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Abstract:
Some known results on fully prime rings and almost fully prime rings are ex-
tended to the category of rings with involution. In particular, various properties
of fully *-prime involution rings are presented, a classification of fully *-prime
involution rings which satisfy a polynomial identity is given, and almost fully
*-prime involution rings are characterized. The structure of the additive groups
of these involution rings is also studied.

1. Introduction

Throughout the present paper all rings are associative and do not
necessarily have identity. A ring with involution, or involution ring, is a
ring with an additional unary operation * (called involution) such that,
for all a, b ∈ R, (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a. Let us
recall that an ideal (biideal, subring, subfield) I of an involution ring R is
called a *-ideal (*-biideal, *-subring, *-subfield) of R if I is closed under
involution, that is, I∗ = {a∗ ∈ R : a ∈ I} ⊆ I. As usual, we say that
involution rings R and T are *-isomorphic (shortly written as R ∼=∗ T )
if there exists a ring isomorphism ϕ : R → T such that ϕ (r∗) = ϕ (r)∗

for each r ∈ R.
Rings in which every (nonzero) proper ideal satisfies a given prop-

erty have been studied by several authors. For instance, in [12], Hirano
studied rings in which every (nonzero) proper ideal I is completely prime
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(that is, for any a, b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I). Blair
and Tsutsui, in [4], studied fully prime rings (rings in which every proper
ideal is prime). In [17], Tsutsui considered almost fully prime rings (rings
in which every nonzero proper ideal is prime).

Let us recall that a *-ideal P of an involution ring R is said to be
a *-prime (*-semiprime) *-ideal of R if IJ ⊆ P (I2 ⊆ P ) implies that
I ⊆ P or J ⊆ P (I ⊆ P ), where I and J are *-ideals of R. These notions
were studied in [2], where the connection between the prime ideals and
the *-prime *-ideals of an involution ring was illustrated and several
characterizations presented. In particular, it was shown that a *-ideal P
of R is *-prime if, for a, b ∈ R, aRb ⊆ P implies that a ∈ P or b ∈ P .
A *-ideal P of an involution ring R is completely *-prime if ab ∈ P and
ab∗ ∈ P implies that a ∈ P or b ∈ P (see [1]and [15]). Clearly, every
completely *-prime *-ideal is a *-prime *-ideal.

In [17], Tsutsui studied fully *-prime involution rings, that is,
involution rings in which every proper *-ideal is *-prime. He character-
ized these rings and considered, in particular, those which are right fully
bounded right Noetherian. In this note, we continue to study fully *-
prime involution rings. We also consider, in particular, involution rings
in which every *-ideal is completely *-prime. These are characterized in
Proposition 2.4. Examples of fully *-prime involution rings which are
not fully prime are provided in Proposition 2.6. Some known results on
fully prime rings are studied in the category of rings with involution.
For example, the structure of fully *-prime involution rings which satisfy
a polynomial identity is determined in Corollary 2.10. Involution rings
in which every nonzero proper *-ideal is *-prime, called almost fully *-
prime, are also characterized in Proposition 4.1 and some examples are
presented. The additive groups of both fully *-prime and almost fully *-
prime involution rings are classified in Proposition 2.13 and Proposition
4.6, respectively.

2. Some properties and related concepts

Let R be an involution ring and a ∈ R. Henceforth, the ideal of R
generated by a will be denoted by 〈a〉 and the *-ideal of R generated by
a will be denoted by 〈a〉∗. Clearly, 〈a〉∗ = 〈a〉+ 〈a∗〉.

We note below that, in an involution ring, every *-ideal is idempo-
tent if and only if every ideal is idempotent.
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Proposition 2.1. For an involution ring R, the following statements are
equivalent.

(i) Every proper *-ideal of R is semiprime (that is, a semiprime
*-ideal);

(ii) Every *-ideal of R is idempotent;

(iii) Every ideal of R is idempotent;

(iv) For arbitrary *-ideals I and J of R, I ∩ J = IJ ;

(v) For every a ∈ R, a ∈ 〈a〉2∗.

Proof. (i) implies (ii). Suppose that I 6= I2 for some *-ideal I of R.
Then I/I2 is a nonzero nilpotent *-ideal of R/I2 and hence the proper
*-ideal I2 is not semiprime. (ii) implies (iii). If every *-ideal of R is
idempotent, then, for any nonzero ideal I of R, (I + I∗) /I∗ ∼= I/ (I ∩ I∗)
is idempotent. Hence I ⊆ I2 + (I ∩ I∗) = I2 + (I ∩ I∗)2 ⊆ I2 + II∗ =
I2 + (II∗)2 ⊆ I2.

