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Abstract: In this paper a new way of constructing near-rings (M x R, +,0)
from a ring R and an R-module M is described. The idea comes from the
composition-ring (R[[z]],+,, o) of formal power series by factoring with cer-
tain ideals. Sometimes one gets “double rings”, i.e. rings with two possibilities
for the multiplication for a given addition. If R has an identity, then the group
of units with respect to o has interesting structures. At least, the ideals and
the usual radicals of the constructed near-rings can be described in a nice

manner.

1. Introduction

For a commutative ring R with identity 1g, the formal power
series over R, denoted by R|[[z]], provide a lot of colour and beauty to
mathematics. In particular, if Ry[[z]] denotes the power series of the
form '
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(1) Mz +rezi .. Fraz™ 4. ..

then the structure (Ry[[z]],+,-, ), where o denotes the composition,
has the properties that 1) (Ro[[z]],+,-) is a ring, 2) (Ro[[z]], +,0) is a
right distributive near-ring with identity z, and 3) (f-g)oh =(foh)-
- (g o k). In other words, (Ro[[z]], +,,0) is a tri-operational algebra, or
a composition ring [1, 9, 10]. If R is a commutative ring with identity
1g, then the sets

(2) Iy == {z* - a(2) | a(z) € Ro[[z]]}, k=1,2,3,...

are composition-ring-ideals, i.e., the I}’s are near-ring-ideals of
(Rol[z]], +, 0) and also ring-ideals of (Ro[[z]], +,"), [7]. If R is a field of
characteristic # 2, then all composition-ideals are of the form (2), so
Ry [[z]] has the remarkable property that every near-ring-ideal is also a
ring-ideal, [6].

When Gonshor [5] was developing the concept of an abstract affine
near-ring, he was the first, who constructed near-rings from a ring R
and an R-module M. This has proven to be extremely useful in diverse
situations {2]. Other near-ring constructions from a ring R and an R-
module M can be found in [3] and [4]. In this work we describe a new
way to construct near-rings in such a way which is motivated by the
study of the quotient structures of Ry[[z]] by the above ideals I, I,. By
factoring with I3 one can construct near-rings from commutative rings
R and R-algebras A. These quotient structures sometimes yield “double
rings”, i.e., - and o may each be used with + to get a ring. If R has
an identity, then the group of units with respect to o has interesting
structures and the ideals in such near-rings have a particularly nice
description.

2. Background and development

If we factor Ry[[z]] by I; we get by the isomorphism 7: Ro[[z]]/ 1
— R with 7(rz 4+ I ) = r a double ring, namely:
Proposition 1. For a commutative ring R with identity 15, we have
1) (Ro{[=]]/I1,+,") is the zero-ring;
2) (Rol[z]]/I1,+,0) 1s a ring isomorphic to (R,+,-);
3) the group of units in (Ro[[z]]/I1,+,0) is isomorphic to the group
of units of (R,+,-).
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Factoring Ro[[z]] with Iz and the isomorphism 7(az + bz? + I,) =
= (b,a) lead us to the following definition of o on R x R:

(b,a) o (d,c) = (ad + ¢*b, ac).
Together with the componentwise addition we get a near-ring

(R x R,+,0). We extend this to: Let R be a commutative ring and let
M be a left R-module. On the set M x R define + componentwise and

(3) (a,2) 0 (b,y) = (zb + y’a, zy).

We get

Theorem 2. For a commutative ring R and a left R-module M, the
structure (M X R,+,0) s a right distributive zero-symmetric near-
ring. If R has identity 1g, then (0,1g) is the identity for M x R.
(M x R,+,0) 13 a ming iff r+r € (0 : M) for all v in. R. R boolean
implies o commutative. The group of units of M X R with respect to o
and the identity (0,1g) 18 isomorphic to the semidirect product M+ x
X pU(R) where U(R) denotes the group of units of the ring R and [a, z]
the elements of M x U(R) with [a,z] o [b,y] = [a + z71b, zy].

