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Abstract:
In this paper, we determine the forbidden set, introduce an explicit formula
for the solutions and discuss the global behavior of solutions of the difference

equation
ATnTn—k

—_—, n=0,1,...
_bxn‘i‘cmnfkf]’ » Ly )

Tnt+1 =

where a,b,c are positive real numbers and the initial conditions
T jp_ 1,T_k,...,T_1,Tg are real numbers.

1. Introduction

The study of nonlinear difference equations that having quadratic
terms is not easy and worth to be discussed. Results concerning rational
difference equations having quadratic terms are included in some publi-
cations such as [1]-[21] and the references cited therein.

In [2]|, we determined the forbidden set and investigated the global
behavior of all solutions of the rational difference equation

ATpTp—1
Tpi1=—"——— n=01,...,
bx, — CTp_o
where a, b, c are positive real numbers and the initial conditions x_o, x_1, z¢

are real numbers.
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In this paper, we determine the forbidden set, introduce an explicit
formula for the solutions and discuss the global behavior of solutions of
the difference equation

ATpTn—k

)
_bxn + CTp—f—1

(1.1) Tyl = n=0,1,...,

where a, b, c are positive real numbers and the initial conditions
T_p1,T_g,...,T_1,To are real numbers.

We have been investigated the global behavior of all possible solu-
tions of equation (1.1) when & =1 in [1].

2. Forbidden set and solutions of equation (1.1)

In this section we derive the forbidden set and introduce an explicit
formula for the solutions of the difference equation (1.1).

Proposition 2.1. The forbidden set F' of equation (1.1) is
F = UZo{(vo,v—1,...,v_5-1) € RFt2 . gy = v_k_l(m)} U
U Ufzo{(vo,v_l, U gV g1) ERFF2 g =01,

Proof. Suppose that Hf:ol x_; = 0. Then we have the following:

If o = 0 and Hfill x_; # 0, then xy, 5 is undefined.

If z_;, =0 and Hf:ol#k x_; # 0, then x5 is undefined.

By induction we can show that, if for a certain iy € {0,1,...,k},
such that x_,, = 0 and Hf:(),i#io x_; # 0, then xy_;,+o is undefined.

Finally, if __; = 0 and [[}_y2—; # 0, then a1 = —%x_, #0. It
follows that we can start with the nonzero initial point
(1, Z0,2_1,...,2_), which the case we shall investigate.

Suppose that x_; # 0 for all i € {0,1,...,k + 1}. From equation

(1.1), using the substitution [, = =21 we can obtain the first order
difference equation

c b T_je
(2.1) i1 = —ly — —, 1y = =1L,

a a Zo

Consider the function ¢(z) = Sz — g and suppose that we start from an
xT_ 1)

o . T_k—1 __ b
initial point (xg,z_1,...,2_g_1) such that —t=2
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The backward orbits u, = =-*=* satisfy

a b . T_p_ b
Up = ¢ (Up—1) = —Up_1 +— With uy = il
C C Xo Is

It follows that u, = =51 = ¢"(uyy) = 22?:0(%)1

In
Therefore, x,, = $n—k—1(W)-
=0\ ¢
On the other hand, we can observe that if we start from an initial
point (g, x_1,...,2_k1) such that [y = == = by, (2)" for a certain
no € N, then according to equation (2.1) we obtain

[ — Fnok-1 _ b
0 Tng c
This implies that —bz,,, + czy,—x—1 = 0. Therefore, x,,4+1 is undefined.
This completes the proof. O

Let § = 2=<tba where o = —%0—,
o T—k—1

Lemma 2.2. Let z_;_1,...,2_1 and zg be real numbers such that
(xo,T—1,..., k1) ¢ F. If a # ¢, then

B a—c
Xy = x—k—l—&—ima

i=1,2,...  k+1.

Proof. The proof is by induction on ¢, where i € {1,2,... k+ 1}.

