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Abstract: Hajés’ theorem asserts that if a finite abelian group is a direct
product of cyclic subsets, then in fact at least one of the factors must be a
subgroup of the group. A cyclic subset is the “front end” of a cyclic subgroup.
The main result of the paper is an analogous result. Namely, that the same
conclusion holds for finite abelian groups of odd order with certain more
general type of factors. The proofs mainly rely on characters of finite abelian
groups.

1. Introduction

Throughout the paper the word group is used to mean finite
abelian group. The groups are written multiplicatively with identity
element e. We need the concept of factoring subsets into subsets. Let
G be a finite abelian group. If B, A1,... , Ay are subsets of G such that
each b in B is uniquely expressible in the form
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bzal---an, aleAl,...,anEAn,

and each product aj - - - a, belongs to B, that is, if the product Ay --- A,
is direct and is equal to B, then we say that B is factored by subsets
Ai,...,An. The equation B = A; --- A, is also said to be a factoriza-
tionof B. If e € BNA;N---NA,, then the factorization B = A; -+- A,
and the subsets B, A1, ... , A, are said to be normed. Clearly the prod-
uct A;---A, is a factoring of B if and only if 4;---A, = B and
|A1|---|An| = |B|. Direct product of subsets is a straightforward gen-
eralization of direct product of subgroups which is a commonly used
construction. However factoring a finite abelian group into certain type
of subsets also admits important applications.

The subset A of G is called cyclic if it is of form {e, a,a?,... ,a" '}
where a is an element of G\ {e} and r is a positive integer. We denote
this subset of G shortly by [a,r]. Loosely speaking the cyclic subset
[a,r] consists of the “first consecutive” r elements of (a) the cyclic
subgroup generated by the element a. We would like to point out that
it is assumed that |a| the order of a is at least r.

To settle a famous geometric conjecture of H. Minkowski G. Hajos
[2] proved that if a finite abelian group is a direct product of cyclic
subsets, then at least one of the factors must be a subgroup of the group.
In order to generalize Hajés’ theorem we can try to extend the family of
subsets that occur in a factorization of a given finite abelian group. Of
course this extended family should contain the cyclic subsets. Beside
cyclic subsets we will consider subsets of form [a,r] U g[a, s], where the
union is disjoint. We would like to show that if a finite abelian group is
factored into the above type of subsets, then at least one of the factors
must be a subgroup. We are able to verify this fact in the special case
when the order of the finite abelian group is odd. This is the main
result of this note. On the other hand the result does not extend to
abelian groups of even order as the following example shows. Let G be
the direct product of two cyclic groups of order four, say G = (z) X (y),
where |z| = |y| = 4. Choose the subsets A and B to be A = [z,2] U
Uy?[z,2], B = [y,2] U z?yy,2]. Then as it is easy to verify G = AB
is a factorization of G and none of the factors A and B is a subgroup

of G.
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2. Result

If A and A' are subsets of G such that for every subset B of G, if

G = AB is a factorization of G, then G = A'B is also a factorization
of G, then we shall say that A is replaceable by A'. Rédei [3] made use
of group characters to study replaceable factors. If A is a subset and y
is a character of G, then x(A) denotes the sum

> x(a).

a€A
Rédei showed that the factor A can be replaced by A’ if |A| = |A'| and
if from x(A) = 0 it follows x(A') = 0 for each character x of G. The
set of characters x of G for which x(A) = 0 we call the annihilator of
the subset A and it is denoted by Ann(A). Using this concept Rédei’s
test reads that if |A| = |4'| and Ann(A) C Ann(A’), then the subset A
can be replaced by the subset A'.
Lemma 1. Let G be a finite abelian group of odd order and let A be
a subset of G such that A = [a,7] U gla, s], where the union is disjoint
and v + s is odd. Then Ann(A) C Ann([a,r + s]).
Proof. Let B = [a,r + s]. First note that Ann(B) consists of each
character x of G for which x(a) # 1 and x(a""°) = 1. Indeed, if
x(a) =1, then x(B) =r + s and if x(a) # 1, then

r—+s
x(B) = X x(a™)
, 1 - x(a)
which proves the claim. Thus it is enough to verify that from y(A4) =0
it follows that (i) x(a) # 1 and (ii) x(a"**) = 1.

To prove (i) assume the contrary that y is a character of G for
which x(A4) = 0 and x(a) = 1. Now 0 = x(4) = r + x(g)s or equiva-
lently x(g) = —(r/s). Taking the absolute values of both sides we have
s =r. Hence r + s is even which is not the case.

To prove (ii) consider a character y of G with y(A4) = 0. Now
0 = x(A)x(a) = x(Aa). From x(A) = x(Aa) after cancelling we get
x(e) + x(g9) = x(a") + x(ga®). Drawing complex numbers on the plane
the reader can verify easily that as the roots of unity occurring are
of odd order x(e), x(¢g) is a rearrangement of x(a”), x(ga®). Hence
x(e)x(g) = x(a")x(ga®), which is equivalent to 1 = x(a™**). ¢