It is easily seen that (iii) implies (iv) and that (iv) implies (v).
(v) implies (i). Let I be proper *-ideal of R which is not semiprime.

Then there exists a *-ideal J of R such that J2 ⊆ I and J " I. Hence
there exists 0 6= a ∈ J such that a /∈ I. Using (v), we have that a ∈
〈a〉2∗ ⊆ J2 ⊆ I, which is a contradiction. ♦

The following corollary is an immediate consequence of the previous
proposition and [17, Theorem 3.1].

Corollary 2.2. An involution ring R is fully *-prime if and only if every
ideal of R is idempotent and the set of *-ideals of R is linearly ordered.

Proposition 2.3. Every *-ideal of an involution ring R is completely
prime (completely semiprime) if and only if every ideal of R is completely
prime (completely semiprime).

Proof. Suppose that every *-ideal of R is completely prime and let I be
an ideal of R. Let a, b ∈ R such that ab ∈ I. Then ab ∈ I + I∗, which
implies that a ∈ I + I∗ or b ∈ I + I∗. If a = i + j for some i ∈ I and
j ∈ I∗, then ab = (i + j)b and so jb ∈ I ∩ I∗. Therefore j ∈ I ∩ I∗ or
b ∈ I ∩ I∗. So a ∈ I or b ∈ I. If b ∈ I + I∗, we may conclude in a similar
way that a ∈ I or b ∈ I. The statements on completely semiprime are
shown analogously. ♦
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In [1], Aburawash introduced and studied the concept of *-zero-
divisor and related concepts. In [15], the author of the present paper,
unware of Aburawash’s paper, studied involution rings without *-zero di-
visors, calling them *-domains and presented other characterizations and
results concerning these involution rings. A *-domain is an involution
ring R such that for any nonzero a, b ∈ R, ab 6= 0 or ab∗ 6= 0. It was
shown, in particular, that an involution ring R is a *-domain if and only if
R has neither symmetric zero-divisors nor skew-symmetric zero-divisors.
Recall that an element a ∈ R is said to be symmetric if a∗ = a and
skew-symmetric if a∗ = −a. An involution ring R is a *-domain if and
only if R is reduced and *-prime. A proper *-ideal I of R is completely
*-prime if and only if R/I is a *-domain. Henceforth, an involution ring
R with the property that every proper *-ideal is completely *-prime, will
be called a strong *-domain. A strong *-domain is a fully *-prime invo-
lution ring. Below, a strong domain is a ring in which every proper ideal
is completely prime. Moreover, if a is an element of an involution ring
R, then RaR = {

∑n
i=1 riasi : n ∈ N, r1, ..., rn, s1, ..., sn ∈ R}.

Proposition 2.4. The statements below are equivalent for an involution
ring R.

(i) R is a strong *-domain;

(ii) The set of *-ideals of R is linearly ordered and a ∈ 〈a2〉∗ for each
a ∈ R;

(iii) The set of *-ideals of R is linearly ordered and a ∈ Ra2R+R (a∗)2R
for each a ∈ R;

(iv) The set of *-ideals of R is linearly ordered and a ∈ RanR+R (a∗)nR
for each a ∈ R and for each positive integer n ≥ 1;

(v) The set of *-ideals of R is linearly ordered and every proper ideal
of R is completely semiprime.

Proof. (i) implies (ii). Let a ∈ R and suppose that 〈a2〉∗ 6= R . Then
a(aa∗) ∈ 〈a2〉∗ implies that a ∈ 〈a2〉∗, since 〈a2〉∗ is completely *-prime.
To prove that the set of *-ideals of R is linearly ordered, let I and J be
*-ideals of R and suppose that I " J and J " I. Then there exist a ∈ I
such that a /∈ J and b ∈ J such that b /∈ I. Therefore ab, ab∗ ∈ I ∩ J
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and a, b /∈ I ∩ J , which means that the *-ideal I ∩ J is not completely
*-prime.

(ii) implies (i). Let P be a proper *-ideal of R and a and b be
symmetric or skew-symmetric elements in R such that ab ∈ P . Then, for
any x ∈ R, bxa ∈ 〈bxa〉∗ =

〈
(bxa)2

〉
∗ ⊆ P and hence 〈b〉∗ 〈a〉∗ ⊆ P . Since

the set of *-ideals of R is linearly ordered, we may assume, without loss
of generality, that 〈b〉∗ ⊆ 〈a〉∗. Then 〈b〉∗ = 〈b2〉∗ ⊆ 〈b〉∗ 〈b2〉∗ ⊆ 〈b〉∗ 〈a〉∗
and so b ∈ P .

