Mathematica Pannonica
2/2 (1991), 3 - 23

SIMULTANEOUS EXTENSIONS OF
PROXIMITIES, SEMI-UNIFORMI-

TIES, CONTIGUITIES AND MERO-
TOPIES IIT

A. Csészar
Department of Analysis, E6tvés Lordnd University, H-1088 Bu-
dapest, Mizeum krt. 6 — 8, Hungary.

J. Deak

Mathematical Institute of the Hungarian Academy of Sciences, H-
1053 Budapest, Redltanoda u. 18 - 15, Hungary.

Received May 1990

AMS Subject Classification: 54 E 15; 54 E 05, 54 E 17

Keywords: (Riesz/Lodato) proximity, (Riesz/Lodato) merotopy, (Riesz/Lo-
dato) contiguity, Cauchy filter, extension.
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5. Extending a family of merotopies in a proximity
space

A. WITHOUT SEPARATION AXIOMS

5.1 A family of merotopies in a proximity space always has an exten-
sion; we are going to construct the coarsest one. In general, there is
no finest extension, not even for I = 0; this could be deduced from the
well-known fact that there may fail to exist a finest compatible uni-
formity in an Efremovich proximity space (see e.g. [5] Ch. I, Ex. 12.),
but we shall give a simpler example in 5.3.
Definition. A cover c in a proximity space (X, §) is a §-cover if A6B
implies the existence ofa C € c with ANC #0#ABNC. ¢

In other words, c is a §-cover iff for any A C X, A8St(4,c)".
Evidently, any cover refined by some §-cover is a §-cover.
Lemma. For a merotopy M on X, §(M) is coarser than é iff every
¢ € M is a §-cover iff M has a base consisting of §-covers.
Proof. 0.4 (1). ¢

5.2 Notation. For a C exp X, Let pa denote the partition of X
generated by a; this means that S € pa if S = [ f(A), where, for

Aca

each A4 € a, either f(A) = Aor f(A)=A". O
Lemma. If c and f are §-covers, and f is finite then c(N)f is a §-cover
as well.
Proof. By Axiom P5, we may assume when checking the condition in
Definition 5.1 that there are A', B' ¢ pf with A C A', B C B'. Asf
is a 6-cover, there is a D € f such that AUB Cc A'UB' C D. cis
also a §-cover, so we can pick a C € ¢ with ANC # 0 # BN C. Now
CnDecn)f,and AN(CND)#0#BN(CND).S

It is not superfluous to assume that f is finite:
Example. Let X =N, P = {2n : n € N}, @ = P". For disjoint
A,B C X, let AéB iff both A and B are infinite. Now

c:{{p,q}:pEP, qEQ’ P<q}U{P7Q}

and d defined analogously, with p > ¢ substituted for p < ¢, are é-
covers, but ¢(N)d is not a §-cover. &

5.3 Definition. For a family of merotopies in a proximity space, let
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M° be the merotopy for which the following covers form a Subspace B:

& ={C? = C; UXT:C; € ¢;} (i € I,c; € M)
CAB—{A" Br} (A5B) <>

Recall the covers ¢! were already introduced in §3. We shall write
M®(8,M;) = M° (s, {M :1 € I'}) when necessary, e.g. when it has to be
distinguished from M°(c, M;). M°(8) = M°(4,0).

Lemma. Let (X,6) be a prozimity space.
a) For A8B, €4,B 18 a 6-cover.

b) M°(6) is the coarsest merotopy compatzble with §.

c) For Xy C X, M° (5)|X =M° (6] Xo)-

d) A filter on X is M°(6)- Cauchy iff it is §-compressed.

Proof. a) If § # E C A then St(E,cq,8)" = B and E§B; the case 0)
# E C B is analogous; finally, if E ¢ A, E ¢ B then St(E,ca,B) =
Thus c4, p satisfies the condition mentioned after Definition 5.1.

b) By Lemmas 5.2 and 5.1, §(M°(§)) is coarser than 6. Conversely,
if ASB then St(4,ca5)NB =0, thus A§(M°(6))B. Hence M° (6) is
compatible.

If M is compatible and "ASB then there is a ¢ € M such that
5t(4,c) N B = 0. Now c refines c4 5, so ca,5 € M and M°(§) c M.

c) Clearly

c4,8|Xo = canx,,BnXo

with the rlght hand side understood in the fundamental set X,, and
ASB implies AN Xy86,B N Xo, while if AbyB then ASB (where &, =
= §|X,). |

d) Recall that a filter is Cauchy iff it intersects each elements of
a given subbase.

There is, in general, no finest compatible merotopy:
Example. Take (X, §), ¢ and d from Example 5.2. By Lemmas 5.1, 5.2
and 5.3 b), M°(6) U {c} and M°(§) U {d} are subbases for compat1ble
merotopies. A finest compatlble merotopy would have to contain c(N)d,
which is not a §-cover.

The induced closure is discrete in this example, thus any merotopy
compatible with § is Lodato. Consequently, there does not exist a finest
compatible Lodato (or Riesz) merotopy. -

5.4 Theorem. A family of merotopies in a prozimity space can always
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be extended; M° is the coarsest eztension.
Proof. 1° §(M°) is finer than §. This follows from M°(8) C M® and
Lemma 5.3 b)

2° §(M°) is coarser than §. It is enough to show that if § # F C I
is finite and ¢; € M; (i € F) then ¢ = ([ )c? is a §-cover, since cy4 p is

icF

a §-cover by Lemma 5.3 a), so Lemma 5.2 yields that the elements of
M? are §-covers, and then Lemma 5.1 can be applied.