If G = AC is a factorization of the finite abelian group G, where
A = [a,r]Ugla, s], then by Lemma 1 A can be replaced by B = [a,r + 3]
to get factorization G = BC. Now B must contain r + s elements and
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so |a| > r+s. Thus when A is a factor of a factorization then |a] > r+s
holds. We would like to point out that this is not the case in general.
Let G = (z) x {y), |z| =5, |y| = 3 and A = [z,3]Uy[z,4]. Now [A| =7
and |z| < 7.
A subset A of G is called periodic if there is an element g € G\ {e}
such that Ag = A. The element g is called a period of A.
Lemma 2. Let G be a finite abelian group of odd order and let A be
a subset of G such that A = [a,7] U g[a, s|, where the union is disjoint
and r + s is odd. If A is periodic and |a| > 1 + s, then A = (a).
Proof. As |a| > r 4 s so it is enough to prove that (i) a™* = e and (ii)
g=a".
If x(a™?®) = 1 for each character x of G, then a™* =1. So to
_prove (i) we consider C = {x : x(a"t*) = 1} and we show that C
in fact coincides with the character group G of G. Note that C is a
subgroup of G and Ann(A) C C. Let z be a period of A. By Th. 1 of
[4], x(A) = 0 whenever x(z) # 1. Counting the number of characters
x of G for which x(z) # 1 we get a lower bound for IAnn(A)l.

, |Ann(A)| > |a[ —;IG! (x)l = |G| — lG : (w)' =
=|GI(1 - (1/]z])) = |GI(1 = (1/p)) > IGI(1/2) = (1/2)IG|.

Here p is the smallest prime divisor of |G|. As lAnn(A)| > (1/2)|G|,
Ann(A) generates G and consequently C = G.

To prove ¢ = a” assume the contrary that g # a”. Let x be a
character of G for which y(A4) = 0. Applying x to ¢ # a" we face to
two possibilities, (a) x(g) = x(a") and (b) x(g) # x(a”). We establish
an upper bound for ‘Ann(A)|. If x(g) = x(a™), then x(ga™") =1 and
the number of these characters is IG : (ga_r)| —1 < |G|/p — 1 since
x(A) = |A| # 0 for the principal character x of G. Turn to the case
when x(g) # x(a") and let B = [a,7]U a"[a,s] = [a,r + s]. By Lemma
1, from x(4) = 0 it follows that x(B) = 0 and so

0=x(4) —x(B) =
x([a,7]) + x(9)x ([a, s]) = x([a,7]) = x(a")x([a; s]) =
= x(la, s]) (x(9) — x(a")).

Hence X([a,s]) =0 and consequently x([a,r]) =0. Therefore x(a) # 1,
x(a®) = 1, x(a™) = 1. If t is the greatest common divisor of s and
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r, then x(a') = 1. The number of these characters is IG : (at)l —-1<

< |G|/p—1. We now combine the lower and upper bounds for | Ann(A4)|
together.

G|(1 = (1/p)) < |Ann(4)| <|G|/p—1+]Gl/p—1 < |G|(2/p)-

Cancelling |G| we get 1 — (1/p) < (2/p) or equivalently p < 3 which is
not the case. {

Theorem 1. Let G be a finite abelian group of odd order and A,,... , Ay
be subsets of G such that A; = [a;,m;]U gi[ai,si]. fG=A1--- Ay is a
factorization of G, then A; 1s a subgroup of G for some s, 1 <1 < n.
Proof. For n = 1 the theorem holds and so we proceed by induction on
n. Replace the factor A; by B; = [ai, i+ s;] for each ¢, 1 <4 < nin the
factorization G = A; - -+ A, to get the factorization G = By --- B,. By
Lemma 1 this can be done. From the factorization G = By --- By by
Hajés’ theorem it follows that at least one of the factors B; is a subgroup
of G. We may assume that B; = H is a subgroup of G since this is only
a matter of indexing the factors. In the factorization G = A; Ay Ap
replace A; by By = H to get the factorization G = HAy --- A,. From
this we get the factorization G/H = (AyH)/H:--(A,H)/H of the
factor group G/H. By the inductive assumption some of the factors
(A;H)/H, say (A;H)/H, is a subgroup of G/H, that is, HA; is a
subgroup of G. Continuing in this way we have that

H, HAy, HA Ay, ..., HAy-- Ay

are subgroups of G. Let K = HAy---Ap_1. lf g1 € K, then A1 C K
and so K = A;A, - A, _; is a factorization of K. By the inductive
assumption one of the factors is a subgroup of K and so of G.

In the remaining part of the proof we assume that g; ¢ K. Let
b e A,. From the factorizations G = A1A2--- A, and G = HA;--- A,
by multiplying with 5~ we have that G = A1 A --- Ap_y (b_lAn) and
G=HAy---A, 4 (b”lAn) = K(b“lAn) are also factorizations of G.
As G = K(b_lAn) is a factorization of G, b~1A, is a complete set
of representatives of G modulo K. There is an element ¢; in b 1A,
such that tb_lK contains ¢;. Now g1ty € K. Let Cp = [a1,r1] U
U [a1,51]g1ts. We claim that K = CpAy--- A, is a factorization
of K. Indeed, products coming from CyA; -+ Ap—1 occur among the
product coming from A;A; -+ An_4 (b_lAn). But these latter ones are
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distinct as G = A1 A, --- A, (b"'lAn) 1s a factorization of G. From
K = CyAy--- A,—1 by the inductive assumption we have that one of
the factors is a subgroup of K. If this is not Cj, then we are done.
Thus we suppose that C} is a subgroup of K. Now C} is periodic and
so by Lemma 2, Cy = (a1). Consequently g1, = a* or equivalently
ty = g7 'al* € b™'A,. If t, = e for some b € A,, then ¢y —a1 and
Ay = (a1). If t) # e for each b € A,, then

ety =g a € [] b7 4n
. bEA,
and so by Lemma 4 of [1], A, is periodic. Now by Lemma 2, 4, =

= (an>- O
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