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Abstract: Given k unit balls in Euclidean d-space E¢, what is the minimal
volume of their convex hull? In E? hexagonal circle-packings, possibly de-
generate, are best possible ([6], [8]). In E%, d > 5 the linear arrangement of
the k balls is conjectured to be optimal. L. Fejes Téth’s sausage conjecture
[3], and several partial results (cf. [1],[4]) support this conjecture. In E? and
E* no such general results can be expected, because the situation is more
complicated. We consider d = 3 : In the sausage-catastrophe (cf [9]) it is
conjectured that for all k£ < 56 the linear arrangement is optimal, whereas for
all but finitely many k > 56 clusters of spheres are best possible. Although
this is supported by computer-aided calcﬁlation, a proof seems to be very
hard. However, we can prove: For no k > 56 but 57,58,63 and 64 the sausage

is optimal.

1. Introduction

Dense packings of finitely many spheres are good models for atom
clusters. So in recent years there were several investigations about
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various aspects on finite circle- or sphere-packings (cf. e.g. [1], [3] - [6],
[8], [9]). In this paper we define the density of finite sphere-packings via
the minimal volume of the convex hull of the spheres. For simplicity
we only consider unit spheres, i.e. B® = {z € E*®| ||z|| < 1}. Further £
denotes the lattice of the densest lattice packing of unit spheres. Given
k unit spheres B} = B3 +¢;, 7 = 1,...,k in E® with mutual disjoint
interiors, the volume of their convex hull is given by the Steiner formula

(cf. e.g. [7])
V(Ci+ B%) = V(Ch) + F(Ci) + M(Ci) + 5,

where Cx = conv(cy,...,cx) and V, F, M denote the volume, surface
area and integral of mean curvature.

The problem is to minimize V(C) + B?) for a given fixed k and
all possible Cy i.e. with mutual distance > 2 of any of the c;.

The “icefern”-theorem ([1], Th. 2) says that if one restricts oneself
to planar Cy, then the linear arrangement, i.e. Cy = Sk, where Si is a
segment of length 2(k — 1), is minimal, i.e.

V(Sk + B®) < V(Cy + BY).

In other words, the sausage is better than any other planar arrangement
of k unit balls. It is conjectured that for all £ < 56 this inequality even
holds for arbitrary Ck. Although computer-aided calculations support
this conjecture, called sausage-catastrophe, an exact proof is still open
for all k¥ > 4. On the other hand simple considerations show that for
all sufficiently large k there are lattice points ¢; € £, =1,...,k such
that for the lattice-polyhedron Cy = conv(cy,...,ct) holds

(*) V(Cy + B®) < V(Si + B®).

Obviously for sufficiently large k there are also Cj with (%), which are
no lattice-polyhedra. For k not too large, say k < 100, the difference
in (*) is so small that no general proof for (*) and all possible &k can be
expected. However, the following result solves the problem for all but
four k& > 56.

Theorem. For each k > 56, k # 57,58,63,64 there is a Cy with ().
Remarks. 1) For £ = 61,67,71,77,81, 83 the Cj with (%) are no lattice
polyhedra. It remains open if for these k there are lattice polyhedra Cyg
with (*).
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2) We conjecture that for k = 57,58,63 and 64 the sausage is
optimal. For the proof we need 11 lemmas. The theorem follows from
Lemmas 5,6,7,8,9 and 11.

2. Definitions. The lattice polyhedra

Definition 1. Let T7* be the basic regular tetrahedron of £ with edge-
length 2, i.e. the convex hull of 4 lattice-points of £L. For n € IN let
Tn = nT1 .
Definition 2. Let P; ;; be the lattice parallelohedron of £ with edges
of length 2 parallel to those of T, i.e. the convex hull of 8 lattice-points
of L. For 0 <a <b<e¢ a,bceNU{0} let P, denote the lattice
parallelohedron with edge-lengths 2a < 2b < 2¢, generated from Pj 1 1.
Remark. Fora =b=0,c=k—1weget Pygr_1 =St and Pyor—1+
+B3 is the sausage with k balls. Besides this case we will only consider
2<a<b<ec

The T;, and P, 3 . are the basic lattice polyhedra and we obtain
our general lattice polyhedra C} for the theorem by omitting suitable
- lattice-points, or, in other words, by suitable truncations of the T}, and
Py p.. We will have two types of truncations: 1) by regular simplices,
2) by nonregular simplices. We start with the easier case:

1) From a vertex of T, we cut off a copy of T, p < n. After
compactifying the truncated or snub tetrahedron again we denote it by
TP. If we do so with each vertex of T, we obtain

THm 0 <p<qg<r<s,

where 0 means no truncation; in particular T0:%0:0 = T,,. Further we
only consider n, p, ¢, r, s such that TP%™* % (. We can do the same
truncation with Pg p .t

Each P, 3 . with a > 1 has exactly 2 acute vertices of the same
type as T,. So from these 2 vertices we cut off a copy of T}, and T, with
0 < p < q < a After compactifying we obtain the truncated lattice

gyt . 0,0
parallelohedron Py .- For Py c we write Pq’b’ o

2) The second type of truncation we describe via T21 0.0.% which
has 3 vertices ¢y, ¢z, c3 of the same type as a regular tetrahedron and
3 vertices vy, vg, vz of same type, which we call obtuse vertices. So
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T, %% = conv(cs, v1,v,v3) with ||c;—vi]| = 2 (6 = 1,2,3), ||vi—v;|| =
=2and ||lei —¢j|| =4 (¢ # J). Now let T = conv(ey, 2, ¢3,v1,V2,v3)
and T* = conv(cy, g, ¢3,v2,v3). Then TUT* = T;’O’O’O and TNT* =
= conv(cy,v2,vs) = T'. Simple considerations show ||c; — v2|| = ||e1 —

—v3|| = 2v/3. So T' is a triangle with two edges of length 24/3 and one
edge length 2. Further T is a tetrahedron with two edges of length 21/3
and four edges of length 2.

The truncations of second type will be truncations of congruent
copies of T. For this we consider Pf,’,;’, L withae >2and 0 < p <
< ¢ < a. Then easy considerations show that Pf:g’ . has at least two
obtuse vertices as the vertices vy, vg, vz of T21 0,09 " At one or both
of these vertices we cut off one or two copies of T and compactify.
The new truncated polyhedron we denote by PP/ with ¢ € {1,2} and
0<p<g<a. "

If we write P? ,’f,’co = Pf”,f” .» We obtain the general truncated paral-
lelohedron :

4 Pp,q,togpsqgagbgc, t€40,1,2},
a,b,c

which will solve (*) for all but 14 values of k in the theorem.
This second type of truncation is only needed once for T2:%:¢¢ (namely

for k = 84), so we do not introduce an extra notation for this special
case.

3. Basic lemmas on lattice polyhedra

In this section we calculate V, F and M for the simplest polyhedra
in our proof.
Lemma 1. k(Pupc) = (a+ 1)+ D)(c+ 1), V(Pape) = 4V 2abe,"
F(Pyp,c) = 44/3(ab + ac + be), M(Pyp,.c) =2n(a+b+c).
Proof. Elementary calculation shows
V(Pi1,1) =4v2, F(Pr1,1) =4V3(1+1+1), M(P11,1) =2m(14+1+1).
From this one obtains the general case if one observes that P, j . can be
dissected into abc copies of Pj 1,1. The calculation of k(P, 3 ) is simp-
le. &
Lemma 2. k(T,)= ("F%), V(T.)=32%v2n, F(T,)=4v3n?,
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M(T,) = 11,4638...n k(T.) = ("3?), F(T}) = 2v/3n?, M(T},) = 3nn,
where T} 18 a facet of Tp,.

Proof. For k(T},,) see [7], for M(T}) and hence for M(T},) see [2] or [7].
The other results are simple.

In the following lemma we calculate V, F' and M for the non-
regular tetrahedron T' (described in Sect. 2) and for its largest facet

T

Lemma 3. V(T) = V(T1) = 2v2, F(T) = 33+ V11, M(T) =
=14,3441..., F(T") = 2/11, M(T') = 14,0244....

Proof. For the calculation of M(T') we introduce coordinates (only in
this lemma). Again T = conv(vy, vs,vs, C3).

Let v; = v/2(1,0,0), va = v/2(0,1,0), v3 = v/2(0,0,1), ¢z =
=v2(=1,-1,1). Then |jvi—vs|| = [[v1~vs]| = [[va—vs|| = |[va—cs]| =
=2 and ||v; — e3]| = ||ve — e3]| = 2V/3 as required.