(ii) implies (iii). If (ii) holds, then a ∈ 〈a2〉∗ and a2 ∈ 〈a4〉 ∗, for
each a ∈ R. Hence a ∈ 〈a2〉∗ ⊆ 〈a4〉∗ ⊆ Ra2R +R(a∗)2R.

It can be easily seen that statements (iii) and (iv) are equivalent
and that (iii) implies (ii).

(i) implies (v). By [15, Proposition 5], if every proper *-ideal of
R is completely *-prime, then every proper *-ideal of R is completely
semiprime. Hence, from the previous proposition, every ideal of R is
completely semiprime.

It follows from [9, Proposition 1.2] that (v) implies (iii). ♦

For any ring R, let Rop denote the opposite ring of R. As is well
known, R ⊕ Rop is a ring with involution given by (a, b)∗ = (b, a), called
the exchange involution. From [5, Theorem 2.7], every ideal of R ⊕ Rop

is idempotent if and only if every ideal of R is idempotent, and the *-
ideals of R ⊕ Rop are of the form I ⊕ Iop, where I is an ideal of R. By
[12, Theorem 2], there exist strong domains with exactly n proper ideals,
for each positive integer n. So, the next proposition yields examples of
strong *-domains which are not strong domains.

Proposition 2.5. Let R be a ring. Then R ⊕ Rop, with the exchange
involution, is a strong *-domain if and only if R is a strong domain.

Proof. Let J be a proper *-ideal of R⊕Rop, where R is a strong domain.
Then J = I ⊕ Iop where I is an ideal of R. Let (a, b) (c, d) ∈ J and
(a, b) (d, c) ∈ J ; that is, (ac, db) ∈ J and (ad, cb) ∈ J , where ac, db,
ad, cb ∈ I. As I is a completely prime ideal of R, we can deduce that
(a, b) ∈ I ⊕ Iop or (c, d) ∈ I ⊕ Iop. The converse is clear. ♦

Proposition 2.6. Let R be a ring. Then R ⊕ Rop, equipped with the
exchange involution, is fully *-prime if and only if R is fully prime.

Proof. Every ideal of R⊕Rop is idempotent if and only if every ideal of
R is idempotent. The set of ideals of R is linearly ordered if and only
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if the set of *-ideals of R ⊕ Rop is linearly ordered. Hence, taking into
account Corollary 1, we have the desired result. ♦

In [13], Leavitt and van Leeuwen studied the structure of rings
R with the property that R/I ∼= R for each proper ideal I of R. In
particular, they proved that such a ring R is either fully prime or is a
zero ring (that is, R2 = 0), and they also constructed a non-simple, non-
nilpotent ring with this property. We shall now consider the analoguous
condition for rings with involution:

(♦) R/I ∼=∗ R for each proper *-ideal I of R.

If R is an idempotent ring such that R/I ∼= R for each proper ideal
I of R, then the ring R ⊕ Rop, endowed with the exchange involution,
satisfies property (♦). In fact, a proper *-ideal of R ⊕ Rop is of the
form I⊕ Iop, where I is a proper ideal of R, and (R⊕Rop) / (I ⊕ Iop) ∼=∗
(R/I)⊕(R/I)op ∼=∗ R⊕Rop. In order to show that idempotent involution
rings satisfying condition (♦) are fully *-prime, we require the following:

Lemma 2.7. Let R be a ring with involution and Ann∗(R) = {x ∈ R :
RxR = 0}. If R is idempotent and satisfies (♦), then Ann∗(R) = 0.

Proof. Clearly, Ann∗(R) is a proper *-ideal of R. Let R = R/Ann∗(R)
and x = x + Ann∗(R) ∈ Ann∗(R). Then RxR = 0, whence RxR ⊆
Ann∗(R). This means that R(RxR)R = 0. Since R is idempotent, it
follows that RxR = 0 or, equivalently, x ∈ Ann∗(R). Hence x = 0 and,
since R/Ann∗(R) ∼=∗ R, it follows that Ann∗(R) = 0. ♦

Let us recall that an involution ring R is called *-subdirectly irre-
ducible if the intersection of all its nonzero *-ideals (called the *-heart
of R) is nonzero. A routine application of Birkhoff’s theorem yields that
every involution ring R is a subdirect product of *-subdirectly irreducible
rings.