Let A6B; a C € c with ANC # 0 #£ BNC is needed. By Axiom
P5, we may assume that there are A', B' € p{X; : i € F} such that
A C A', B C B'. Let us decompose the index set F' into four parts as
follows:

AUBCX; (iehR);
ACX;, BCX] (i€ F);
ACXI, BCcX; (i€ F)

AUBCXI (i€ Fy).

By the accordance, M;|4 U B is the same merotopy compatible with
§|A U B for each i € Fy, and ( [) )(c;|]AU B) belongs to it, so we can

choose C; € ¢; (i € Fy) such that
(1) AN N Ci#0#Bn () Ci.
i€F, i€Fo

Fix now points z and y from the left hand side, respectively the right
hand side of (1); in case Fy = @, assume only that ¢ € 4, y € B. For
i € Fy, pick C; € c; with z € C;; similarly, for i € Fp, let y € C; € ¢;.
For i € F;, take an arbitrary set C; € ¢;. With C = () C? € c we have

icF

cc ANC,ye BNnC. €

3° M0|X,' is finer than M;, since for any ¢; € M;, ¢?|X; = ¢;, and
cde MP.

4° M°|X; is coarser than M;. By Lemma 5.3 c), c4,B|X; € M°(&;),
so Lemma 5.3 b) implies that it belongs to M;. ¢}|X; € M; follows from
the accordance: Taking a ¢; € M; with ¢;|Xi; = ¢;|Xij, c; will refine

|XJ, since if C; € ¢; then C; N X;; = C; N X,J = C’° N X;; for some

C € ¢j, and C; C (CF N Xy;) U (X:i\Xy5) = O] N X,

5° M? is the coarsest extension. Let M be another extension.
ca,B € M by Lemma 5. 3 b). For ¢; € M;, take a ¢ € M with ¢; = c|Xj;
now c refines c}, thus ¢} € M, too. Hence M C M. ¢
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5.5 Theorem. A family of merotopies in a prozimity space has a
finest ezension iff c(N)c' is a §-cover whenever ¢ and ¢' are §-covers
with traces belonging to M; (i € I). If so then these covers make up the
finest ezxtension M.

Proof. Any cover belonginng to an extension is a §-cover with traces
in M;, so if the system of these covers is closed for the operation (N)
then they constitute a merotopy finer than each extension, and this
merotopy is an extension by Lemma 5.1 and Theorem 5.4.

Conversely, assume that there exists a finest extension M!. If
c € M! then c is a §-cover by Lemma 5.1; ¢|X; € M; is evident. If d
is a 6-cover and d|X; € M; (i € I) then M’ U {d} is a subbase for an
extension M. M|X; = M; is clear; M is compatible, as M° ¢ M and the
elements of M are §-covers; the last statement can be proved using the
argument from 2° of the proof of Theorem 5.4, with the changement
that d|4 U B has to be added to the covers ¢;]A U B (i € Fp), thus

d € M. Hence M? consists of the §-covers with traces in M;. O

5.8 For a non-empty family of merotopies in a proximity space, we
have

(1) M® = sup M°(6, {M;}) = sup{M°(6),sup M*°[i]},
iel el

where M°°[i] is the coarsest merotopy M on X for which M|X; = M;,
ie. {c]:¢; € M;}is a base for M*°[i]. (1) follows from 2.2 a), but can
also be easily seen from Definition 5.3. (Recall that for merotopies M[i]
(i€ I#0)on X, |J M[i] is a subbase for sup M[i].)
i€l iel

5.7 A part of Theorem 3.1 can be deduced in two steps from Theo-
rems 1.2 and 5.4: given a family of merotopies in a symmetric closure
space, extend first the induced proximities, and then take the mero-
topy M(8°, M;); this merotopy is the coarsest extension in (X,c): if M
_is another extension then §(M) is an extension of the proximities §(M;),
thus it is finer then §°; now

MO(8°, M;) € MP(6(M),M;) C M

(the first inclusion can be seen from Definition 5.3, the second one

follows from Theorem 5.4, since M is an extension in the proximity
space (X, 6§(M)). Therefore:
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(1) M®(c, M;) = M°(6%(c, 6(M5)), M;).

If we only want to prove the ezistence of an extension of a family
of merotopies in a closure space then §! can also be used instead on §°,
but M°(6*,M;) is in general different from M*(c, M;). Tt is, however,
true that M'(¢, M;) is the finest extension of the merotopies in (X, §*)
(because it is an extension in (X, ¢) finer than M°(6%, M;), so it induces
a proximitiy &' finer that §'; &' is an extension of the proximities §( M;),
so it is also coarser than §?; thus M'(c,M;) is indeed an extension in
(X,8%), and it is the finest one in a larger class of merotopies, namely
the extensions in (X, ¢)). Therefore:

(2) M (c, My) = M (8 (c, 6(M5)), My).

But there arises a difficulty if we try to deduce the part of Theorem 3.1
concerning finest extensions: it has to be shown somehow that Theorem
5.5 applies to 6.

5.8 Conversely, it is also possible to base the proof of Theorems 1.1
and 1.2 on Theorem 3.1 and Lemma 5.3:

Let a family of proximities be given in a symmetric closure space.
By Lemma 5.3 b) and c), {M°(&;) : i € I} is a family of merotopies
in (X,c); Theorem 3.1 furnishes the coarsest, respectively the finest
extension M® and M?' of this family. Now §(M°) and §(M") are clearly
extensions of the family of proximities. If é is an extension of the same
proximities then M®(6) is an extension of the merotopies M°(§;) (again
by Lemma 5.3 c)), thus M° ¢ M°(§) c M!, implying &§M°)D 6D
D 6(M?). So §(M?®) and §(M?) are coarsest, respectively finest. There-
fore we have:

(1) 8% (c, 8;) = 6(M*(c,M°(6;)))  (k=0,1).
(Compare these formulas with 4.1 (1).)