Elementary calculation shows V(T) = V(T1) = 22, F(T) =
= 3v3++/11 and F(T") = 2v/11. (The surface area of T' is twice its 2-
dimensional volume). Further M(T") is the sum of the length of its three
edges multiplied with 7, hence M(T") = Z(2 + 2v/3) = 14,0244. ...

It remains to calculate M(T). For this we determine the affine
hulls of the 4 facets of T

Ey = aff(vy,vq,v3) = {(z,y,2)|lz +y + 2 = 2}

E, = aff(vy,vs,¢3) = {(z,9,2)|z —y + z = v/2}

E; = aff(vy,v3,¢3) = {(z,y,2)| —z +y + 2 = v/2}

Ey = aff(v1,v2,¢3) = {(2,y,2)] =@ —y — 32 = 2},
From this one gets the angles of the outer normals of the E;:

cos(En, E3) = cos(Ey, Es) = % = cosa
cos(Eq, E3) = —1 = cos f
cos(Eq, Ey) = —5/4/33 = cos

cos(Eq, E4) = cos(F3, Ey) = —3/v/33 =cosé

and hence (normalized to 27):a = 0,5148...,f = 1,0213...,y =
= 1,9106..., 6§ = 1,2310.... Now for M holds M(T) = ), a;l; (cf.
e.g. [7]), where the sum is taken over the 6 edges of T’; I; is the length
of the i-th edge and «; is the measure of the corresponding outer nor-
mals, normalized to 7 such that a3 = a; = %a, azg = B, ag = 7,
as = ag = 56. Then with lj534 = 2, Is = lg = 21/3 one obtains
M(T) =20+ f+7+2/36 =14,3441.... ¢
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4. The general case. Parallelohedra

Lemma 4. k (P2{!) = (a+ 1)+ 1)(c +1) — ("4%) — (4?) —t.

a,b,c
Proof. From the construction of PP ! and the additivity of the lattice
point number follows with the Lemmas 1 and 2:

E(P2E) = (a+ D0+ Det+1) = (F) + (7)) - (7F) + (32 —
=(a+ 1B+ 1)(c+1) - (37 + (11?) - .
Lemma 5. Let k = (a+1)(b+1)(c+1)— (7¥2) - (*3?) (p,q € {0,1,2})

and

(a)a>2,6>3,¢c>8 or
(b)a>2,b>4,c>5 or
(c)a>3,b>3,c>4.

Then (*) holds with Cy = PP}

a,b,c’
Proof. Let k be given as above. Then by Lemma 4 we can choose
Cy = sz,,bq,c'

Further V(S + B®) = 2n(k — 1457 =2n((a + 1)(b + 1)(c + 1) — 1)—

-2 ((p-:{;—Z) + (q-:-l))-2)) +%r. From Lemmasl and 2 we have
V(Ci+BY) = {V(Pasd) — V() — VT)} + {F(Pas)— F(T)+
FF(T) — F(T) + F(T)} + M(Pasc) - M(Ty) + M(T)) — M(T,)+

+M(T))} + 57 = {4v/2abc — 2v/2(p* + ¢*)} + {4V3(ab + ac + bc)—
—2v3(p* +¢%)} +{2n(a+b+¢)—(11,4638... - 37)(p+ 1)} + 2. Sowe
get V(Cy + B*) — V(Sk + B3) = abe(4v/2 — 21) + (ab + ac + be)(4y/3—
—2m)— 12V —m)(p* + ) — (33— 18 + )+ 6(p+q) = abe(a=+
+07 e =)+ {5B7(0° +¢%) - 3A(P* + %) +6(p+q)} = A+ B, where
B =2(2v3—m)=0,64502..., v = (7 —2v/2) : (2v/3 — 1) = 0,9710....

