Mathematica Pannonica

7/2 (1996), 191 - 196

SEPARATION BY MONOTONIC FUNCTIONS

Wolfgang Förg-Rob

Institut für Mathematik, Universität Innsbruck, Technikerstr: 25/7, A-6020 Innsbruck, Austria

Kazimierz Nikodem
Katedra Matematyki, Politechnika Eódzka, Filia w Bielsku-Biatej, ul. Willowa 2, PL-43-309 Bielsko-Biala, Poland

Zsolt Páles

Institute of Mathematics and Informatics, L. Kossuth University, H-4010 Debrecen, Pf.12, Hungary

Received: August 1995
MSC 1991: 39 B 72, 26 A 51, 26 E 25
Keywords: Separation theorem, monotonic functions, quasiconvex and quasiconcave functions, selections.

Abstract: It is shown that real functions f and g defined on an arbitrary interval I can be separated by a monotonic function iff

$$
f(t x+(1-t) y) \leq \max \{g(x), g(y)\}
$$

and

$$
g(t x+(1-t) y) \geq \min \{f(x), f(y)\}
$$

for all $x, y \in I$ and $t \in[0,1]$. Some results on the existence of monotonic selections of multifunctions and on the Hyers-Ulam stability of the monotonicity are also presented.

1. Introduction

The aim of this note is to characterize real functions f, g defined on an interval $I \subset \mathbb{R}$ which can be separated by a monotonic function.

This problem is connected with quasiconvex and quasiconcave functions and leads to functional inequalities

$$
f(t x+(1-t) y) \leq \max \{g(x), g(y)\}
$$

and

$$
g(t x+(1-t) y) \geq \min \{f(x), f(y)\}
$$

The first of them appeared previously in a paper of J. Smolarz [3] and is equivalent to the fact that there exist a quasiconvex function h : $: I \longrightarrow \mathbb{R}$ such that $f \leq h \leq g$. The results presented by us are related to a sandwich theorem obtained recently by K. Nikodem and Sz . Wassowicz [2]. It states that there exists an affine function separating f and g iff

$$
f(t x+(1-t) y) \leq t g(x)+(1-t) g(y)
$$

and

$$
g(t x+(1-t) y) \geq t f(x)+(1-t) f(y)
$$

The first of the above inequalities implies that f and g can be separated by a convex function (cf. K. Baron, J. Matkowski and K. Nikodem [1]).

As an application of our separation theorem we obtain a result on the existence of monotonic selections of multifunctions whose values are compact intervals in \mathbb{R}. We also get a stability result of Hyers-Ulam type for monotonic functions.

Let us recall that a function $f: I \rightarrow \mathbb{R}$ is quasiconvex if

$$
f(t x+(1-t) y) \leq \max \{f(x), f(y)\}, \quad x, y \in I, t \in[0,1]
$$

it is quasiconcave if

$$
f(t x+(1-t) y) \geq \min \{f(x), f(y)\}, \quad x, y \in I, t \in[0,1]
$$

Obviously, a function $f: I \longrightarrow \mathbb{R}$ is monotonic iff it is quasiconvex and quasiconcave.

2. A separation theorem

Our main result reads as follows.
Theorem. Let $I \subset \mathbb{R}$ be an arbitrary interval and $f, g: I \rightarrow \mathbb{R}$ be given functions. The following properties are equivalent:
(a) there is a monotonic function $h: I \rightarrow \mathbb{R}$ such that $f \leq h \leq g$;
(b) there are functions $h_{1}, h_{2}: I \rightarrow \mathbb{R}, h_{1}$-quasiconcave, h_{2}-quasiconvex, such that $f \leq h_{1} \leq g$ and $f \leq h_{2} \leq g$;
(c) there are functions $h_{1}, h_{2}: I \rightarrow \mathbb{R}, h_{1}$ quasiconcave, h_{2}-quasiconvex, such that $f \leq h_{1} \leq h_{2} \leq g ;$
(d) for all $x, y \in I$ and $t \in[0,1]$ the following inequalities hold

$$
\begin{align*}
f(t x+(1-t) y) & \leq \max \{g(x), g(y)\} \tag{1}\\
g(t x+(1-t) y) & \geq \min \{f(x), f(y)\}
\end{align*}
$$

Proof. Implication $(\mathrm{a}) \Longrightarrow(\mathrm{d})$ follows from the fact that every monotonic function is both quasiconvex and quasiconcave.

