate f and g;, so, only the restriction of
ms works as a separating function on [y,cc] N /. Since this is valid for
any y € [, y < yg, we conclude that my separates f and ¢ on [.

(iii) The case where m; exists but inf {g(z) : = < 2} = —oco for
some x € [ can be treated like (ii).

This finishes the proof. ¢
Remark.The above theorem can be proved in a different manner. For
instance, since the implications (a)=(c)=-(b)==-(d) are obvious and
(d)==(b) follows by the result of Smolarz [3], it is enough to show that
(b)=-(a). The implication (¢)=(a) can be also obtained from the fact
that quasiconvex and quasiconcave functions defined on an interval are
either monotonic or unimodal (i.e. consist of two monotonic segments).
Then it remains to prove that (d)==-(c), because the implications (a)=-
=—(b)==-(d) are evident. However, the proof presented by us is direct
and 1t contains some ideas which may be interesting in themselves.

3. Applications

Let = be a nonnegative constant. We say that a function f: [ —

— R 1s e~monotonic if
min {f(x), f(y)} —= < J(te + (1 = t)y) < max {f(z), f(y)} +=
forall 2, y € I,t € [0,1].

As an 1mmediate consequence of our Theorem we obtain the fol-
lowing stability result of Hyers—Ulam type for monotonic functions.
Corollary 1. A function f : I — R 1s e-monotonic if and only f
there extsts a monotonic function ¢ : I — R such that

(9) @) —¢@)|< s, well

Proof. If f is e-monotonic, then the inequalities (1) hold with g = f+-e.
By the Theorem there exists a monotonic function h : I — R such that
f <h < f+e Putting ¢ = h — £ we get a monotonic function satisfy-
ing (9). Now, assume that f satisfies (9) with a monotonic function ¢.
Then, for arbitrary , y € [ and ¢ € [0, 1],

flta + (1= 09) < olta + (L= ty) + 5 < max {p(a), ¢(y)} +
< max {f(z), f(y)} + =

<

[N

Similarly

Fltz + (1 = t)y) 2 min{ f (=), f(y)} -,
which ends the proof. ¢
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Recall that a function f : I — R is the selection of a multifunction
®: ] — n(R) (where n(lR) denotes the family of all non-empty subsets
of R ) if f(z)in®(z) 2 € I. As a consequence of our Theorem we get
also the following result on the existence of monotonic selections. Here
cc(R) denotes the family of all compact intervals in R and conv(A4) —
the convex hull of a set A.

Corollary 2. A multifunction ® : I — cc(R) has a monotonic selec-
tron tf and only +f
(10) O(te + (1 — t)y) Nconv(P(x) UP(y)) £ 0
Jorallz, yel, t€0,1].
Proof. Let us put f(z) := inf ®(z), and g(z) := supP(z) « € I. Then
B(z) = [f(2), g(a)] and

conv(®(a) UP(y)) = [min{f(z), f(y)}, max{g(=), g(y)}].
Hence & satisfies (10) iff f and g satisfy (1), and a function b : ] — R
1s a selection of ® iff it separates f and g. So, to finish the proof it 1s
enough to apply the Theorem. §
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