When i =1,
o aror_y, B am:’“":ilx_k _aax g
YT bag + crp —b - +c  —ba+t c
Butas@z@,wegeta:g%g.
It follows that
aox_y, a—c
T = = T_f-
P bate (900"
Suppose for 1 <17 < k that z; = x_k_lﬂ-ﬁ. Then
aviwie %%

Tit1 = = :
—bx; + cri_p_1 _bx- x; T +c
ik
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_ ala — c) . a(a — c) N
—b(a—c)+c(0(5) —b)F T —ba+be+cB(E)i—cb "

B (a—c)

= Wx—kﬂ%

This completes the proof. O

Theorem 2.3. Let x_;_1,2_y,...,x_1 and xg be real numbers such that
(0, X—1y..., 1) ¢ F. If a # ¢, then the solution {x,}>* , | of
equation (1.1) is

(2.2)
n—1
[E_knfzém, nzl,k—{—2,2k+3,,
n—2 a
$_k+1H;€:é W, n:2,/€—|—3,2/€+4,,
Ty =
n—k
Tr_q Jk;ré m, n:k72/{:+1,3/€+2,,

n—(k+1)

xOHj:IE)+1 W, n:k+1,2k+2,3k+3,,

\

_To

where = 2=¢tbe and o = )
a T 1

Proof. We can write the given solution (2.2) as

(23) T(k+1ym+i = T—k—144 HV%(]L L= ]-7 27 ) k+1and m = O) 17 )
=0

where

N a—=cC
72(;7) - 9(5)(k+1)j+i —_ ba

i=1,2,. k+1.

When m = 0, we have

a—c
T; = x—k—1+im7
a

i=1,2,... k+1,

which is true by Lemma (2.2).
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Now for m > 0, we can see that

AT (k1) (m+1)+iL (bt Dmti+1  Gl—k—1+i Hmzl Vi(J)T g H;-n:o Yit1(7)
—DT (k4 1)(m+1)+i T CT (ks 1)meti b k—14i 0 %(]) + T g1 H;n:o %i(J)
AT —f—144 Hmzl %(j)x k+i HT” O%H(J) o a%(m + 1)~”le+z' HT:O %+1(j)

T i1 [[j2o % () (=byi(m + 1) + ¢) —byi(m+1) +¢

_%(g)(mf‘g(vﬁﬂm_bwwﬂ [10 v () B a(a — )y [[og vir1(5)
_ba(g)(k+g(_rs+1)+z‘,b tc —bla —¢) + ¢(0(5)FHDmEDF —p)
a(a — ) r_jy H;n:o Yit1(d) a—c
- () EFDmtD+ g - x—kﬂ'@( YD mt D+l H%“
m m—+1
=T_g4i%i+1(m + 1) H%H(j) = Tkti H Vir1(J) = (k1) (mer 1) 4it1-
j=0 =

This completes the proof.

3. Global behavior of equation (1.1)

In this section, we investigate the global behavior of equation (1.1)
with a # ¢, using the explicit formula of its solution.

Theorem 3.1. Let {z,,}°° , ; be a solution of equation (1.1) such that

(o, 1,
., Z__1) ¢ F. Then the following statements are true.

1. If a < ¢, then {z,}?° , | converges to 0.
2. If a > ¢, then we have the following:
(a) If ¢ <1, then {x,}52 _, | converges to 0.

(b) If %3¢ > 1, then {w,};>_,_; is unbounded.

Proof. 1. Ifa < ¢, then 7;(j) convergesto 0 as j — oo, i =1,2,... k+
1. It follows that, for a given 0 < € < 1, there exists j, € N such
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that | v;(j) |[< eforall j > joand ¢ =1,2,..., k+ 1. Therefore, for
each i € {1,2,...,k+ 1}, we have

| L (k+1)ym+i | =l v k144 || H%(J) |

=0
Jo—1 m
o | T30 1 T 0) |
Jj=0 J=jo
Jo—1

<| Tp-14i || H (7)) | et
=0

As m tends to infinity, the solution {x,}>° , , converges to 0.
2. Suppose that a > ¢. Then we have the following:

(a) If %3¢ < 1, then v;(j) converges to —%3¢ > 1 € (—1,0) as
j — o0, 1 =12 ....k+ 1. This implies that, there exists
J1 € N such that ;(j) € (p1,0), with some 0 > —%< > py >
—1forall 5 > j; and 7 = 1,2,...,k + 1. This implies that,
v ()| < ] for all j > jy and ¢ = 1,2,...,k + 1. Therefore,
the solution {z,,}°° , ; converges to 0 as in (1).