Proposition 2.8. Let R be an idempotent ring with involution satisfying
property (♦). Then R is fully *-prime.

Proof. By our assumption, it is clear that R is *-subdirectly irreducible.
Let H be the *-heart of R. It is well known that β(R), the prime radical
of R, is a *-ideal of R. If R 6= β(R), then R/β(R) ∼= R has no nonzero
nilpotent ideals. This impiles that H2 6= 0 and therefore R is *-prime.
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Now suppose that R = β(R). By the previous lemma, RxR 6= 0 for
any 0 6= x ∈ H. Clearly, RxR ⊆ H ⊆ RxR and so H = RxR. Hence

x =
n∑
i=1

aixbi, for some positive integer n and ai, bi ∈ R. Every subring

generated by a finite subset of a β-radical ring is nilpotent, since the
β-radical is contained in the Levitzki radical (see [6]). This implies that
x = 0, which is a contradiction. ♦

In what follows, let Z(R) denote the centre of a ring R. In [4],
Blair and Tsutsui showed that a fully prime ring with nonzero centre
has identity and that its centre is a field. We now present the involutive
version of this result.

Proposition 2.9. Let R be a fully *-prime involution ring with centre
Z(R) 6= 0. Then R has identity, and either Z(R) is a field or Z(R) =
F ⊕ F ∗ where F and F ∗ are fields.

Proof. We first show that R has identity. Let a be a nonzero symmetric or
skew-symmetric element in Z(R). Then aRa = a2R is a nonzero *-ideal
of R. Since the *-ideal a2R is *-prime, aRa ⊆ a2R implies that a ∈ a2R.
Therefore a = a2b for some b ∈ R. If e = ab and r ∈ R, then a (er − re) =
a (r∗e∗ − e∗r∗) = 0. Therefore aR (er − re) = aR (r∗e∗ − e∗r∗) = 0 and
hence er = re. Similarly, a (r − re) = a (r∗ − e∗r∗) = 0, whence r = re.
Thus e = 1, the identity of R, and a is invertible in R. Now, a (br − rb) =
a (r∗b∗ − b∗r∗) = 0 implies that aR (br − rb) = aR (r∗b∗ − b∗r∗) = 0 and
so br− rb = 0. Thus b ∈ Z(R). Moreover, b is either symmetric or skew-
symmetric. Indeed, since ab = 1, we have abb∗ = b∗. Thus (abb∗)∗ =
(b∗)∗, that is, bb∗a∗ = b. Now it is clear that if a is symmetric (skew-
symmetric), then b is symmetric (skew-symmetric). Since all nonzero
symmetric and skew-symmetric elements in Z(R) are invertible, these
are not zero divisors. Hence Z(R) is a *-domain. Therefore, by [15,
Theorem 10] , Z(R) is either a domain or has a nonzero ideal F such
that F and F ∗ are domains, F ∩F ∗ = 0 and F⊕F ∗ is a *-essential *-ideal
in Z(R). If Z(R) is a domain, then, for any nonzero element a ∈ Z(R),
aa∗ 6= 0. Hence aa∗ is invertible in Z(R) and therefore a is also invertible
in Z(R). Finally, we consider the case when Z(R) is not a domain and
show that F is a field. If c is a nonzero element in F , then c is neither
symmetric nor skew-symmetric, and thus c + c∗ is a nonzero symmetric
element in Z(R). Therefore, as seen above, c + c∗ is invertible, that is,
there exists d ∈ Z(R) such that (c+ c∗) d = 1, where d is symmetric.
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Therefore c (c+ c∗) d = c, that is, c2d = c. Now f = cd is a nonzero
idempotent in F and, for any x ∈ F , (xf − x) f = 0. This implies
that F has identity element f . Hence the *-essential *-ideal F ⊕ F ∗ has
identity f + f ∗. From [14, Lemma 8], it follows that F ⊕ F ∗ = Z(R).
It remains to show that every element in F is invertible. Since f = cd,
where d = d1 + d2 for some d1 ∈ F and d2 ∈ F ∗, f = c (d1 + d2). Hence
f − cd1 = cd2 = 0 and so f = cd1. Therefore c is invertible in F . ♦

We may therefore conclude that a commutative fully *-prime in-
volution ring is either a field or a direct sum of the form F ⊕ F (where
F is a field), endowed with the exchange involution. More generally,
the structure of fully *-prime involution rings which satisfy a polynomial
identity is given below. The non-involutive analogue may be found in [4,
Theorem 3.3].