B. RIESZ MEROTOPIES IN A PROXIMITY SPACE

5.9 Theorem. A family of merolopies in a prozimity space has a Riesz
eztension iff the prozimily is Riesz and the trace filters are Cauchy; if
s0 then M® is the coarsest Riesz extension.

Proof. The conditions are clearly necessary. Conversely, if they are
satisfied then M® is Riesz (so it is the coarsest Riesz extension by The-
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orem 5.4):

Let z € X and c € B (see Definition 5.3) be fixed; we need a C € ¢
with z € intC. If ¢ = c4,B, ASB then = & ¢(4) or = ¢ ¢(B) (as 6 is
Riesz), thus z € int A", A" € c,orz €int B", B"€c. Hc=¢},i €I,
¢; € M; then there is'a C; € ¢; Ns;(z) (as the trace filters are Cauchy),
thus O € v(z),i.e. z €int C?, C? € c. &

5.10 Theorem. A family of merotopies in a prozimily space has a
finest Riesz extension iff § is Riesz, the trace filters are Cauchy, and
c(N)c' is a §-cover whenever c and ¢' are §-covers with traces belonging
to M; (i € I) such that intc and int ¢' are covers. If so then these covers
make up the finest Riesz eztension M}.
Proof. If M}, exists then M° is Riesz by Theorem 5.9. Now assuming
in the proof of Theorem 5.5 that intd is a cover, the extension M defined
there is Riesz, thus d € M. ¢

If the conditions of Theorem 5.9 are fullfilled and there exists a
finest extension M then so does M}, (take those ¢ € M! for which intc
is a cover), but not conversely, not even for I = 0:
Example. Take X = [~1,1] with the Euclidean proximity §. Let

c = {[_17'0]1 [071]} U {{ps q},: 0< —p < g < 1}7

and d defined analogously, with 0 < ¢ < —p < 1. ¢ and d are §-
covers, but ¢(N)d is not a é-cover, so (as in Example 5.3) there is no
finest compatible merotopy. But there exists a finest compatible Riesz
merotopy, namely the one for which all the open covers form a base. ¢

5.11 It can also occur that M' and M} both exist but differ: let § be
the indiscrete proximity on a three-point set. A better example, with
4 separated: L -

Example. Let X be infinite, z € X , and u a free ultrafilter on X. Take
the topology ¢ on X for which {{z}US:5 ¢ u} is the neighbourhood
filter of z, and the other points are isolated. Now with § = 8(c) =
= 8x(c), we have M'(§) = M*(c), and the cover ¢ consisting of all
the finite subsets of X belongs to M'(§)\M%(8). (c is a §-cover, so
¢ € M'(6) by Theorem 5.5. ¢ & My, because z ¢ Uintc). ¢

5.12 Similarly to 5.7 and 5.8, it is possible to deduce from each other
Theorem 1.5 and the part of Theorem 3.2 concerning coarsest exten-
sions. (Make use of Lemma 5.3 d).) In addition to the formulas given
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in 5.7 and 5.8, we have (for a family of merotopies, repsectively prox-
mities, in a weakly separated closure space with Cauchy, respectively
compressed trace filters):

(1) ML (e, M;) = Mk (8 (e, (M), My);
(2) 8% (c, 8;) = 6(Mp(c, M°(5:))).

C. LODATO MEROTOPIES IN A PROXIMITY SPACE

5.13 If a family of merotopies in a proximity sapce has a Lodato exten-
sion then the proximity and the merotopies are Lodato, the trace filters
are Cauchy, and 3.6 (1) holds, since an extension in (X, §) is necessarily
an extension in (X, c). These conditions are not sufficient, not even for
a single open subset:
Example. Take X,X; and M; from Example 3.8, and let § be the
Euclidean proximity on X. Now M; and § are Lodato, M, is compatible
with 6| X7, the trace filters are Cauchy, 3.6 (1) is evident (cf. Corollary
3.7), both (M) and I'(M;) have Lodato extensions, but M; does not
have one:

Assume indirectly that N is a Lodato extension. Then ¢;(1)° € N,
and so d = intc;(1)° € N; now d|X7] conmsists of singletons, implying
that §|X7 is discrete, a contradiction. ¢

5.14 Definition. For a family of Lodato merotopies in a Lodato prox-
imity space with Cauchy trace filters, let {intc : ¢ € B} be a subbase
for M} (with B from Definition 5.3). &

In other words, {intc : c € M’} is a base for M}. (int c is a cover
by Theorem 5.9.) intc AB = cc( 4),¢(B)» so the following covers form a

subbase By, for M}:
(1) €A,B (AEB, A and B are c-closed);
(2) int c? (i €I, ¢; € M;, ¢; is ¢;-open).

The covers in this subbase are clearly open in c¢. M}, is finer than the
compatible merotopy M®. On the other hand, the c-openess of the
covers implies that ¢(M},) is coarser than c; therefore:

Lemma. Under the assumptions of the deﬁmt:on, ML is a Lodato
merotopy compatzble with c. ¢
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M} is not necessanly compatible with é, see Example 5.13. We
shall also see that M} | X; can be different from M; (see Examples 5.19).