Proof. The proof of each item is direct except that about the group
of units. If (0,1) = (a,z) o (b,y) = (zb + y2a,zy), then y = £~ and
from 0 =zb + y?a, we get b = z71(~y?a) = ~z~%a. Hence (a,z)"! =
= (-z7%a,z7"). Let K = {(a,1) | a € M}. We shall see that K is a
normal subgroup of (M x R), the units of the near-ring M x R. For
(a,1),(b,1) € K, (a,1) 0 (b,1) = (a + b,1), so K is isomorphic to M+,
Now (a,z) o (b,1) 0 (a,z)™! = (gb+ a,z) 0 (—z3a,27!) = (—z%a +
+ 27%(zb+ a),1) = (z71b,1). Thus K is normal in U(M x R). Let
L = {(0,z) | « € U(R)}. Then (0,z)~! = (0,2z71) € L and (0,z) o
0(0,y) = (0,zy) € L if (0,y) € L also. Hence, L = U(R). Certainly
LNK = {(0,1)}. For (a,z) € M x U(R), we have (z7%a,1) 0 (0,z) =
=(a,z),s0 KoL =M xU(R) and U(M x R) = M x ¢U(R). But what
is our §: U(R) — Aut M? Looking at (a,z) = (z72a,1) 0 (0, z), we
define the map T'(a,z) = [z72a,z]. Then T[(a,z)o(b,y)] = [z~ 'y~ 2b+
+z72a, zy] and T(a,z)oT(b,y) = [z 2a, z]o[y~2b,y]. So, if we define on
M xU(R) the product [a,z]o[b,y] = [a+ 27 1b,zy], then T becomes an
isomorphism onto (M x ¢l (R), o) where [a,z]o[b,y] = [a+60(z)b,zy] =
= [a+ 27 1b,zy] and 8(z)b = z71b. {

Corollary 3. Let R be a commutative ring with identity 1r, and let A
be a commutative R-algebra with identity 14. On A X R, define (a,b)+
+ (¢,d) = (a+ ¢,b+ d), (a,b) - (c,d) = (bd,0), where bd = bd 14, and
(a,b)o(c,d) = (bc+d%a,bd). Then (AX R,+,-,0) is a composition ring
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where (A x R)® = 0 with respect to 0. A x R is a double ring, i.c., both
(A X R,+,-) and (A X R,+,0) are rings iff r +r € (0: A) for all T in
R. The following 3 assertions are equivalent: (i) R boolean, (ii) o left
distributive over -, (iii) o commutative.

Analogously we get by the isomorphism 7: Ro{[z]]/Is — R with
T(az + bz? + cz® + I3) = (¢, b,a): '

Theorem 4. Let R be a commutative ring with ideniity 1g. Let A be
e commutative R-algebra with identity 14. On S = A X A X R define
+ componentwise, define - by

(¢,b,a) - (f,e,d) = (ae + db, ad,0),
where ad = adl 4, and define o by
(c,b,a) o (f,e,d) = (af + 2dbe + d°c,ae + d*b, ad).

Then (S,+,+,0) 18 a composition ring with identity 1s = (0,0,1g) and
54 = 0 with respect to o. The following three assertions are equivalent:
(1) R boolean, (ii) o left distributive over -, (iii) o commutative. They
imply that S is a double ring.

Let U(S) denotes the group of units of (S,0). Then U(S) =
= {(e,b,u) | ¢,b € A,u € U(R))} and (¢, b,u)™! = (2u™5b —u"%,
—u~3b,u™l).

Let K = {(c,b,1) | ¢,b € A}, and let L = {(0,0,u) | v € U(R)},
where U(R) denotes the units of (R,:). Then K is a normal subgroup
of U(S), and K = AT @ T AT where

(a,0) ® F'(c,d) = (a+ c+2bd, b+ d);
e, F: Ax A — A defined by F(b,d) = 2bd is a facior set. Also
L= U(R) and U(S) 15 a semidirect product of K by L. In fact,
US) = (At @ T AY) x gU(R)
where
[(a,8), ] - [(c,d), 0] = [(a,5) ® "8(u)(c, d), uv]
and

0(u)(c,d) = (v 2c,u""d).

Proof. Again, the proof of the first paragraph of the theorem is direct,
but requires careful calculations. We shall turn our attention to proving
those items concerning the group of units. One easily sees that U(S) =
= {(¢,b,u) | ¢,b € A,u € U(R)}, and that (¢c,b,u)™ = (2u™°b* —
—u~%c,—~u"3b,u™!). Focusing on the third coordinates, one easily gets
that K is a normal subgroup of U(S), and we easily see that K =
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= At @ F At as described in the theorem. So K is an abelian group,
and is isomorphic to an extension of A* by A™, but is not a direct sum
of At with At ([11]). -
One easily gets L = U{/(R) and LN K = {(0, 0,1)}, and from
(u3e,u"2b,1) 0 (0,0,4) = (c, b, u),
that K o L =U(S). Thus U(S) is a semidirect product of K by L. So
there is a homomorphism 8: U(R) — Aut(AT @ A*) such that

