Mathematica Pannonica

7/1 (1996), 163-169

A SANDWICH WITH CONVEXITY FOR SET-VALUED FUNCTIONS

Elżbieta Sadowska
Katedra Matematyki, Politechnika Eódzka Filia w Bielsku-Biatej, ul. Willowa 2, PL-43-309 Bielsko-Biata, Poland

Received May 1995
MSC 1991: 26 A 51, 54 С 60, 54 С 65
Keywords: Set-valued functions, convex set-valued functions, sadwich theorem.

Abstract

We present necessary and sufficient conditions under which for given set-valued functions F and G there exists a convex set-valued function H such that $F(x) \subset H(x) \subset G(x), x \in D$. Some applications of these results are also given.

1. Introduction

In this note we give conditions under which for given set-valued functions F, G defined on a convex set D and satisfying $F(x) \subset G(x)$, $x \in D$, there exists a convex set-valued function H such that $F(x) \subset$ $H(x) \subset G(x), x \in D$. This problem leads us to the following condition: (1) $\quad t F(x)+(1-t) F(y) \subset G(t x+(1-t) y), \quad x, y \in D, t \in[0,1]$.

It generalizes some conditions defining known classes of set-valued functions. For instance, a set-valued function F, defined on a convex set, is said to be convex (K-convex, ϵ-convex, hull-convex) if it satisfies (1) for all $x, y \in D$ and $t \in[0,1]$ with G defined by $G(x)=F(x)(G(x)=$ $=F(x)+K, G(x)=F(x)+(-\epsilon, \epsilon), G(x)=\operatorname{conv} F(x)$, respectively $)$.

Given a set Y we denote by $\mathrm{n}(Y)$ the family of all non-empty subsets of Y. By the graph of a set-valued function $F: D \rightarrow \mathrm{n}(Y)$ we mean the set

$$
\operatorname{Gr} F:=\{(x, y) \in D \times Y: y \in F(x)\} .
$$

It is known that $F: D \rightarrow \mathrm{n}(Y)$ is convex if and only if its graph is a convex subset of $D \times Y$.

2. Sandwich theorems

We start with the following result.
Theorem 1. Let I be a real interval and $F, G: I \rightarrow \mathrm{n}(\mathbb{R})$ be given setvalued functions such that $\mathrm{Gr} F$ is the union of two connected subsets of \mathbb{R}^{2}. Then F and G satisfy (1) for all $x, y \in I$ and $t \in[0,1]$, if and only if there exists a convex set-valued function $H: I \rightarrow \mathrm{n}(\mathbb{R})$ such that

$$
\begin{equation*}
F(x) \subset H(x) \subset G(x), x \in I . \tag{2}
\end{equation*}
$$

Proof. Assume that F and G satisfy (1) and consider the set-valued function $H: I \rightarrow \mathrm{n}(\mathbb{R})$ defined by

$$
H(x):=\{y \in \mathbb{R}:(x, y) \in \mathrm{conv} \operatorname{Gr} F\}
$$

It is easy to verify $F(x) \subset H(x), x \in I$. Indeed, if $y \in F(x)$, then $(x, y) \in \operatorname{Gr} F \subset \operatorname{conv} \operatorname{Gr} F$, which means that $y \in H(x)$. Moreover, H is a convex set-valued function because $\mathrm{Gr} H=\operatorname{conv} \mathrm{Gr} F$ is a convex subset of \mathbb{R}^{2}. To prove that $H(x) \subset G(x), x \in I$, fix an $x \in I$ and take $y \in H(x)$. Then $(x, y) \in$ conv $\mathrm{Gr} F$. Since $\operatorname{Gr} F$ is the union of two connected subsets of \mathbb{R}^{2}, each element of its convex hull is a convex combination of two elements of $\operatorname{Gr} F$ (cf. p.169, Prop. 3.3]). Therefore there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \operatorname{Gr} F$ and a $t \in[0,1]$ such that $(x, y)=$ $=t\left(x_{1}, y_{1}\right)+(1-t)\left(x_{2}, y_{2}\right)$. Hence, using (1), we get

$$
\begin{aligned}
y=t y_{1} & +(1-t) y_{2} \in t F\left(x_{1}\right)+(1-t) F\left(x_{2}\right) \subset \\
& \subset G\left(t_{1} x_{1}+(1-t) x_{2}\right)=G(x),
\end{aligned}
$$

which shows that $H(x) \subset G(x)$. The converse implication is clear (and the condition of connectness is not needed here). \diamond
Remark 1. Recently K. Baron, J. Matkowski and K. Nikodem [1] proved that real functions f, g defined on a real interval I, satisfy