Corollary 2.10. Let R be an involution ring. Then R is fully *-prime
satisfying a polynomial identity if and only if either R ∼=∗ Mn(D) or
R ∼=∗ Mn(D)⊕Mn(D)op (endowed with the exchange involution), where
Mn(D) is a full matrix ring over a division ring which is finite dimensional
over its centre.

Proof. Let R be fully *-prime. Since R is a semiprime ring satisfying
a polynomial identity, we have, by [11, Theorem 1.4.2], that Z(R) 6= 0.
Hence, from the previous proposition, R has identity. Since R is *-prime,
by [2, Theorem 4.2], R is either a prime ring or R has a nonzero ideal
P such that P and P ∗ are prime rings, P ∩ P ∗ = 0 and P ⊕ P ∗ is
a *-essential *-ideal of R. If R is prime, then Z(R) is a domain and
hence, by the previous proposition, Z(R) is a field. Therefore, by [16,
Corollary 1.6.28], R is a simple Artinian involution ring. Thus R is a
square matrix ring over a division ring which is finite dimensional over
its centre. If R is not prime, then Z(P⊕P ∗) = Z(P )⊕Z(P ∗), where Z(P )
and Z(P ∗) = Z(P )∗ are fields. Since P and P ∗ are prime rings satisfying
a polynomial identity, they are simple Artinian rings. As P ⊕ P ∗ has
identity and is a *-essential *-ideal of R, it follows that P ⊕P ∗ = R and
thus the result holds.

Conversely, if R ∼=∗ Mn(D) or R ∼=∗ Mn(D) ⊕Mn(D)op, then R is
*-prime and has no nonzero proper *-ideals. Since D is finite dimensional
over its centre, R satisfies a polynomial identity. ♦

The next corollary is the involutive version of [12, Proposition 1].
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Corollary 2.11. Let R be an involution ring. Then R is a strong
*-domain satisfying a polynomial identity if and only if R is either a
division ring which is finite dimensional over its centre, or R is the direct
sum of such a division ring and its opposite, endowed with the exchange
involution.

Proof. If R is a *-domain, then it is either a domain or it has nonzero
ideal P such that P and P ∗ are domains, P ∩ P ∗ = 0 and P ⊕ P ∗ is a
*-essential *-ideal of R [15, Theorem 10]. The result is now clear from
the proof of the previous corollary. ♦

As a result of the next lemma, we can describe the structure of the
additive groups of fully *-prime involution rings. In the subsequent, the
characteristic of a ring R shall be shortly written as char(R) and the
additive group of R will be denoted by R+.

Lemma 2.12. If R is a *-prime involution ring, then either char(R) = p,
where p is a prime, or R+ is torsion-free.

Proof. Suppose that R+ is not torsion-free. Then there exists 0 6= a ∈ R
and a least positive integer n such that na = 0. For any b ∈ R, 0 =
(na)Rb = aR (nb) = aR (nb∗) implies that nb = 0 and so R has finite
characteristic n. Moreover, n is prime. In fact, if n = n1n2 for integers
n1, n2 such that 1 < n1 < n and 1 < n2 < n, then 0 = (na)Ra =
(n1a)R (n2a) = (n1a)R (n2a

∗). This implies that n1a = 0 or n2a = 0,
which is a contradiction. ♦

The additive groups of strong domains were determined in [12,
Corollary 1]. The structure of the additive groups of fully *-prime involu-
tion rings is given below. The cyclic additive group of order p is denoted
by Z(p).

Proposition 2.13. Let G be an abelian group. Then G is the additive
group of a fully *-prime involution ring if and only if either G ∼= ⊕αQ or
G ∼= ⊕αZ(p) for some prime p and cardinal α.

Proof. Let G be the additive group of a fully *-prime involution ring
R. Suppose that G = R+ is torsion-free. Then, for every integer n,
nR = (nR)2 = n2R, which implies that R = nR. Thus R+ is an abelian
torsion-free divisible group. By [7, Theorem 23.1], R+ ∼= ⊕αQ for some
cardinal α. On the other hand, if char(R) = p, then R+ is an elementary
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abelian p-group. From [7, Theorem 17.2], R+ ∼= ⊕αZ(p) for some prime
p and cardinal α.