5.15 Lemma. If § is a Lodato prozimity then M®(8) = M2 (6) is the
coarsest Lodato merotopy compatible with 6.

Proof. M® C M‘}J always holds, while the converse follows for I = {)
from By, C B. Now Lemma 5.14 and Theorem 5.4 can be applied. ¢

5.16 Lemma. Under the assumptions of Definition 5.14, MOL 18 the
coarsest one among those Lodato merotopies M compatible with ¢ that
induce a prozimily finer than 8, and for which M|X; is finer than M;
(zeI.

Proof. §(M}) is finer than §, because M9 is finer than MY (5), and the
latter is compatible by Lemma 5.15. M%|X; > M;, because if ci € M;
is c;-open then ¢; = (int ¢f)|X;. M is Lodato and ¢(M%) = ¢ (Lemma
5.14).

Let M be a merotopy satisfying the conditions of the lemma; we
have to show that BL Cc M.

If ASB then A6(M)B, so c4 B € M°(§(M)) C M by Theorem 5.4.
M[X; O M; implies that for any c;-open cover ¢; € M; thereis a c € M
with ¢|X; = ¢;;intc € M (as M i is Lodato, and it is compatible Wlth c);
now int c refines intc?, thus int ¢! € M, too. ¢

It has to be assumed in the lemma that M is compatible with ¢:’
Example. On X = N2, let A§B iff their projections on the first
coordinate are disjoint. Take the discrete merotopy My on X, =Nx
x{1}, and let M be the merotopy for which M°(§') U {3} constitutes
a subbase, where §' is the discrete proximity on X, and ¢y consists
of the singletons in X;. Now M is not compatlble with ¢, but the
other conditions of the theorem are satisfied. M} is not coarser than
M, because M|X{ is contigual, while (int ¢0)| X7 € M} |XJ cannot be
reﬁned by a finite cover. ¢

5.17 Lemma. A family of merotopies in a prozimily space has a
Lodato eztension iff
(i) the prozimity and the merotopies are Lodato;

(i) () )inte] is a 6-cover whenever § # F C I is finite, and
ieF

¢ € M; (i € F);
(i) (int c?)|X; € M (1,5 € I,c; € My).
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If these conditions are satisfied then MY is the coarsest Lodato ezten-
sion.
Remarks. a) It is not necessary to assume that the trace filters are
Cauchy, since this follows from (ii). (Recall that the trace filters are
Cauchy iff each int c{ is a cover.)

b) It is enough to know (ii) and (iii) for elements of bases for M;,
e.g. for open covers.

c) The cover in (ii) can also be written as int ( [ )el.

i€F

Proof. 1° Necessity. It was already mentioned in 5.13 that (i) and (iii)
are necessary. If there is a Lodato extension then M} is an extension
by Lemma 5.16. The covers in (ii) belong to M(},, so Lemma 5.1 implies
that they are -covers.

2° Sufficiency. The assumptions of Definition 5.14 are fullfilled,
see Remark a). §(M%) C 6§ and M}|X; D M; by Lemma 5.16. Con-
versely, 6(M?) D § follows from Lemma 5.1, since the elements of the
base generated by By, are §-covers by (ii) and Lemmas 5.3 a) and 5.2;
MS |X; C M; follows from (jii) and Lemma 5.2 b) and c). Thus M} is
an extension, Lodato by Lemma 5.14. {
Corollary. A single Lodato merotopy Mg in a Lodato prozimily space
has a Lodato eztension iff intc) is a §-cover for each (co-open) ¢ € My;
if so then MUL is the coarsest extension. ¢

It can occur that a single merotopy in a proximity space has a
Lodato extension, but M} # M® (we have seen in Lemma 5.15 that this
is impossible for I = 0):
Example. Let X =R x [0, —[, with the Euclidean proximity §, Xo =
Rx]0,—[, Mg the Euclidean merotopy on Xo. Now My has a Lodato
extension (the Euclidean merotopy on X, which is in fact equal to
M%), but M} # M°, since M®|XT is contigual, while M} |X7 is not
contigual. ¢

5.18 int ¢} clearly satisfies the condition in Definition 5.1 for A,BC
C X, so, in view of Axiom P5, it is enough to assume this condition
in Corollary 5.17 for A C X and for B satisfying B C X, or B C Xj.
Thus the assumption in Corollary 5.17 splits into two parts:

(a) if A,B C Xy, A6B and ¢o € Mo (is open) then there are
C, € ¢y, ¢ € A and y € B such that Cy €'s0(z) N so(¥);

(b)if A C X7, B C Xy, ASB and ¢y € My (is open) then there
are C, € ¢y and z € A such that Cy € so(z) and CoN B # 0.
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Either of these conditions implies that the trace filters are Cauchy.
(For z € ¢(Xo)\Xo, take A = {z} and either B = {z} or B = X,.) The
next examples show that neither is sufficient in itself for the existence
of a Lodato extension.

Examples. a) Modify Example 5.13, replacing each c;(¢) by
{Cl U D1 : 01, D1 € C1(€), 01 N .D1 75 @}

Now (b) holds, but there is no Lodato extension, for the same reason
as in 5.13.

b) Let X =N x [0,—[, Xo = Nx]0,—[. Take the Euclidean
proximity § on X, and let the following covers (n € N) constitute a
base for My on Xj:

{k}Xly,y+ 11k €N,y > 0} U {{k}x]0, mrkis[: k €N},

Now (a) holds, (M) and I'(M,) have Lodato extensions in (X, )
(observe that U(Mo) = U(No) and I'(My) = I'(Ny), where Ng is the
Euclidean merotopy on X, ), but My does not have one, since (b) fails
for A= X§ and B = {(k,1/k) : k e N}. {

5.19 Condition (iii) is not superfluous in Lemma 5.17:

Examples. a) Let X, Xy, X;,Mp,M; be as in Example 3.8, with the
following modification: replace c; () by

di(e) = ca(e) U {({1/m,1/n}x]0,e[) N X1 : m,n €N, m,n > 1/e}.