$$
f(t x+(1-t) y) \leq t g(x)+(1-t) g(y), \quad x, y \in I, t \in[0,1]
$$

if and only if there exists a convex function $h: I \rightarrow \mathbb{R}$ such that

$$
f(x) \leq h(x) \leq g(x), \quad x \in I
$$

Th. 1 is a set-valued analogue of this result. It can be also obtained by use of a remark on separation of sets on the plane given by Zs. Páles (cf. [7, p. 296, Remark 23]). The following examples show that the assumptions that $\mathrm{Gr} F$ is the union of two connected sets as well as
that F and G are defined on a real interval and have values in \mathbb{R} are essential.
Example 1. Let us take the set-valued functions $F, G:[0,1] \rightarrow \mathrm{n}([0,1])$ defined by

$$
\begin{aligned}
& F(x)= \begin{cases}\{0,1\}, & x \in\{0,1\} \\
\{1\}, & x \in(0,1) .\end{cases} \\
& G(x)= \begin{cases}\{0\} \cup[x, 1], & x \in\left[0, \frac{1}{2}\right] \\
\{0\} \cup[1-x, 1], & x \in\left(\frac{1}{2}, 1\right] .\end{cases}
\end{aligned}
$$

Fig. 1
It is easy to see that F and G satisfy (1) but there is not any convex set-valued function $H:[0,1] \rightarrow \mathrm{n}(\mathbb{R})$ satisfying (2). Clearly, Gr F can not be represented as the union of two connected sets.
Example 2. Consider the set-valued functions $F, G:[0,1] \times[0,1] \rightarrow$ $\rightarrow \mathrm{n}(\mathbb{R})$ defined by

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right):= \begin{cases}{[0,1],} & \left(x_{1}, x_{2}\right) \in[0,1] \times(0,1] \\
\{0,1\}, & \left(x_{1}, x_{2}\right) \in\{0,1\} \times\{0\} \\
\{1\}, & \left(x_{1}, x_{2}\right) \in(0,1) \times\{0\}\end{cases} \\
& G\left(x_{1}, x_{2}\right):= \begin{cases}{[0,1],} & \left(x_{1}, x_{2}\right) \in[0,1] \times(0,1] \\
\{0\} \cup\left[x_{1}, 1\right], & \left(x_{1}, x_{2}\right) \in\left[0, \frac{1}{2}\right] \times\{0\} \\
\{0\} \cup\left[1-x_{1}, 1\right], & \left(x_{1}, x_{2}\right) \in\left(\frac{1}{2}, 1\right] \times\{0\} .\end{cases}
\end{aligned}
$$

These set-valued functions satisfy (1) and the graph of F is connected. However there is no convex set-valued function $H:[0,1] \times[0,1] \rightarrow \mathrm{n}(\mathbb{R})$
satisfying (2).
Example 3. Let $F, G:[0,1] \rightarrow \mathrm{n}\left(\mathbb{R}^{2}\right)$ be defined by the formulas

$$
\begin{aligned}
F(x) & := \begin{cases}\{0\} \times\{0,1\} \cup(0,1] \times[0,1], & x \in\{0,1\} \\
\{0\} \times\{1\} \cup(0,1] \times[0,1], & x \in(0,1)\end{cases} \\
G(x) & := \begin{cases}\{0\} \times(\{0\} \cup[x, 1]) \cup(0,1] \times[0,1], & x \in\left[0, \frac{1}{2}\right] \\
\{0\} \times(\{0\} \cup[1-x, 1]) \cup(0,1] \times[0,1], & x \in\left(\frac{1}{2}, 1\right] .\end{cases}
\end{aligned}
$$

Similarly as in the previous example F and G satisfy (1) and $\operatorname{Gr} F$ is connected. However, there does not exist any convex set-valued function $H:[0,1] \rightarrow n\left(\mathbb{R}^{2}\right)$ for which (2) holds.

