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Abstract: In the Euclidean plane let C be a closed convex set contained in
the closed unit circle K, and let C'* be the polar reciprocal of € with respect
to K. In a preceding paper [1] it was proved that the area sum of ! and C*
is greater than or equal to 6. In this paper we show that equality occurs only

if ¢ is a square inscribed in K.

Let K be the unit circle centred at the origin O. The polar recip-
rocal C* of a plane convex set ' with respect to K is defined as the set
of all points # with

<z,y><1
for every y € C. We denote the area of a set M by a(M). The subject
of this paper 1s the proof of the following theorem.
Theorem. Let C be a closed conver set contained in the unit circle
K, and let C* be the polar reciprocal of C with respect to K. Then

(1) S(C) =alC)+a(C”) > 6
with equality of and only 1f C' 15 a square inscribed in K.

In [1], the theorem was proved in the case when C' is a convex
polygon. This result immediately implies that inequality (1) is satisfied

On page 78 line 25 of the paper [1] there is a typo. The correct version appears
in (3) of this paper.
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for any closed convex set C' contained in K. However, the question of
equality remained open in this case and will be answered in the present
paper.
Proof of the theorem. Let us recall two points, partially in extended
form, of the proof of the theorem established in [1].

Let P = AjAs... A, be a convex polygon contained in K such
that O 1s an interior point of 7 and A, an interior point of A'. Then A,
can be moved to a new position A] satisfying the following conditions:

(1) The polygon P’ = Aj A5 ... A, is convex and contains O in the
interior,
(i1) the vertex A} is either on the boundary of K, or A} is in the
interior of K and at least one of the triples (4,_1, A, A}) and
(A}, Ao, As) is collinear,
(iii) S(P) = a(P) +a(P*) > S(P'),
(iv) a(P) < a(F’).
(A similar procedure was used in the proof of Satz 1 and Satz 2 in [3]).
The vertices of P on the boundary of K are not moved.
By (i1), the interior of A contains fewer vertices of P’ than vertices
of P. Repeated application of the process described leads to a convex
polygon P inscribed in K, containing O in the interior and satisfying

(2) S(P) > S(P).
More generally, let D be a closed convex set such that P C D C K,
and let us assume that some vertex of P is an interior point of D). Then
there exists a convex polygon P inscribed in D, containing O in the
interior and satisfying (2).

We shall refer to the transition from P to P by saying that P is
obtained from P by translation of vertices.

Let P be a convex polygon inscribed in A and containing O in
its interior. We denote the central angles spanned by the sides of P by

2e1, ..., 22, where 0 < a; <n/2,forj=1,...n,and &1 +... + @, =
= m. Let us assume that #; < #9 < #g, where the constant #¢ is defined
by

(3) xn = arccos(l/\‘yi) = 32.765...°

(see [1]). We replace #; and x5 by 2] and 2, such that
0< a2 <2y <aa <2y, < g,

/ I
ry +xy = &1 + X2

and @] = 0, or @, = 20, or both. The polygon P inscribed in K
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and determined by the central angles 22!, 2}, 23, ... , 22, of its sides
satisfies

S(P) > S(P")
(see [1]). We shall refer to the (possibly repeated) application of this
process as reduction. If the polygon € inscribed in K is obtained from
P by reduction, then O is an interior point of @ and

(4) S(P) = S(Q).

Let us now proceed to the proof of the theorem. Since inequality
(1) was proved in [1], it is sufficient to show that a closed convex set C'
contained in K and satisfying
(5) a(C)+a(C*) =6
1s a square inscribed in K. Note that such a set €' necessarily contains
O 1n its interior. By the corollary in [1], at least one point of C, say A,
is on the boundary of K. If B, A', B’ are the other vertices of a square
ABA'B' inscribed in K, we have to show that

(6) O = ABA'B'.
The proof of (6) consists of four parts.

(a) Let U be a point of the boundary of K other than A, B, A’, B'.
Then U is outside C'.

(b) The point A’ belongs to C.

(c) The points B and B’ belong to C.

(d) The segments AB, BA', A'B" and B'A are parts of the boundary
of C.

We shall prove these statements by showing that S(C') > 6 if C fails to
satisfy one of them. To avoid tiresome repetitions we remark that the
origin O is an interior point of each convex set appearing in this paper.