Let é be the Euclidean proximity on X. 5.17 (i) is clearly staisfied.

int dy (€)° is a §-cover (the modification was needed, because oth-
erwise neither 5.18 (a) nor 5.18 (b) would hold). For ¢y € My, int cJ is
evidently a §-cover, since X is closed. M is contigual, so int c) is finite
for ¢y taken from a base. Hence (ii) holds by Lemma 5.2. The induced
semi-uniformities as well as the induced contiguities have an extension
(similarly to 3.8, the Euclidean uniformity, respectively the Euclidean
contiguity). But My and M; do not have a Lodato extension, not even
in (X, c), since (iii) is not satisfied for i =1, j =0, ¢; = d; (1).

b) There is a much simpler example if we do not insist that the
induced semi-uniformities should have a Lodato extension (essentially
the same as Example 2.10):

Let X, X,,6,M; be as in Example 5.17, X; = X7, I'y the Eu-
clidean contiguity on X;, M; = M*(T;) (cf. 4.1). $
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5.20 Condition (ii) of Lemma 5.17 cannot be replaced by the weaker
assumption that each intc{ is a §-cover:

Example. Let T = {— 1/'n. 1/n:neN)L X =T xR,X, = Tx]«—-,O[,
X; = T'x]0,—[. Let § be the Euclidean proximity on X, and {c;(¢) :
e > 0} a base for M; on X;, where -

cl(e) {(P,P+€[X]q,q+€[) NX;:(p€R,¢g>0)or
(0 &lp,p+ e[, 4 =0)} U {{-1/k, 1/n}x]0,e[: k> n > 1/e},
co(e) = {(]P1P+€[ x]g—e,q)NXo:(p€ER,qg<0)or
(0 ¢lp,p+el,g=0)}U{{-1/k,1/n}x] —€,0[:n >k > 1/e},

(i) and (iii) are fullfilled, the latter because, for i # 7, intc?|X; = {X;}.
The weaker form of (ii) holds, but not (ii) itself, since int cy(1)%(N)
(N)int ¢;(1)° is not a §-cover: consider A = {1/n : n € N} x {0} and
B={-1/n:n N} x {0}. &

5.21 In the extension problems we have discussed up to now, a family
of structures could be extended iff each subfamily of cardinality < 2 had
an extension. We do not know whether this holds for Lodato extensions
of merotopies in a proximity space.

5.22 Theorem. A family of Lodato merotopies given on closed subsets
in o Lodato prozimity space has Lodato eztensions; M° = M} is the
coarsest one.
Proof. M is the coarsest extension by Theorem 5.4. M’ is Lodato,
since c? is refined by (int; ¢;)® € M°, which is an open cover, and c4 p
is refined by the open cover c.(4)¢B) € M?, thus M? has a subbase
consisting of open covers. M® = M is also clear from this reasoning. ¢
If the subsets are not closed then it is possible that there exist
. Lodato extensions, but M}, (by Lemma 5.16, the coarsest one) is ‘strictly
finer than M%:
Example. Take § = {1/n:n € N}, X = §x({0}US), X; = S?. Let §
be the Euclidean proximity on X, and {f;(k) : £ € N} a subbase for M,
on X, with fl(k) from Example 4.5. Now M7 is a Lodato extension,
and 1ntf1(1)° € M \Mo

5.28 Lemma. If a family of merotopies in a prozimily space has a
Lodato eztension, and the open §-covers c for which c|X; € M; (i € I)
form a base for a merotopy M}, then ‘M}J 1s the finest Lodato ezten-
sion. $
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It follows from this lemma and Theorem 5.10 that if a family of
merotopies has a Lodato extension as well as a finest Riesz extension
then it has a finest Lodato extension, too; the converse is not true:
Example. With X, P, Q from Example 5.2, let ¢ denote the topological
sum of the cofinite topologies on P and Q. Define A§B iff either c(4)n
Ne(B) # 0, or AN P and B N Q are infinite, or A N Q and BN P are
infinite. § is a Lodato proximity compatible with ¢. An open cover
c is a é-cover iff there is a C € ¢ with C" finite; if the open covers
¢ and d have this property then so has ¢(N)d, thus the open é-covers
constitute a base for a merotopy, which is, according to the lemma, the
finest compatible Lodato merotopy.

There is, however, no finest compatible Riesz merotopy, because,
by Theorem 5.10, such a merotopy would contain ¢ and d from Example
5.2; but ¢(N)d is clearly not a é-cover, a contradiction. O
Problem. Assume that there exists a finest Lodato extension; is it
necessarily of the form given in Lemma? (The- answer is yes if each X;
is closed: repeat the reasoning from the second paragraph of the proof
of Theorem 5.5, considering only c-open, respectively c;-open covers; if
¢; is ¢;-open and X; is closed then ¢} is c-open.)