US)= (AT @ TAT) x 4U(R).
We need to define 6. Define T: U(S) — (AT @ FAT) x 4U(R) by
T(c,b,u) = [u=3c,u™%b,u]. One gets that T is an isomorphism if
8(u)(z,y) = (v2z,u"'y). This defines our required 6. {
One might be tempted to develop the same theory for the com-

position ring of polynomials over R, namely (R[z],+,-,0) with

Ix = {z*-a|a € R[z]}.
But these I% s are not right ideals of (R[z], -+, 0), so one must consider
the polynomials with constant term equal to 0, namely (Ry[z], +,,0).
Let

Jr = {z¥ a | a € Rylz]}. ’
Then Ji = Iy N Ry[z]. Thus we easily see that the Jy's are ideals in
(Ro[z],+,-,0) and that

(Role]/Jxc, 4,5 0) = (Ro[[z]]/ Ixc, +,+, 0).

3. Ideals in the near-ring M x R

Our aim is to describe all ideals of M x R. First we start with a

submodule N of M. Then
I'=(N:M)={reR|rM C N}

is an ideal of R. With this ideal we get
Proposition 5. Let N be a submodule of M and let J be an ideal of R
with J CI = (N :M). Then N x J is an ideal of M x R.

Now we start with an ideal I of R and construct the submodule
N = IM, the submodule generated by all im, where : € I and m € M.
Since I C (N : M), we have
Corollary 6. For an ideal I of R and submodule N = IM of M, we
get the ideal N x I of M x R.
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Theorem 7. Let K be an ideal of M x R. Define
I(K)={i € R|(m,i) € K for some m € M},

N(K)={n € M | (n,r) € K for some r € R}.

Then I(K) is an ideal of R, N(K) is a submodule of M, I(K) C
C (N(K): M), and so N(K) x I(K) i3 an ideal of M x R with K C
CNK)xI(K)C N(K) x (N(K): M).
Proof. For i,j € I(K), if (m,1),(n,j) € K, then (m,7)—(n,j) = (m—
—n,i—j)€ K,s01—j € I(K). For r € R, we have (0,r) € M x R,
so (m,i) o0 (0,r) = (r?m,ir) € K, yielding ir € I(K). Thus I(K) is
an ideal of R. For m,n € N(K), the above argument shows m —n €
€ N(K). But since (0,7) € M x R, we get (0,r)o(m,:) = (rm,ri) € K,
so rm € N(K), making N(K) a submodule. Certainly K C N(K) x
x I(K). We need only show that I(K) C (N(K) : M), and then apply
Prop. 5 to get that N(K) x I(K) is an ideal of M x R. Take i € I(K)
and m € M. We proceed to show that im € N(K). For (z,?) € K,
and (m,1) € M X R, we have (z,7) o (m,1) = (sm + z,7) € K, yielding
z,im + z € N(K), thus im € N(K). { '
Let K be an ideal of M x R. If (n,t) € K, define
Ni(K):={me M| (m,?) € K},
and
I.(K):={jeR|(n,j)€e K}.
By a straightforward computation we get
Proposition 8. For an ideal K of M X R, and (n,t) € K, No(K) is
a submodule of M, Iy(K) s an ideal of R, N;(K) = n + No(K), and
I(K) =i+ Ii(K).
Now define
I(No(K)) := {i € R | No(K) x {i} C K}
and
N(l(K)) = {m e M | {m} x I,(K) € K}.
Proposition 9. For an ideal K of M x R, I(No(K)) is an ideal of R
and N(Iy(K)) 13 a submodule of M. Furthermore, I(No(K)) = Lh(K)
and N(IH(K)) = No(K), so N and I are inverse operations.
Proof. It is direct to show that I(No(K)) = Ii(K) and N([(K)) =
= No(K). Now apply Prop. 8. ¢
Proposition 10. If No(K) = N(K), then I4(K) = I(K), and con-
versely. : '
Proof. No(K) C N(K) and Ip(K) C I(K) always hold. If No(K) =
= N(K), let ¢« € I(K) and let m € M be such that (m,:) € K.
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So i € In(K) = i + Ip(K). Also m € Ni(K) = m + N¢(K). But
m € N(K) = Ny(K), forcing N;(K) = No(K) = N(K). Thus, m €
€ Ny¢(K), and we have (m,0),(m,:) € K, so (0,7) € K and i € I)(K).
So Iy(K) = I(K).

If [(K) = I(K), we take m € N(K) There is an i such that
(m,i) € K,som € Ni(K) and i € I,(K) =i+ Ip(K) =i+ I(K) =
= I(K) = IO(K). This gives (0,2),(m,2),(m,0) € K, so m € No(K),
and No(K) = N(K). ¢

Since Iy(K) C (No(K) : M), by Prop. 5 No(K) x Ii(K) is an
ideal of M x R. Together with Th. 7 we get
Theorem 11. If K is an ideal of M X R, then

(4) No(K) x In(K) C K C N(K) x I(K).