If a set $A \subset \mathbb{R}^{n}$ is the union of n connected sets, then each element of its convex hull is a convex combination of n or fewer points of A (cf. [p. 169, Prop. 3.3]). It is also known that every convex set-valued function $H: D \rightarrow \mathrm{n}(Y)$, where D is a convex subset of a vector space and Y is a vector space, satisfies

$$
t_{1} H\left(x_{1}\right)+\cdots+t_{n} H\left(x_{n}\right) \subset H\left(t_{1}+\cdots+t_{n} x_{n}\right)
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in D$ and $t_{1}, \ldots, t_{n} \in[0,1]$ summing up to 1 ([4, Th. 2.3$]$). Using these facts and arguing as in the proof of Th. 1 we get the following extension of this theorem.
Theorem 1.1. Let D be a convex subset of \mathbb{R}^{k} and $F, G: D \rightarrow \mathrm{n}\left(\mathbb{R}^{l}\right)$ be given set-valued functions such that $\mathrm{Gr} F$ is the union of $k+l$ connected subsets of \mathbb{R}^{k+l}. Then F and G satisfy

$$
\begin{equation*}
\sum_{i=1}^{k+l} t_{i} F\left(x_{i}\right) \subset G\left(\sum_{i=1}^{k+l} t_{i} x_{i}\right) \tag{3}
\end{equation*}
$$

for every $x_{1}, \ldots, x_{k+l} \in D$ and for every $t_{1}, \ldots, t_{k+l} \in[0,1]$ summing up to 1 if and only if there exists a convex set-valued function $H: D \rightarrow$ $\rightarrow \mathrm{n}\left(\mathbb{R}^{l}\right)$ satisfying (2) for all $x \in D$.
Remark 2. According to the Carathéodory theorem (cf. [6, Theorems 1.20 and 1.21]) every element of the convex hull of a set $A \subset \mathbb{R}^{n}$ is a convex combination of $n+1$ (or fewer) elements of A. Therefore we can omit in Th. 1.1 the assumption that $\operatorname{Gr} F$ is the union of $k+l$ connected sets, taking in (3) all convex combination of $k+l+1$ elements of D.

Using a similar method as in the proof of Th. 1 we can obtain also the following result.
Theorem 1.2. Let X, Y be real vector spaces and D be a convex subset of X. set-valued functions $F, G: D \rightarrow \mathrm{n}(Y)$ satisfy

$$
\begin{equation*}
\sum_{i=1}^{n} t_{i} F\left(x_{i}\right) \subset G\left(\sum_{i=1}^{n} t_{i} x_{i}\right) \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in D$ and $t_{1}, \ldots, t_{n} \in[0,1]$ summing up to 1 , if and only if there exists a convex set-valued function $H: D \rightarrow \mathrm{n}(Y)$ satisfying (2) for all $x \in D$.

3. Applications

Let ϵ be a positive constant. Recall that set-valued function F : $: I \rightarrow \mathrm{n}(\mathbb{R})$ is said to be ϵ-convex if

$$
t F(x)+(1-t) F(y) \subset F(t x+(1-t) y)+(-\epsilon, \epsilon)
$$

for all $x, y \in I, t \in[0,1]$. As an immediate consequence of Th. 1 (taking $G(x)=F(x)+(-\epsilon, \epsilon))$ we get the following Hyers-Ulam stability-type result. Similar corollaries we can obtain by Theorems 1.1 and 1.2 (cf. [2, Th. 2]).
Corollary 1. If a set-valued function $F: I \rightarrow \mathrm{n}(\mathbb{R})$ is ϵ-convex and $\mathrm{Gr} F$ is the union of two connected sets, then there exists a convex setvalued function $H: I \rightarrow \mathrm{n}(\mathbb{R})$ such that

$$
F(x) \subset H(x) \subset F(x)+(-\epsilon, \epsilon), x \in I
$$

Now, denote by J either $[0,+\infty)$ or $(0,+\infty)$. Given $T>0$ and $F: J \rightarrow \mathrm{n}(\mathbb{R})$ we define the set-valued function $F_{T}: J \rightarrow \mathbb{R}$ by the formula

$$
F_{T}(x)=T^{-1} F(T x) .
$$

Using a similar method as in [1] we get the following result.
Theorem 2. Let T be a positive real number and $F: J \rightarrow \mathrm{n}(\mathbb{R})$ be a set-valued function such that $\mathrm{Gr} F$ is union of two connected sets. Then F satisfies

$$
t F(x)+(T-t) F(y) \subset F(t x+(T-t) y)
$$

for all $x, y \in J, t \in[0, T]$ if and only if there exists a convex set-valued function $\Phi: J \rightarrow \mathrm{n}(\mathbb{R})$ such that

$$
\Phi(x) \subset F(x) \subset \Phi_{T}(x), x \in J
$$

Proof. Assume that F satisfies

$$
t F(x)+(T-t) F(y) \subset F(t x+(T-t) y), \quad x, y \in J, t \in[0, T] .
$$

Taking $t=\alpha T, \alpha \in[0,1]$, and multiplying by T^{-1}, we receive the inclusion

$$
\alpha F(x)+(1-\alpha) F(y) \subset T^{-1} F(T \alpha x+T(1-\alpha) y)
$$

for all $x, y \in J$ and $\alpha \in[0,1]$. According to Th. 1 , there exists a convex
set-valued function $H: J \rightarrow \mathrm{n}(\mathbb{R})$ such that $F(x) \subset H(x) \subset F_{T}(x)$. So let us define the function

$$
\Phi(x):=T H\left(T^{-1} x\right), x \in J
$$

Because of the convexity of H, Φ is convex. It is also easy to check that the wanted condition holds.