5.24 We need a measurable cardinal in the construction of a,,proximify
space in which the finest compatible Lodato and Riesz merotopies exist
but differ (compare with the very simple examples in 5.11): = -
Example. Let Y be the set of the rationals, Z a set of measurable
cardinality, Y NZ = 0, X = Y U Z, u a free ultrafilter on Z such
that Nv € u whenever v C u is countable (see e.g. [4] 12.2). Let ¢
denote the sum of the Euclidean topology on Y and the discrete one
on Z. Define A§B iff either c(4) N ¢(B) # 0, or ANY is infinite and
BNZ €u,or BNY is infinite and AN Z € u. § is a Lodato proximity
compatible with ¢. Let ¢ and d be é-covers for which int ¢ and int d are
covers. Evidently, int(c(N)d) is also a cover. We are going to show that
¢(N)d is a §-cover; then Theorem 5.10 yields that there exists the finest
compatible Riesz merotopy M%(6), implying the existence of the finest
compatible Lodato merotopy M (§). : o
Given near sets A and B, we need C € c and D € d such that -

(1) ANCND#0#BnCND.

If there is a point z € ¢(4) N ¢(B) then, as int ¢ and int d are covers, C
and D can be chosen such that z € int C' Nint D, and then (1) clearly
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holds. So we may assume without loss of generality that A C Y and
B C Z, A is infinite and B € u.

We shall define by recursion sets 4, C Ay = A, B, C By = B
satisfying A,,6B,,, and points z, € A (n € N). If A, and B, are
defined then consider the sets B,\St(z,c) for ¢ € A,. If all these sets
belonged to u then we would have E = B,\St(4n,c) € u; now A,4E,
contradicting the assumption that c is a é-cover. Hence there is an
2, € A, such that Z N St(zn,c) € u; define now A1 = An\{zn}
and B,y = B, N St(zn,¢); clearly, Apy16Bry1, and the points z,, are
different. Take H = {z,, : n € N} and K = ()| Bj; then HSK, and

neN
(2) St(y,c) D K (y € H).

d being a §-cover, there is a D € d such that DN H # 0 # DN K.
Taking points y € DN H and z € D N K, (2) implies that y,z € C for
some C € c,i.e. (1) holds indeed.

Consider the cover

e={Y}Uu{{y}uZ:yeY}.

inte = {Y, Z} is a cover, and e is a §-cover, thus e € M%(6) by Theorem
5.10. But e ¢ ML (6), since inteisnot a é-cover. Hence ME(8) #
£ M1 (6). ¢

Problem. Is there a similar example in ZFC, or at least in a consistent
model of ZFC? (Perhaps there exists such an example only with I # 0.)

5.25 It follows easily from the definition that under the conditions of
Definition 5.14,

(1) Mz = sup M%,(6,{M:})

holds for I # @. (1) cannot be deduced from 2.2 a) 1° in such generality,
since it holds only for p = ¢ = 1 that MOL is always a pg-overextension
(see the last paragraph in 5.14), but it is not the coarsest one (Exam-
ple 5.16). We can, however, generalize 2.2 a) 1° to meet the present
situation (with p = ¢ = 1; cf. Lemma 5.16): let us require in the defini-
tion of a pg-overextension that d should satisfy a property inherited by
suprema of non-empty collections. (The C-structure on X is allowed
to figure in the property.)

5.28 Statements similar to those in 5.7 and 5.8 hold for Lodato exten-
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sions, too. It should be mentioned that extending a family of merotopies
in a closure space in two steps is now even more problematic (because
Lodato merotopies behave badly in a proximity space), e.g. Corollary
3.8 can be obtained this way only for closed subsets, and not for open
ones.

6. Extending a family of contiguities in a proximity
space -

A. WITHOUT SEPARATION AXIOMS

6.1 A family of contiguities in a proximity space always has extensions;
this will be deduced from the corresponding result for merotopies, using
the method of § 4. We shall utilize the facts mentioned in the second
paragraph of 4.1. Only the coarsest extension can be obtained this
way, although there exists a finest one, too; its existence can be proved
easily: take the supremum I' of all the extensions (i.e. their union is a
subbase for I'); now I' is compatible by the lemma, below, and I'| X; = T;
is evident. This proof is, however, superfluous, since we shall construct
the finest extension. S v
Lemma. For a contiguity T on X, 6(T') is coarser than § iff every
fcT is a §-cover iff T has a subbase consisting of §-covers.

Proof. The statement on subbases follows from Lemma 52.

6.2 Definition. For a family of contiguities in a proximity space,
a) Let I'° be the contiguity for which the following covers form a
subbase: f{ (i € I, f; € T;) and ca,B (A6B). B
b) Let I'' consist of those finite é-covers f for which flX; € T;
(iel).$ o
Clearly, I'® = I'(M°(§, M°(T';))). |
Theorem. A family of contiguities in a prozimily space always has
eztensions. I'’ is the coarsest, and T the finest eztension.
Remark. A direct proof not making use of Theorem 5.4 would be
much simpler than the proof of that theorem, since, the covers béihg

finite, the argument in 5.4 2° can be replaced by applying Lemma 5.2
(or 6.1). :
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Proof. TI° is an extension by Theorem 5.4. If T' is another exten-
sion then MOSI‘) is an extension of the merotopies M°(I';), hence M°(4,
M®(T;)) € M%(T), thus T'° C T. If f € T then it satisfies the conditions
in Part b) of the definition, so f € I'!, and therefore I' C I'!; in par-
ticular, I° C I'!, implying that ¢(I') is finer than c and T; C T''|X;.
Conversely, ¢(I'!) is coarser than ¢ by Lemma 6.1, and rx; cIyis
evident from the definition. Thus I'! is indeed the finest extension. ¢