Conversely, if either G ∼= ⊕αQ or G ∼= ⊕αZ(p) for some prime p
and cardinal α, then G is the additive group of a field, which is obviously
a fully *-prime involution ring. ♦

3. Further properties of fully *-prime rings

We recall that an involution ring is said to be *-simple if it has no
nonzero proper *-ideals. The next proposition shows that any *-domain,
which is neither a division ring nor the direct sum of a division ring
and its opposite, contains a *-subring which is fully *-prime and is not
*-simple. The following results are the involutive versions of those in
[4, 4]. Let us first note that every nonzero *-biideal B of a *-domain
R is such that B2 6= 0. Indeed, B cannot contain symmetric or skew-
symmetric zero divisors. Hence, if R is *-simple with identity, then B2 ⊆
BRB = B (RB2RB2R)B = (BRB)3 ⊆ B3, and so B2 = BRB is an
idempotent *-biideal of R contained in B.

Proposition 3.1. Let R be a *-domain with identity. The conditions
below are equivalent.

(i) R is *-simple;

(ii) S = B+Z(R) is a fully *-prime involution ring for every idempotent
*-biideal B of R;

(iii) S = aRa∗+Z(R) is a fully *-prime involution ring for every a ∈ R.

Proof. (i) implies (ii). Suppose that R is *-simple and that B is a proper
idempotent *-biideal of R. If B = 0, then S is either a field or S = F⊕F ∗,
where F is a field. If B 6= 0, then B is a *-ideal of S and B ∩ Z(R) = 0.
Indeed, if B ∩Z(R) 6= 0, then there exists a nonzero symmetric or skew-
symmetric element a ∈ B ∩ Z(R) which is invertible in R. Hence, for
any r ∈ R, r = aa−1ra−1a ∈ B so that B = R; a contradiction. Thus
S/B ∼= Z(R) so that B is a maximal *-ideal of S. Furthermore, B is the
only nonzero proper *-ideal of S. In fact, if J is a nonzero *-ideal of S,
then B = B2 ⊆ BRB = B (RBJBR)B = (BRB) J (BRB) ⊆ BJB ⊆
J . The maximality of B implies that B = J . Since S/B ∼= Z(R), S/B
is *-prime. Clearly, S is also *-prime.
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(ii) implies (iii). Clearly, for any a ∈ R, aRa∗, is an idempotent
*-biideal.

(iii) implies (i). Let I be a nonzero *-ideal of R and let 0 6= a ∈ I be
symmetric or skew–symmetric. If S = aRa+Z(R) is fully *-prime, then
aRa = aRa2Ra, where aRa is a *-ideal of S. Therefore, for any r ∈ R,
ara = a (

∑n
i=1 sia

2ti) a for some positive integer n and si, ti ∈ R. Hence
a (r −

∑n
i=1 sia

2ti) a = 0, which implies that r =
∑n

i=1 sia
2ti, since R is

a *-domain. Thus r ∈ I and so R = I. ♦

Proposition 3.2. Let R be a fully *-prime involution ring R with iden-
tity and P a proper *-ideal of R. If Z(R) is a field, let S = P + K
where K is a *-subfield of Z(R), and if Z(R) = F ⊕ F ∗ (F a field),
let S = P + K ⊕ K∗ where K is a subfield of F . Then S is a fully
*-prime involution ring whose proper *-ideals are precisely the *-ideals
of R contained in P .

Proof. Let P 6= 0 and suppose that I is a proper *-ideal of S. Then
I ⊆ P . In fact, if I " P , then S/I = (I + P ) /I ∼= P/ (I ∩ P ), since
P is a maximal *-ideal of S. Since P/ (I ∩ P ) is a *-essential *-ideal
of R/ (I ∩ P ) and P/ (I ∩ P ) has identity, it follows that P/ (I ∩ P ) =
R/ (I ∩ P ), whence P = R; a contradiction. Therefore, every proper
*-ideal of S is a *-ideal of R and so the set of *-ideals of S is linearly
ordered and every *-ideal of S is idempotent. ♦

In what follows, letR be a hereditary radical property of associative
rings (in the sense of rings without involution) such that the R-radical
R(R) of R is a *-ideal, for every ring R with involution. As usual, a
ring is R-semisimple if it has no nonzero ideals with the property R. For
details regarding radical theory of rings, we refer the reader to [6] and
[8].

Proposition 3.3. Let R be a fully *-prime involution ring with identity,
P be a proper *-ideal of R and S = P +Z(R). If R(S) is a proper *-ideal
of S, then either R(S) = R(R) or R(S) = P .