and § = 37 + %W—11,4638... =0,0553....
We show that A+ B < 0. In all cases (a), (b), (c) we have

a—1+b‘1+c“1§§<7,

hence A < 0. To show B <0 it suffices to consider only p: B, =
= %ﬂ’yp?’ — %ﬂpz + ép. Now By = 0, By = %ﬂ(%')f -1)+4+46 <0,
By =B(37—-2)+256<0. SoB<0,ie. A+ B <0and V(Ci+ B?) —
-V(S: + B%) <0.
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Lemma 6. Let k = 16(c + 1) — (°1?) - (q'?) —t, and
(a) ¢>4, t=0,p,q€{0,1,2,3} or
(b) ¢>5, t=1,p,g€{1,2} or
(c) c>6, t=1,pe{1,2},¢=3 or
(d) e>17, t=2,q9€{2,3}.
Then () holds with Cy = P{3..
Proof. Let k be given as above. Then by Lemma 4 we can choose
Cy = P?f"’;,,q,’ct. As in the proof of Lemma 5 we get (now with a = b = 3)
and with Lemma 3 for (x):
V(Cr +B¥) —V(Sk+B*)=A+B—t{V(T)+ F(T) - F(T'")+
+M(T)—M(T")—27} = A+B—#(3v/2+3v3—V1140,3197...—27) =

(4.1) = A+ B — Ct = A,where
A=98c(2+c ' —v)=3B(2c+3 —3cy)
B=gBy(p*+ &) — 58(0* + %)+ 6(p+q) = By + By,
C=314....

It remains to prove A < 0 in all cases. From the proof of Lemma 5 we
have BQ = 0, Bl = —0,162 .y B2 = —0734:4 “ ey B3 = %ﬂ(7—1)+36 =
=0,082..., hence B; < By < By = 0 < B;. To prove A < 0 it suffices
to prove (*) for the worst cases in (a), (b), (c), (d):
(a) e=4,t=0,p=q=3.

Then A =35(11 — 12y)+2B3 < 0.
(b)e=5,t=1,p=¢q=1

Then A = 36(13 — 15v) +2B; + C < 0.
(c)e=6,t=1,p=1,¢g=3.

Then A = 3ﬁ(15 — 18")’) +B1 +B3 + C <.
()e=T7,t=2,p=1,¢=3.

Then A = 3,3(17 — 21’7) + B1 -+ Bg + 2C < 0.
These inequalities prove Lemma 6. ¢
Lemma 7. The k in Lemmas 5 and 6 cover all k of the theorem ezcept
the fifteen cases k € {56,59,61,62,65,67,68,71,73,74,77,81,83,84}.
Proof. We start with Lemma 6 which covers nearly all of these k. We
write k = 16c+ 16 — R, R = (P';?‘) + (q§2) +t and calculate R for (a),
(b), (<), (d):
(a) t =0, p,q €{0,1,2,3} yield R =0,1,2,4,5,8,10,11, 14 and 20.
(b)t=1, p,q € {1,2} yield R = 3,6,9.
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(c)t=1, pe{l,2}, ¢ =3 yield R =12, 15.

(d)t=2,p=1, ¢ {2,3} yield R =7,13.

The special case p = ¢ = 3, i.e. R = 20, is only needed for ¢ = 4 and
yields & = 60.

The other cases in (a),(b),(c),(d) cover all residue classes modulo 16,
and from Lemma 6 follows with ¢ > 7 that all k¥ > 112 are covered.

For ¢ = 6 the only missing k are k = 112 — R, R = 7 and 13, hence
k = 105 and 99.

For ¢ = 5 the only missing k are k = 96 — R, R = 7,12,13, 15, hence
k = 81,83, 84, 89.

For ¢ = 4 the only missing k are k = 80 — R, R = 3,6,7,9,12,13, 15,
hence k = 65,67,68,71,73,74,77.

Three of these k are covered by Lemma 5, namely k = 3-5-7 = 105,
k=4-4.5-1=99,and k=3-5-6—1=89.

This proves Lemma. 7.

5. Truncated tetrahedra

In the preceeding section the theorem was proved for all but 14
k. In this section we prove it for eight of these k; seven in Lemma 8,
one in Lemma 9.

Lemma 8. Let k € {56,59,62,65,68,73,74}. Then there are positive
integers n,p,q,r,s with p < qg<r <s, r+s <n such that (*) holds
with Cy = THD"S,

Proof. From Lemma 2 and r 4+ s < n follows, if one observes that V is
simply additive and that F, M and k are additive:

V(Tpom®) = 3v/2(n® —p* — ¢* —1® — 5%)
F(TP0™) = 2v/3(2n? — p? — ¢ — r? — §?)
M(TP*™%) =11,4638...(n—p—q—r—8)+3m(p+ qg+r + )
(5.1) k(T = ("3°) - (737) = () - (F7) - (37).