6.3 I'° and I'* are different in general: let |X| = 3, I = 0 and § the
indiscrete proximity on X. I' and I'! can, in fact, coincide only under
very strong assumptions: I'°(§) = I''(§) iff each §-compressed filter is
the intersection of at most two ultrafilters; this will be proved in [3],
along with the following results: all the §-covers of cardinality < 3 form
a subbase for I'}(§); if proximities 6] ( € I # @) are given on the same
set then

sup I''(6[i]) = I'* (sup 8[1]).
il i€l

6.4 The analogue for contiguities of 5.6 (1) and a similar formula for
I follow easily from 2.2 a).

Statements corresponding to 5.7 and 5.8 are also valid; things are
simplified by the existence of a finest extension. Only one point is worth
going into: the formulas

(1) 8(c,b:) = 8(T*(e,T(8)))  (k=0,1)

remain valid if we substitute T''(§;) for I'°(8;). The formulas make
sense, because the contiguities I'"(§;) are accordant. It follows from
(1) that §(T*(c,T'(6;))) is finer than §(c, §;), so they are the same, as
the latter is the finest extension, and the former is an extension, too.
Concerning the case k = 0, observe that I'(c,I'(6;)) C T (6%(c, 6:)),
since (see Definition 4.1 a)) ¢,,B belongs to any contiguity compatible
with ¢, while if f; is a finite ;-cover then fg is a finite §°(c, 8;)-cover;
hence

§(T° (¢, T2 (65))) D 6%(c, 6;) = 6(T°(e, T°(6:))) D 8(T°(e, T (6:)))-

B. RIESZ CONTIGUITIES IN A PROXIMITY SPACE

6.5 Definition. For a family of contiguities in a proximity space, let
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't ={fe I :intfis a cover of X}. ¢

(The same definition was used in a closure space, with a different
meaning of I'!, of course, see 4.2.)
Theorem. A family of contiguities in a prozimity space has a Riesz
eztension iff the prozimity is Riesz and the trace filters are Cauchy; if
so then I'® is the coarsest and '}, the finest Riesz extension.
Proof. In view of Theorem 5.9, it is enough to show that '} is the
finest Riesz extension. If I is a Riesz extension then I' C T'! by Theorem
6.2, so I' C 'y, follows from the definition. In particular, I'° C T};-on
the other hand, I'y; C I'! is evident, thus I'}; is an extension by Theorem
6.2. T'} is clearly Riesz, and we have already seen that it is finer than
any other Riesz extension. {

- .I'%, T% and I can be different:

Example Let 6 be the Euclidean proximity on X = R\{0}. Denote

by Q and D the set of the rationals, respectively dyadic rationals, in
X. Now

f={Q,D",DuQ"} € T*(8)\Tx(8),
f = {] «<,0[,]0,— [} Uf e TL(O\T(8). ¢

6.6 It follows from 2.2 a) 3° and 4° that, under the assumptions of
Theorem 6.5, ’

(1) Tk = inf Th(5,{T+}) = inf {Th(5), inf T[]},

where I''![i] is the finest contiguity (= the finest Riesz contiguity) I' on
X for which I'|X; = T}, i.e. I'*![i] consists of all those finite covers f of
X for which fIX € T';. (I'™[i] is Riesz because int'4 = (A\X;)Vint; (AN
NX;), where int' is to be understood in ¢(I'**[1]).) (1) is in fact obtained
with inf taken in the category of Riesz contiguities, but this coincides
with inf in the category of contiguities, assuming that there exists a
coarsest one among the closures induced by the contiguities considered.
(And observe that §(I'''[i]) C §, implying that ¢(I''![4]) is finer than
¢ = o(T(6)).)

6.7 The finest Riesz extension of a family of contiguities in a closure
space can be obtained in two steps, cf. 5.12 (1) (but now the existence
of a finest extension can in fact be proved in two steps):

O © Th(e,I:) = Th(8k4(c, 6(T)),Ts).
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Conversely, if we have a family of proximities in a weakly separated
closure space such that the trace filters are compressed then it follows
from 5.12 (2) that

(2) 8g(c,6:) = 6(Tx(e, T°(8:)))-

If we try to replace here T'%(§;) by I'h(8:) (cf. 6.4) then the trace
filters are not necessarily Cauchy, thus I'k(c, [,(6;)) is not a Riesz ex-
tension (in fact, not an extension at all, see the example below); all
the same, (2) remains valid even with I'*(§;), since I';(c,['°(4;)) and
I'L(c,T(&;)) induce the same proximity (using Definition 4.2, check
that if f € TL(c,I'}(6;)) and |f| = 2 then f € Tk(c,I'°(4;))); and
Th(e, TH(6) = Th(e, T3 (5)):

Example. Let X =N, X, = {1}", S € v(1) iff 1 € S and 57 is finite,
and let the other points be isolated in ¢. For disjoint 4, B C X, define
AbyB iff A and B are infinite. Take disjoint infinite sets A,B,C C
C X,. Now fy = {Xo\4, Xo\B, Xo\C} € T)(60), so the §g-compressed
filter so(1) is not T'h(8o)-Cauchy, because so(1) N fo = @. Moreover,
T'L(c,T}(80)) is not an extension, since if f belongs to it then 1 € Uintf
implies that f| X, contains a cofinite set, i.e. f|Xo # fo. ¢

C. LODATO CONTIGUITIES IN A PROXIMITY SPACE

6.8 Definition. For a family of contiguities in a proximity space,

a) Let T} = {fe I :intf € T'}.

b) Assuming that the proximity and the contiguities are Lodato
and the trace filters are Cauchy, let '} be the contiguity on X for which
{intf:f €'’} is a base. ¢

Observe that T'Y = T'(MZ(6,M°(T;))). A subbase for '} can be
described similarly to 5.14 (1) — (2). If c is a topology then the c-open
covers in I'! form a base for I'.