To prove that (d) implies (c) consider the functions $h_{1}, h_{2}: I \rightarrow$ $\rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
h_{1}(u):=\sup \{\min \{f(x), f(y)\}: x \leq u \leq y, x, y \in I\} \tag{2}
\end{equation*}
$$

$$
h_{2}(u):=\inf \{\max \{g(x), g(y)\}: x \leq u \leq y, x, y \in I\}
$$

By (1) the definitions are correct and

$$
\begin{equation*}
f(u) \leq h_{2}(u) \quad \text { and } \quad h_{1}(u) \leq g(u) \tag{4}
\end{equation*}
$$

for every $u \in I$. Moreover, $f \leq h_{1}$ and $h_{2} \leq g$. We will show that $h_{1} \leq h_{2}, h_{1}$ is quasiconcave and h_{2} is quasiconvex. Suppose, contrary to our claim, that there exist $w \in I$ such that $h_{1}(w)>h_{2}(w)$. Then there exist $x \leq w \leq y$ and $u \leq w \leq v$ such that
(5)

$$
\overline{\min }\{f(x), \overline{f(} y)\}>\max \{g(u), g(v)\}
$$

If $x \leq u$, then from (2) and (5) it follows that

$$
h_{1}(u) \geq \min \{f(x), f(y)\}>g(u)
$$

which contradicts (4). If $u \leq x$, then from (5) and (3) we get

$$
f(x)>\max \{g(u), g(v)\} \geq h_{2}(x),
$$

contrary to (4). These contradictions show that $h_{1} \leq h_{2}$.
Now we will prove that h_{2} is quasiconvex (the quasiconcavity of h_{1} follows similarly). Suppose that it is false. Then there exist $x \leq u \leq y$ such that

$$
h_{2}(u)>\max \left\{h_{2}(x), h_{2}(y)\right\} .
$$

By the definition of h_{2} we can find $\alpha \leq x \leq \beta$ and $\gamma \leq y \leq \delta$ such that

$$
\begin{equation*}
h_{2}(u)>\max \{g(\alpha), g(\beta), g(\gamma), g(\delta)\} \tag{6}
\end{equation*}
$$

However $\alpha \leq u \leq \delta$, which implies that

$$
h_{2}(u) \leq \max \{g(\alpha), g(\delta)\}
$$

This contradicts (6) and proves that h_{2} is quasiconvex.
Implication $(\mathrm{c}) \Longrightarrow(\mathrm{b})$ is obvious.
To prove that (b) implies (a) assume first that $\sup \{f(z): z \leq$ $\leq x\}<\infty$ and $\inf \{g(z): z \leq x\}>-\infty$ for any $x \in I$. Define m_{1}, $m_{2}: I \longrightarrow \mathbb{R}$ by

$$
\begin{aligned}
& m_{1}(x):=\sup \{f(z): z \leq x\} \\
& m_{2}(x):=\inf \{g(z): z \leq x\}
\end{aligned}
$$

It is evident that $f \leq m_{1}, m_{2} \leq g, m_{1}$ is nondecreasing and m_{2} is nonincreasing. We will show that at least one of these functions sepa-
rates f and g. Assume the contrary. Then there are $a, b \in I$ such that $m_{1}(a)>g(a)$ and $m_{2}(b)<f(b)$. Without less of generality we may assume that $a \leq b$ (otherwise we change f to $-f$ and g to $-g$, which interchanges the roles of h_{1}, h_{2} and m_{1}, m_{2}). Let

$$
\begin{equation*}
0<\varepsilon<\frac{1}{2} \min \left\{m_{1}(a)-g(a), f(b)-m_{2}(b)\right\} . \tag{7}
\end{equation*}
$$