On the other hand, if there exists a convex set-valued function $\Phi: J \rightarrow \mathrm{n}(\mathbb{R})$ such that

$$
\Phi(x) \subset F(x) \subset \Phi_{T}(x), x \in J
$$

we can get

$$
\alpha F(x)+(1-\alpha) F(y) \subset T^{-1} \Phi(\alpha T x+(1-\alpha) T y)
$$

for all $x, y \in J$ and $\alpha \in[0,1]$. And finally, taking $t:=T \alpha$ and using the inclusion $\Phi(x) \subset F(x)$ we receive

$$
t F(x)+(T-t) F(y) \subset F(t x+(T-t) y)
$$

for all $x, y \in J, t \in[0, T] . \diamond$
Let A be a subset of a real vector space X. We say that a point x_{0} belongs to the algebraic interior of A (and write $x_{0} \in$ core A) if for every $x \in X$ there exists an $\epsilon>0$ such that $t x+(1-t) x_{0} \in A$ for all $t \in(-\epsilon, \epsilon)$.

In the next theorem we show that if set-valued functions F, G : $: D \rightarrow \mathrm{n}(Y)$ satisfy (4) and at a point $x_{0} \in$ core D the set $G\left(x_{0}\right)$ is a singleton, then F has to be a single-valued affine function (i.e. $F(t x+$ $+(1-t) y)=t F(x)+(1-t) F(y)$ for all $x, y \in D, t \in[0,1])$. An analogous result for convex set-valued functions defined on the whole vector space was recently obtained by F. Deutsch and I. Singer [3] (cf. also [5 Th. 3]).
Theorem 3. Let X, Y be real vector spaces, D be a convex subset of X and $F, G: D \rightarrow \mathrm{n}(Y)$ be set-valued functions such that $G\left(x_{0}\right)$ is a singleton for some $x_{0} \in$ core D. Then F and G satisfy (4) if and only if F is a single-valued affine selection of G.
Proof. The sufficiency is clear. Now, assume that F and G satisfy (4). By Th. 1.2 there exists a convex set-valued function $H: D \rightarrow \mathrm{n}(Y)$ such that (2) holds. Fix a point $x \in D$.Since $x_{0} \in$ core D, there exist a $y \in D$ and a $t \in(0,1)$ such that $x_{0}=t x+(1-t) y$. By the convexity of H and (2) we get

$$
t H(x)+(1-t) H(y) \subset H\left(x_{0}\right) \subset G\left(x_{0}\right),
$$

which implies that $H(x)$ is a singleton. Thus H as a single-valued function satisfying the condition $t H(x)+(1-t) H(y) \subset H(t x+(1-$ $-t) y), x, y \in D, t \in[0,1]$, is affine. By (2) also F is single-valued and it is an affine selection of $G . \diamond$

Acknowledgements. I want to thank Kazimierz Nikodem for showing the direction of research and giving very useful remarks.

References

[1] BARON,K., MATKOWSKI,J., NIKODEM,K.: A sandwich with convexity, Mathematica Pannonica 5/1 (1994), 139-144.
[2] CARDINALI,T., NIKODEM,K., PAPALINI,F.: Some results on stability and on characterization of K-convexity of set-valued functions, Ann. Polon. Math. 58/2 (1993), 185-192.
[3] DEUTSCH,F., SINGER, I.: On single-valuedness of convex set-valued maps, Set-valued Analysis 1 (1993), 97-103.
[4] NIKODEM,K.: K-convex set-valued functions, Zeszyty Naukowe Politechniki Lódzkiej 559 (Rozprawy Mat. 114), Lódź 1989.
[5] NIKODEM,K., PAPALINI,F., VERCILLO,S.: Some representations of midconvex set-valued functions, to appear in Aequationes Mathematicae.
[6] VALENTINE,F.A.: Convex Sets, McGraw-Hill Book Company, 1969.
[7] Report of Meeting. The Thirtieth International Symposium on Functional Equations, September 20-26, 1992, Oberwolfach, Germany., Aequationes Mathematicae 46 (1993) 246-304, p. 296.