Lemma. A family of contiguities in a prozimily space has a Lodato
eztension iff

(i) the prozimity and the contiguities are Lodato;

(1) intfg is a §-cover (i € I,f; € Iy);

(iii) (intf})|X; € T; (4,5 € I,f; € Ty).

If these conditions are satisfied then T'Y is the coarsest and T'i the
finest eztension.
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Proof. It follows from Lemmas 5.2, 5.17 and 5.16 that the conditions
are necessary and sufficient, and I'} is the coarsest extension.

Assume that I' is a Lodato extension, and f € . Then intf € T,
so int f € I'" by Theorem 6.2, therefore f € I}, ie. T C T'i. This
means that if '} is a Lodato extension then it can only be the finest
one. Taking I' =T'%, we have '} C T}, and I'l C T by the definition;
hence I}, is an extension, and, being compatible, it is clearly Lodato. ¢

- Condition (iii) is not superfluous: take the contiguities from Ex-

ample 4.5, with the Euclidean proximity on X. Condition (ii) can be,
similarly to 5.18 (a) and (b), decomposed into two parts, neither of
which is sufficient in itself (although either implies that the trace filters
are Cauchy, see in 5.18):
Examples. a) Taking X, X; from Example 4.5, with the Euclidean
proximity on X, we modify I'; by interchanging the role of the coordi-
nates, and adding one more member to the covers in the subbase: let
{f1(k) : k € N} be a subbase for I';, where

fi(k) = {{(1/m,1/n) : m,n > k,n # p(mod3)} : p = 0,1,2}U
u{{(1/m,1/n):n > k}:m<k}u{{(1/m,1/n): m>k}:n < k}U
u{{(1/m,1/n)} : m,n < kE} U {{(1/m,1/n):n>m > k}}.

Now the last member in the definition of f;(k) guarantees that the
condition analogous to 5.18 (a) is satisfied. But (b) fails: take c¢; =
=f1(1), A= X and B = {(1/n,1/n) : n € N}.

b) Let X = (R\{0}) xR, X, = (R\{0})?, § the Euclidean prox-
imity on X, §; =] «, 0[, S2 =]0, — |,

eo = {Xo\(Su X Sy) ru=1,2, v=1,2},

and I'°(6p) U {eo} a subbase for T'. I'®(6y) is compatible and Lodato
(Lemma 5.15), and e is a co-open 6y-cover, so Ty is a compatible Lodato
contiguity by Lemma 6.1. Now eq, 5y x {0} and S, x {0} show that (a)
is not fullfilled. But (b) holds:

We may assume (by Axiom P5, and for reasons of symmetry) that
A C 53 x{0} and B C (S1US;)xS;. Takef, € I'%(6) such that fo(N)eg
refines the prescribed ¢y € T'y. As I'%(§) is a Lodato extension of (),
(b) holds with f, instead of ¢, thus we can pick Fy € f, and z € A such
that Fy € so(z) and FyNB # 0. Now with Cy = Fon(Xo\S2) € fo(N)ey
we have Cy € so(z) and Co N B # @ (since B C (Xo\Sf)); hence (b)
holds with fy(N)ey, therefore also with ¢q. ¢
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These examples could also have been used in 5.18, had we not
made in § 5C a point of requiring that the induced contiguities and
semi-uniformities should have Lodato extensions whenever possible.
Corollary. A family of contiguities in a Lodato prozimity space has a
Lodato eztension iff {I';,T';} has a Lodato eztension for anyi,j € I. {

Compare this corollary with 5.21.

8.9 Corollary. A family of contiguities in a Lodaio prozimily space
has a Lodato exiension iff it has a Lodato eztension in (X,c) and each
{T';} has a Lodato eztension in (X,§).

Proof. Lemma 6.8 and Theorem 4.3. ¢

6.10 Lemma. Under the assumptions of Definition 6.8 b), a family of
contiguities in a prozimity space has a Lodato eztension iff I C I'}.
Proof. The necessity follows from the last statement in Lemma 6.8.
Conversely, assume that I'Y C I'}. It is clear from the definitions that
I';, C I'Y and T'L C I'!, hence I'} is an extension by Theorem 6.2; T'}
is Lodato, because c is a topology. ¢

6.11 Theorem. A family of Lodato contiguities given on closed subsets
in a Lodato prozimity space has Lodato eztensions; T'° = TI'} is the
coarsest and '} the finest Lodato eztension.
Proof. Theorem 5.22 and Lemma 6.8.

I'® and I'} can be different if the subsets are not closed: take X,
X; and T'; from Example 4.5, with the Euclidean proximity of X (cf.
Example 5.22). (I'°(8) =)T'%(8) # I'};(6) for & from Example 5.2: if 4,
B, C C X are disjoint infinite sets then f = {A", B", C"} is clearly a
finite open é-cover, so f € I'L(§); but f & T'°(6), since each cover cp g
(P8Q), and so each element of I'°(§), contains at least one cofinite set.
(The result cited in 6.3 could also be used, since c is discrete, and so
I'L(8) = T'(6).) In Example 6.5, f € TL(6)\I'}(6); TL(6) and I''(6)

were different in the same example.
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