By the definition of m_{1} and m_{2} there are $x_{1}, x_{2} \in I, x_{1} \leq a, x_{2} \leq b$ such that
(8)

$$
f\left(x_{1}\right)>m_{1}(a)-\varepsilon \quad \text { and } \quad g\left(x_{2}\right)<m_{2}(b)+\varepsilon
$$

If $x_{1} \leq x_{2}$, then $x_{2}, a \in\left[x_{1}, b\right]$ and by (b), (7) and (8) we get

$$
h_{1}\left(x_{2}\right) \leq g\left(x_{2}\right)<m_{2}(b)+\varepsilon<f(b) \leq h_{1}(b)
$$

and

$$
h_{1}(a) \leq g(a)<m_{1}(a)-\varepsilon<f\left(x_{1}\right) \leq h_{1}\left(x_{1}\right)
$$

which contradicts the quasiconcavity of h_{1} on $\left[x_{1}, b\right]$. If $x_{2}<x_{1}$, then $x_{1} \in\left[x_{2}, a\right]$ and by (8), the definition of m_{2} and (7) we obtain

$$
\begin{gathered}
h_{2}\left(x_{2}\right) \leq g\left(x_{2}\right)<m_{2}(b)+\varepsilon \leq g(a)+\varepsilon \\
h_{2}(a) \leq g(a)<g(a)+\varepsilon
\end{gathered}
$$

and

$$
h_{2}\left(x_{1}\right) \geq f\left(x_{1}\right)>m_{1}(a)-\varepsilon>g(a)+\varepsilon
$$

which contradicts the quasiconvexity of h_{2} on $\left[x_{2}, a\right]$.
Thus in any case we get a contradiction showing that at least one of the functions m_{1}, m_{2} separates f and g.

Now we will deal with the existence of the functions m_{1}, m_{2}. As f is bounded from above by h_{2} and therefore by $\max \left\{h_{2}(\alpha), h_{2}(\beta)\right\}$ on every compact interval $[\alpha, \beta] \subset I$ (and similarly g by h_{1} from below), the only possibility for the nonexistence of m_{1} (or m_{2}) is given if f (respectively g) is unbounded at the left border point of I. We need to consider the following three cases.
(i) Suppose that $\sup \{f(z): z \leq x\}=\infty$ and $\inf \{g(z): z \leq$ $\leq x\}=-\infty$ for some $x \in I$. Then, by the arguments given above, for any $y \leq x$ we have $\sup \{f(z): z \leq y\}=\infty$ and $\inf \{g(z): z \leq y\}=$ $=-\infty$. Thus there is a point $z_{1} \leq x$ such that $f\left(z_{1}\right)>0$. Furthermore, we can find a point $z_{2}<z_{1}$ such that $g\left(z_{2}\right)<0$, and a point $z_{3}<z_{2}$ such that $f\left(z_{3}\right)>0$. Since $f \leq h_{1} \leq g$, this is a contradiction to the quasiconcavity of h_{1}.
(ii) Suppose that $\sup \{f(z): z \leq x\}=\infty$ for some $x \in I$ and m_{2} exists. Fix $x_{0} \in I$ and choose $y_{0}<x_{0}$ such that $f\left(y_{0}\right)>g\left(x_{0}\right)$. For any $y \in I, y \leq y_{0}$, we may restrict m_{2} to the interval $[y, \infty) \cap I$ and define m_{1} as previously on this interval. Because $y_{0}<x_{0}$ and $f\left(y_{0}\right)>g\left(x_{0}\right)$,
the function m_{1} can not separate f and g;, so, only the restriction of m_{2} works as a separating function on $[y, \infty] \cap I$. Since this is valid for any $y \in I, y \leq y_{0}$, we conclude that m_{2} separates f and g on I.
(iii) The case where m_{1} exists but $\inf \{g(z): z \leq x\}=-\infty$ for some $x \in I$ can be treated like (ii).