Sok = g(n®—p*—¢* —r® —s%)+ 122 —p? — ¢® — 12 —s?) + L (Up—
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—p—¢q—r—3s)+1and
V(Cr+ B*) —V(Sy+ B?) =
= 12VE— )1 — = g 1 — )+ (V)2 — P =P —s?)
—(%ﬂ'—11,4638...)(n—p——q—r—3) =
=—0,10438...(n* —p*—¢® —r3 —5%)40,3225... (2n? —p* —* —r? —s?)
(5.2) —0,055...(n—p—q—r—s)=
We now consider the 7 cases separately by calculating & from (5.1) and

A from (5.2). We omit the easy calculations for A.
(1) k(T?*%3) = 56; A = —0,183... <0

(2) K(T)*%3) =59; A = —0,002... <0
(3) K(T2**°) =62; A = —0,610... <0
(4) R(T3*>*%) = 65; A = —0,428... <0
(5) K(T?**?) = 68; A =—1,036... <0
(6) K(Ty"**) = T4; A = —0,673... <0

(7) K(T?**%) =73; A = —0,356... <0

These seven inequalities prove Lemma 8.

Lemma 9. For k = 84 holds (*).

Proof. From (5.1) we get k(T >>*) = 85.

With Cgs = T71,2,3,4 we get from (5.2) with some calculation V(Css+
-I—BB) —V(Sss + B?)=-3,27...<0.

Now T;*** obviously has at least one (in fact six) obtuse vertex as
defined in Section 2. We cut off the irregular tetrahedron associated
to this vertex as described for Pf:f”ct, t = 1 and obtain a truncated
tetrahedron T71’2’3’4. Obviously k(T;’Q’SA) =84, so we write Cgq =
= T}%%* Asin (4.1) we now get C = 3,14...: V(Csq+ B%)—V(Sss —
—BB) = V(Cg5 + BS) - V(SBS + BB) + C =

=-3,27...43,14... < 0 which proves the lemma. ¢

6. Double tetrahedra

In this section we consider non-lattice packings for the last six
k. If we fit two copies of T, together at one facet, one obtains in an
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obvious way a double-tetrahedron (or bipyramide) D,, endowed with
the sphere-centres ¢; of the two copies of T},. D,, has exactly two acute
vertices of same type as T,,. Hence we can truncate D, by copies of T},
T; (p,g < n) in the same way as we did to obtain PP} and T2:9"™°,
We denote this truncated and compactified D,, by Dﬁ"”.’

Lemma 10. For p < g < n we have

V(DY) = 2v3(n® — p — ¢7)

F(DP) = 2/3(3n7 — 12 — )

M(D24) = (2M(T}) - 3x)n — (M(T}) = 3)(p + 1)

KDL = () + (3 - (F9) - (°22).

Proof. The results follow from Lemma 2, from the definition of DP9,
and from the fact that V is simply additive and that F, M and k are
additive. &

Lemma 11. Let k € {61,67,71,77,81,83}. Then there are positive
integers p < g < n, such that (x) holds with Cy = DP9,

Proof. From Lemma 10 we have

(6.1) kDR = ("7%)+("3%) - (3" - ("37) =
=52 -p* ~ )+ 3B —pP - D)+ Pn—Lp+1)+ L
So we get as in Lemma, 8
V(Ce+B*)-V(Sk+B*) = V(D29 + F(D2?)+ M(D??)—2r(k—1) =

= 32v2 —7)(2n® — p* — ) + (2v3 — m)(3n? — p* — ¢%) + 2M(T})-

=31 — 2m)n — (M(Ty) — 37 — 27)(p + ¢) = —0,104... (2n® — p® — ¢3)+

+0,3225...(3n* —p® —¢*) - 0,11...n — 0,055...(p+¢) = A

We now consider the six cases separately by calculating k from (6.1)
and A from the last equality. We omit the easy calculations for A.
(1) k(D¥*)=61, A=~1,40...<0

(2) k(D¥*)=67, A=-1,72...<0
(3) K(D*)=71, A=-2,95...<0
(4) K(D2*) =77, A=-3,27...<0
(5) kK(DP*)=81, A=-2,70...<0
(6) k(D}*)=83, A=-3,58...<0
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These six inequalities prove Lemma 12. {
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