Proof. Taking into account the previous proposition and the fact that R
is hereditary, we haveR(P ) = R(S)∩P ⊆ R(R)∩P = R(P ). The result
follows from the fact that the *-ideals of R are linearly ordered. ♦

Corollary 3.4. Let R be a fully *-prime involution ring with identity
and P be a nonzero proper *-ideal of R. Then R is R-semisimple if and
only if S = P + Z(R) is R-semisimple.
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4. Almost fully *-prime rings

In this section, we consider almost fully *-prime involution rings
and almost strong *-domains, which are the *-analogues of almost fully
prime rings and almost strong domains, respectively. An almost strong
*-domain is an involution ring in which every nonzero proper *-ideal is
completely *-prime. The proofs are analogous to those of [17, Theorem
2.1 and Theorem 2.2] and [12, Theorem 4], but we outline the proof for
ease of reading.

Proposition 4.1. An involution ring R is almost fully *-prime if and
only if one of the following holds:

(i) R is fully *-prime;

(ii) R is *-simple and R2 = 0;

(iii) R is *subdirectly irreducible with *-heart H such that H2 = 0 and
R/H is fully *-prime;

(iv) R is the direct sum of two *-simple *-prime involution rings;

(v) There are two fully *-prime involution rings A and B that are
*-subdirectly irreducible with *-hearts P and Q, respectively, such
that there is a *-isomorphism ϕ : A/P → B/Q and
R ∼=∗ {(a, b) ∈ A×B : ϕ (a+ P ) = b+Q} .

Proof. Let R be almost fully *-prime and suppose that R is not *-prime.
If R has no nonzero proper *-ideals, then R satisfies (ii). Now assume
that R has a nonzero proper *-ideal. If the set of *-ideals of R is linearly
ordered, then R satisfies (iii). If, on the other hand, the set of *-ideals
of R is not linearly ordered, then there exist *-ideals P and Q such
that P " Q and Q " P . Then the *-ideal P ∩ Q is not a *-prime
*-ideal and so P ∩ Q = 0. Moreover, these are minimal *-ideals of R
and they are the only minimal *-ideals of R. If R = P + Q, then (iv)
holds. Finally, if R 6= P + Q, let A = R/Q and B = R/P , which are
fully *-prime. Since P ∩ Q = 0, P and Q can be viewed as *-ideals
of A and B, respectively. Moreover, A/P ∼=∗ R/ (P +Q) ∼=∗ B/Q.
Let φ : A/P → B/Q be a *-isomorphism. Consider the injective*-
homomorphism f : R→ A×B defined by f (a) = (a+Q, a+ P ). Then
f(R) = {(a, b) ∈ A×B : ϕ (a+ P ) = b+Q} and hence (v) holds.
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Conversely, if R satisfies any of the conditions (i)-(iv), then it is
evident that R is almost fully *-prime. Finally, if R satisfies (v), then its
nonzero proper *-ideals are

(P, 0) = {(p, 0) ∈ A×B : p ∈ P} ,

(0, Q) = {(0, q) ∈ A×B : q ∈ Q} ,

and

H(I) = {(a, b) ∈ A×B : a ∈ I, ϕ (a+ P ) = b+Q} ,

where I runs over all proper *-ideals of A containing P . Since
R/ (P, 0) ∼=∗ B, R/ (0, Q) ∼=∗ A and R/H(I) ∼=∗ A/I, these nonzero
*-ideals are all *-prime. ♦

The proof of the next proposition is analogous to the proofs of
Proposition 2.6 and Proposition 2.5.

Proposition 4.2. Let R be an almost fully prime ring (almost strong
domain) with identity. Then R⊕Rop, equipped with the exchange invo-
lution, is almost fully *-prime (an almost strong *-domain).

Reasoning as in Proposition 4.1, we obtain the following character-
ization of almost strong *-domains.

Proposition 4.3. Let R be an involution ring. Then R is an almost
strong *-domain if and only if one of the following holds:

(i) R is a strong *-domain;

(ii) R is *-simple with symmetric or skew-symmetric zero-divisors;

(iii) R is not a *-domain and R is *-subdirectly irreducible with *-heart
H and R/H is a strong *-domain;

(iv) R is the direct sum of two *-simple *-domains;

(v) There are two strong *-domains A and B that are *-subdirectly
irreducible with *-hearts P and Q, respectively, such that there is
a *-isomorphism ϕ : A/P → B/Q and
R ∼=∗ {(a, b) ∈ A×B : ϕ (a+ P ) = b+Q}.
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Next, we provide examples of involution rings satisfying (iii) of the
previous proposition.

Example 4.4. If R is a commutative ring, then

S =

{[
a b
0 a

]
: a, b ∈ R

}
,

equipped with the usual addition and multiplication of matrices and

with involution defined by
[
a b
0 a

]∗
=

[
a −b
0 a

]
, has a unique nonzero

proper *-ideal

H =

{[
0 b
0 0

]
: b ∈ R

}
,

H2 = 0 and S is an almost strong *-domain.