This finishes the proof. \diamond
Remark. The above theorem can be proved in a different manner. For instance, since the implications $(\mathrm{a}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{d})$ are obvious and $(d) \Longrightarrow(b)$ follows by the result of Smolarz [3], it is enough to show that $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. The implication $(\mathrm{c}) \Longrightarrow$ (a) can be also obtained from the fact that quasiconvex and quasiconcave functions defined on an interval are either monotonic or unimodal (i.e. consist of two monotonic segments). Then it remains to prove that $(\mathrm{d}) \Longrightarrow(\mathrm{c})$, because the implications $(\mathrm{a}) \Longrightarrow$ $\Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{d})$ are evident. However, the proof presented by us is direct and it contains some ideas which may be interesting in themselves.

3. Applications

Let ε be a nonnegative constant. We say that a function $f: I \longrightarrow$ $\longrightarrow \mathbb{R}$ is $\varepsilon-$ monotonic if
$\min \{f(x), f(y)\}-\varepsilon \leq f(t x+(1-t) y) \leq \max \{f(x), f(y)\}+\varepsilon$ for all $x, y \in I, t \in[0,1]$.

As an immediate consequence of our Theorem we obtain the following stability result of Hyers-Ulam type for monotonic functions.
Corollary 1. A function $f: I \longrightarrow \mathbb{R}$ is ε-monotonic if and only if there exists a monotonic function $\varphi: I \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
|f(x)-\varphi(x)| \leq \frac{\varepsilon}{2}, \quad x \in I \tag{9}
\end{equation*}
$$

Proof. If f is ε-monotonic, then the inequalities (1) hold with $g=f+\varepsilon$. By the Theorem there exists a monotonic function $h: I \longrightarrow \mathbb{R}$ such that $f \leq h \leq f+\varepsilon$. Putting $\varphi=h-\frac{\varepsilon}{2}$ we get a monotonic function satisfying (9). Now, assume that f satisfies (9) with a monotonic function φ. Then, for arbitrary $x, y \in I$ and $t \in[0,1]$,

$$
\begin{aligned}
f(t x+(1-t) y) & \leq \varphi(t x+(1-t) y)+\frac{\varepsilon}{2} \leq \max \{\varphi(x), \varphi(y)\}+\frac{\varepsilon}{2} \leq \\
& \leq \max \{f(x), f(y)\}+\varepsilon .
\end{aligned}
$$

Similarly

$$
f(t x+(1-t) y) \geq \min \{f(x), f(y)\}-\varepsilon
$$

which ends the proof. \diamond

Recall that a function $f: I \longrightarrow \mathbb{R}$ is the selection of a multifunction $\Phi: I \longrightarrow \mathbf{n}(\mathbb{R})$ (where $\mathbf{n}(\mathbb{R})$ denotes the family of all non-empty subsets of \mathbb{R}) if $f(x) i n \Phi(x) x \in I$. As a consequence of our Theorem we get also the following result on the existence of monotonic selections. Here $\operatorname{cc}(\mathbb{R})$ denotes the family of all compact intervals in \mathbb{R} and $\operatorname{conv}(A)-$ the convex hull of a set A.
Corollary 2. A multifunction $\Phi: I \longrightarrow \mathbf{c c}(\mathbb{R})$ has a monotonic selection if and only if
(10) $\quad \Phi(t x+(1-t) y) \cap \operatorname{conv}(\Phi(x) \cup \Phi(y)) \neq \emptyset$
for all $x, y \in I, t \in[0,1]$.
Proof. Let us put $f(x):=\inf \Phi(x)$, and $g(x):=\sup \Phi(x) x \in I$. Then $\Phi(x)=[f(x), g(x)]$ and
$\operatorname{conv}(\Phi(x) \cup \Phi(y))=[\min \{f(x), f(y)\}, \max \{g(x), g(y)\}]$.
Hence Φ satisfies (10) iff f and g satisfy (1), and a function $h: I \longrightarrow \mathbb{R}$ is a selection of Φ iff it separates f and g. So, to finish the proof it is enough to apply the Theorem. \diamond

References

[1] BARON, K., MATKOWSKI, J., NIKODEM, K.: A sandwich with convexity, Mathematica Pannonica 5/1 (1994), 139-144.
[2] NIKODEM, K., WASOWICZ, SZ.: A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164,
[3] SMOLARZ, J.: On some functional inequalities connected with quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada 16/6 (1994), 241-246.