(a) Suppose that U € C. We can find a sequence () of convex
polygons inscribed in ¢ and convergent to €' such that each Pj contains

A and U. Hence
(7) klim S(Py) = S(C).
— 00

By translation of vertices we obtain from Pj a convex polygon P} in-
scribed in K and containing A and U. By (2), we have

(8) S(Px) > S(Py),

for k =1,2,.... We denote the two arcs on the boundary of K with
endpoints A and U/ by b; and bs. The vertices of Pj divide by and bs

into subarcs of lengths 22, ..., 22, and 2y1,... , 2y, respectively. By
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reduction applied to the set {«,...,z,} we obtain a set {z|,...,z.},
where
, W
O<mj<§ (j=1,...,7),

:c'l—l—...—l—:c; =a1 +...+ax,
and at most one of the .’L‘; is contained in (0, ). A similar procedure
applied to {y1,...,ym} vields a set {y],...,yL}, where

s .
0<y£<§ (i=1,...,3),
Bt =t

and at most one of the y! is in (0, ). Since
;t'l—l—...—i-:r;—i—y'l—i—...—i—y; =,

2¢,...,22., 2y}, ..., 2y, are the central angles of a convex polygon Q
inscribed in A and containing A and U. By (4), we have

(9) S(Pr) = S(Qx),

for k =1,2,.... Because no more than two of the Sﬁ; and y! are less than

zo and g > /6, we conclude that r + s < 7, so that @ is a polygon
with at most seven sides, in short a heptagon. Observe that (1, Q>, ...
have a fixed circle about O in common. Otherwise the sequence (S(Q%))
would be unbounded, which is impossible by (7), (8) and (9). From the
sequence (@) we can select a subsequence, again denoted by (Qp),
which is convergent to a heptagon @ inscribed in K. Since () contains
Aand U, @ is not a square, so that by the theorem in [1]

(10) 5(Q) > 6.
The desired result S(C') > 6 is a consequence of (7) to (10) and
(11) Jim S(Qx) = 5(Q).

(b) Suppose that A" € . Then C can be separated from A’ by

a support line g parallel to BV B’. Since O is an interior point of C,
g intersects the boundary of A in two points U and U’, where U is
between B and A’, and U’ between A’ and B’. By the result in (a), U/
and U’ are not in . Thus, there is a point X € C' N g other than U
and U’.

We can find a sequence (Py) of convex polygons inscribed in €' and
convergent to C' such that each Py contains A and X. Hence relation (7)
holds. Let D be the intersection of K with the closed halfplane bounded
by g and contaiming C'. By translation of vertices we get from P a
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convex polygon P} inscribed in D, containing A and X and satisfying
(8), for k=1,2,....

Let A, ...,V be the vertices of Py on the arc AU, and A,...,V’
the vertices of Py on the arc AU’, and let W, W' be the vertices of Py
on the segment UU’. Note that possibly V = A or V = U and that
possibly W = U or W = X. Similarly, as described in (a), we apply
reduction to the arcs AV and AV’ and obtain altogether no more than
seven arcs on the boundary of K. The chords of these arcs, together
with the segments VIV, WW' and W'V’ form the boundary of a convex
polygon Qi with at most ten sides, in short a decagon. The polygon
@y inscribed in D, contains A and X and satisfies (9), for k =1,2,....
We assume, as we may, that the sequence (Qy) is convergent to a set Q.
Clearly, () 1s a decagon inscribed in ) and contains A and X. There
are two possible cases: (i) Either some vertex of @ on g is different from
U and U’ or (i1) U and U’ are vertices of @, so that Q is inscribed in KX
and is not a square. In both cases, the theorem in [1] implies inequality
(10). The conclusion that S(C') > 6 is the same as in (a).

(¢) Suppose that B ¢ C. Then C can be separated from B by
a support line g parallel to AV A’. Since O is an interior point of C,
g intersects the boundary of K in two points U and U’, where U 1is
between A and B, and U’ between B and A'. By the result in (a), the
points I/ and U’ are not in €. Thus there is a point X € C'Ng other than
U and U’'. Now the proof proceeds exactly as in (b), so that we need
not give the details. In conclusion, we can state that the assumption
B ¢ C or B' ¢ C implies that S(C) > 6.

(d) Suppose that the segment AB is not part of the boundary
of . There is a support line g of ' which 1s parallel to A vV B and
intersects the boundary of A" in two points I/ and U’ between A and B.
Since U and U’ are not in C, a point X € C'Ny is different from U and
U'. Repeating the arguments used in the proof of part (b), we come to
the conclusion that S(C) > 6, as required.

This completes the proof of (6) and the theorem. ¢

A stability problem. Our theorem suggests to consider the
following problem. (For a detailed discussion of stability of geometric
inequalities see the review paper [2] by H. Groemer): If for some closed
convex set ' contained in K the left-hand side of inequality (1) is not
very different from 6, what can be said about the deviation of this set
from the squares inscribed in K7 A real-valued function f(z) that is
defined on [0, 00) is called a stability function if
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0(z) >0 for ##0
and

lim f(x) = 8(0) = 0.

r—=04
Let p be the Hausdorff metric or an equivalent metric defined on the
class of all compact convex subsets of the plane with non-empty interior.
The stability problem associated with inequality (1) consists of finding
a stability function # such that for any £ > 0 the condition

(12) S(C)<6+¢
implies the existence of a square (}y inscribed in K such that
(13) p(C, Qo) < b(e).

Such a function exists; e.g.,
sup(inf p(C, Q)
defined for # > 0, has the required property. Here the infimum is to
be taken over all squares ) inscribed in /&, and the supremum extends
over all closed convex sets C' C K with S(C) < 6 + 2.
Can an explicit function # be given in a way that (13) follows from (12)7
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