An n-chain ring is a ring with exactly n proper ideals which are
linearly ordered. Hirano, in [12, Theorem 2], showed the existence of n-
chain strong domains, for each positive integer n. Now, if R is an n-chain
strong domain, then, R ⊕ Rop, is a *-n-chain *-domain ( the number of
*-ideals of R is n and the *-ideals of R are linearly ordered).

Example 4.5. [12, Example 2] Let R be a *-n-chain *-domain with
unique minimal *-ideal H. Then the ring

S =

{[
a h
0 a

]
: a ∈ R, h ∈ H

}
,

with the usual addition and multiplication of matrices and with involu-

tion defined by
[
a h
0 a

]∗
=

[
a∗ h∗

0 a∗

]
, has a unique nonzero *-ideal

K =

{[
0 h
0 0

]
: h ∈ H

}
,

K2 = 0 and S/K is a *-domain. Hence, S is an almost strong *-domain
which is not *-prime.

Finally, we describe the structure of the additive groups of almost
fully *-prime involution rings. Note that the structure of the additive
groups of almost strong domains (rings in which every nonzero proper
ideal is completely prime) was described in [12, Corollary 3].
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Proposition 4.6. If R is an almost fully *-prime involution ring, then
one of the following holds:

(a) R+ ∼= ⊕αQ+ where α is a cardinal;

(b) R+ ∼= ⊕αZ(p) where p is a prime and α is a cardinal;

(c) R+ ∼= (⊕αQ+) ⊕ (⊕βZ(p)) where p is a prime and α and β are
cardinals;

(d) R+ ∼= (⊕αZ(p))⊕ (⊕βZ(q)) where p and q are distinct primes and
α and β are cardinals;

(e) R+ ∼= ⊕αZ(p2) where p is a prime and α is a cardinal;

(f) R+ ∼= (⊕αZ(p)) ⊕ (⊕βZ(p2)) where p is a prime and α and β are
cardinals;

Proof. If R satisfies condition (i) of Proposition 4.1, then either (a) or
(b) holds, according to Proposition 2.13.

Now suppose thatR satisfies condition (ii) of Proposition 4.1. Then,
by [3, Corollary 2.3], R is simple and R+ ∼= Z (p) where p is a prime.

Next, assume that R satisfies condition (iii) of Proposition 4.1.
Then R is *-subdirectly irreducible with *-heart H such that H2 = 0.
Note that since R/H is fully *-prime, R/H = (R/H)2 and so R = R2.
Moreover, every *-ideal properly containing H is idempotent. Suppose
first that char(R) = 0. Then char(R/H) = 0. In fact, if char(R/H) =
p 6= 0 for some prime p, then 0 6= pR ⊆ H ⊆ pR. So, 0 = (pR)2 = p2R,
which is a contradiction. Therefore (R/H)+ is torsion-free. Since, for
any nonzero integer n, H ⊂ nR, it follows that nR = (nR)2 = n2R.
Consequently, R = nR which means that the additive abelian group R+

is divisible. Hence H+ is also a divisible abelian group. Moreover, R+ is
torsion-free. Indeed, if not, there exists 0 6= a ∈ R and a positive integer
n such that na = 0. Since n(a + H) = H and (R/H)+ is torsion-free,
a ∈ H. Hence, by [10, Proposition 6.2], H+ is an elementary abelian
p-group for some prime p. Then 0 = pH = H, which is a contradiction.
Thus we have that R+ is a torsion-free divisible group and so (a) holds.
Next, suppose that char(R) = n 6= 0. Then char(R/H) = p 6= 0 for
some prime p, which yields pR ⊆ H. If pR = 0, then R+ is an elementary
abelian p-group. If pR 6= 0, then H ⊆ pR. Consequently, H = pR and
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0 = H2 = p2R. From [7, Theorem 17.2], R+ satisfies either (b), (e) or
(f) .

If R satisfies (iv) of Proposition 4.1, then one of (a), (b), (c), or (d)
holds, according to [3, Corollary 2.3].

Finally, suppose that (v) of Proposition 4.1 holds. Since A/P ∼=∗
B/Q, char(A) = char(B). If the fully *-prime rings A and B are torsion-
free, then (a) holds, since R is a *-subring of the involution ring A×B.
On the other hand, if char(A) = char(B) = p for some prime p, then (b)
holds. ♦
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