Remark 1. If we have equality in (4) on one side then also on the
other side.
Proof. Let be K = Ny(K) x Iy(K). If n € N(K), then (n,r) €
€ No(K) x Io(K) for some r € R, hence n € Ny(K) and N(K) =
= No(K). By Prop. 10 we get I(Ix) = [)(K) and K = N(K) x I{K).
If K = N(K)x I(K) and r € I(K), then also (0,r) € K, since N(K)
is a submodule of M, hence r € I(K) and I,(K) = I(K) Again by
Prop. 10 No(K) = N(K) and K is also No(K) x Iy(K). ¢
Remark 2. In (4) we get equality iff K = N x J with J an ideal of R
with J C (N : M) and N a submodule of M.
Proof. If K = Ny(K)xIy(K) or K = N(K)x I(K) then by Theorem 7
and Remark 1, K is of the required form. On the other side, if K =
=N xJ, then by Prop. 5 K is an ideal of M x R with N(K)
(forn € N and j € J 4 R we get (n,j) € K, hence n € N(K); for
n € N(K) there is some r € R with (n,j) € N x J, hence n € N) and
I(K)=J(forje JIRjme Nforallme M, hence(]m,J) e NxJ
andj € I(K)). So K =N x J = N(K) x I(K) and by Remark 1 also

= No(K) x IH(K). ¢

With the N(K)’s and the I(K)’s we can descnbe all ideals of
M x R by:
Theorem 12. For every ideal K of M x R we have

1. K = Um, ek [N (K) x I,(K)];
2. I (m,r) € K, then (m,r) + No(K) x I{(K) =

= No(K) X Inn(K) = (m + No(K)) x (r + In(K)).




294 J. R. Clay and H. Kaulschitsch

Proof. We need only prove 2. Take (m + n,r + j) € N (K) X I,(K).
Then (m,r) + (n,j) € (m,r) + No(K) x I(K). If (m,r)+ (n,j) €
€ (m,r)+ No(K) x Ii(K), then (m + n,r + j) € N (K) x I,(K). ¢
Proposition 13. Let A = No(K) X Ii(K) for an ideal K of M x
X R. Then M x R,K,K/A,N(K)/No(K) and I(K)/Io(K) are all left
R-modules, where r(m,z) = (rm,rz), r[(m,z) + A] = (rm,rz) + A,
r(z + No(K)) = rz + No(K), and r(m + Ii(K)) = rm + Ii(K).
Proof. One only needs to be careful that the action of r on (m,z)+ A

is well defined, and the rest is routine. {
Corollary 14. The ring R is 1somorphic to a subring of the near-ring

M x R.

Proof. R' = {(0,r) | r € R} is isomorphic to R. ¢{

Theorem 15. Let A = No(K) X I1(K), and suppose K 13 an ideal of
M x R with ACK C N(K) x I(K). Define

K_ NE) WR‘IL I(K)

TMEE T NG (K Io(K)
by mpr[(m, 7))+ Al = m+ No(K), and ng[(m,j)+A] = j+ Io(K). Then

7wy and Tg are R-isomorphisms.
Proof. One easily sees that 7 and 7w are well defined. ¢
Corollary 16. N(K)/No(K) = I(K)/I,(K) =2 K/A as R-modules.
Lemma 17. If I(K) = R, or Iy(K) = R, then K = M x R.
Proof. Since 1 € R = I(K), there is an m € M such that (m,1) € K.
But (m,1)isaunit of M xR,so M x RCKCMxR. {
Theorem 18. If K is a mazimal ideal of M X R, then K = M X
x [i(K) =M x I(K) and I;(K) is o mazimal ideal of R. Conversely,
if J 13 @ mazimal ideal of R, and K = M x J, then K 13 a mazimal
ideal of M X R and Ij(K)=I(K)=J
Proof. Let us start with J being a maximal ideal of R and K = M x J.
Certainly Iy(K) = I(I{) = J. Suppose L is an ideal of M x R and
K=MxJCLCMxR.

Then No(L) = N(L) = M and J C I(L) = I(L) € R. Since J is
maximal, if J C Iy(L), then Iy(L) = R, so L = M x R by the lemma.
So, J = IO(L) I(L) C R, and No(L) x Iy(L) =L = N(L) x I(L), or
MxIy(L)y=L=Mx I(L) M x J = K. Thus K is a maximal ideal
of M x R. From

No(K) x In(K) C K C N(K) x I(K) C M x R,
either N(K)xI(K) = M xRor K = N(K)xI(K). The former implies
I(K)= R and K = M X R, so we must have K = N(K) x I(K). Thus
No(K) = N(K) and I)(K) = I(K), forcing I(K) C R. Thus
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K=N(K)xI(K)CMxIK)CMxR.
But M x I(K) is an ideal, and K is maximal, so N(K) = M and K =
= M x I(K). If J is an ideal of R and I)(K) = I(K) C J C R, then
MxJisanidealof M x Rand K =M xXI(K)CMxJCMXR,a
contradiction. Thus Iy(K) = I(K) is a maximal ideal of R. ¢

4. Some radicals for the near-ring M x R

With the material in Section 3, we can easily compute some of the
more popular radicals for M x R if we can compute the corresponding
radical for R. Since '

P(N) S N(N) C Jo(N) € J1/2(N) € J1(N) C Ja(N)
for any near-ring N, it is tempting to start with P(M x R), but since
N(M x R) is so easy, we'll start there.

For (a,z) € M X R, (a,z)" = (2" 'a+z"a+... + 22 (g, "),
so (a, ) is nilpotent in M x R iff z is nilpotent in R. N (M x R) is the
sum of all nil ideals of M x R. If I is a nil ideal of R, then M x I is a
nil ideal of M x R, so
Theorem 19. V(M x R) = M x N(R).

Turning now to the J,(M x R), we have an identity in M x R, so

Ji(M x R) = J,(M x R) and every left ideal K of M x R is modular.
From [8, Th. 5.17], J1(M x R) is the intersection of all 1-modular left
ideals of M x R, and by definition J; /2(M x R) is the intersection of all
0-modular left ideals of M x R. Then by [8, Th. 5.27], we have Jo(M x
X R) as the unique maximal ideal of M x R contained in J; /2(M x R).
So we see that the v-modular left ideals of M x R are significant, for
v € {0,1}. The 0-modular left ideals of M x R are exactly the maximal
left ideals K of M x R. By a similar argument as in Prop. 5 we see
that, for any left ideal K of M X R, M x I(K) is an ideal of M x R
containing K. So the maximal left ideals of M x R are again exactly
the ideals M x J, where J is maximal in B. We get therefore
Theorem 20. Jo(M x R) = J;/3(M x R) = M x J(R), where J(R)
denotes the Jacobson radical of R.
Proof. J(R) is the intersection of all maximal ideals of R, since R is
a commutative ring with 1. By Th. 18, the maximal ideals of M x R
are the M x J, where J is a maximal ideal of R. Now apply the above
remark to definition J; /(M x R) and then Th. 5.27 of [8]. ¢
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Theorem 21. J;(M x R) = J,(M x R) = M x J(R).
Proof. The 2-modular left ideals of M x R are just the maximal ideals
M x J, J maximal in R. {

There remains to compute the prime radical P(M x R). From [8,
Th. 6.27], we know that P(M X R) is a nil ideal which contains the sum
of all the nilpotent ideals.
Lemma 22. If J is a nilpotent ideal of R, then M x J is a nilpotent
tdeal of R.
Proof. That M x J is an ideal of R follows from Prop. 5. Suppose
J = {0} If (ml,rl)(mz,rz), e ,(mzn,T'gn) € M x J, then
[(ma,71). . (mp, )]0 (M1, nt1)- - (M2n,r24)] =(a, 0)0(b,0)=(0,0).
Hence (M x R)*" = {(0,0)}. ¢
Corollary 23. Let W denote the ideal of R which is the sum of all
nilpotent ideals J of R. Then M x W C P(M X R).
Proposition 24. If an ideal K of M X R contains M x {0}, then
K =M x I(K).
Proof. In this case N(K) = M = Ny(K). {
Theorem 25. An ideal K of M X R is prime iff it is of the form
K =M x P for some prime ideal P of R.
Proof. Since every prime ideal K of M x R contains M x W, it has the
form M x P for some ideal P of R. It remains to show that an ideal of
this form is prime in M X R iff P is prime in R: Let P be prime. If 4
and B are ideals of M x R and Ao B C M x P, then I(A)I(B) C P,
so we may assume that J(A) € P. But then A C M x I(A) C M x P.
Now let M x P be prime. If then A and B are ideals of R with AB C P,
then (M x A)o(M x B) C M X P, so we may assume M x A C M x P
and we can conclude that A C P. This makes P prime. {
Corollary 26. P(M x R) = M x P(R).
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