(b) If %¢ > 1, then v;(j) converges to —“3¢ < —1 as j — oo,

i=1,2,...,k+ 1. Then for a given —%¢ < up < —1 there
exists jo € N such that ;(j) < p2 < —1, for all j > js and
i=1,2,.. . k+1.

For large values of m we have for each i € {1,2,...,k+ 1}

| T (k+1)ym+i | =]z g1y | H%(J') |

=0
Ja—1 m

=z 144 | H Yi () |l H %i(4) |
Jj=0 J=Jj2
Jo—1

> 214 | H Yi(g) || g |77
=0

Therefore, the subsequences {Z (x4 1ymti b1, = 1,2,..., k+
1 are unbounded and the result follows.
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O

Example (1) Figure 1 shows that if k =2, a=2.3,b=13and ¢c=1.5
(a — ¢ < b), then the solution {z,}°° _, with initial conditions z_3 = 8,
T_o=06,2r_1=—0.2and xog = 1.2 converges to 0.

Example (2) Figure 2 shows that if £ = 2, ¢ = 2.1, b = 1.2 and
¢ = 0.6 (a—c > b), then for the solution {z,}°° _, with initial conditions
r.3g = =8, x_9 =6, v = —0.2 and g = —1.2, we have that the
subsequences {Z4,4+:}5° 4, @ = 1,2,3,4 are unbounded.
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\ﬂ‘ 150 - ‘N\ ]
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\
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2.3xnTp—2

2.1xpxn—2
—1.3xn+1.52,_3

Figure 1: z,11 = —1.20,+0.621_3

Figure 2: z,,1 =

4. Casea—c=b

In this section, we study the case when a — ¢ = b.

Theorem 4.1. Assume that {z,}2° , ; is a solution of equation (1.1)
such that (zg,x_1,...,2_k_1) ¢ F and let a —c = b. If @ = —1, then
{x,}22 _,_, is periodic solution with period 2(k + 1).

Proof. Assume that a — c =0b. If @« = —1, then 8 = 0. Therefore,

m a _ C
T(k+1ym+i = T—k—144 | | Q(g)(k:-i—l)j-i-i -}
j=0 ‘a

=(-1)™"My 1, i=1,2,... ) k+1landm=0,1,....
It follows that

m-+2
a—=cC

$(k+1)(m+2)+z = I—k—l-i-i H 8(2)(k+1)]+z _ b
j=0
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( ) +3x7k71+i = <_1)m+1x7k71+i

= Thtiymyis 0 =1,2,...;k+1land m=0,1,....

This completes the proof. O

Theorem 4.2. Assume that {z,}32 , ; is a solution of equation (1.1)
such that (zg,x_1,...,2_4_1) ¢ F andlet a —c =b. If « # —1, then
{z,}52_,_, converges to a period-2(k + 1) solution.

Proof. Suppose that {z,}>° , ; is a solution of equation (1.1) such that
(o, x_1,...,0__1) ¢ Fand let a —c=b. As

. a—=cC .
]li)I?o’yl(j) Jli[&m = —1, 1 = 1,2,...,]€+1,

there exists j3 € N such that, v,(j) < 0, for all ¢ = 1,2,...,k+ 1 and
J = Js
It follows that

Js—1
| k+1m+z|_|x k— 1+z||H% |—|$ k— H"HH% |H|%
Jj=0 J=J3
Jj3—1
|[E k— 1+z|| H 71 eXp Zlﬂ |sz
J=J3
For all j > j3, we can write
) ) a—c 0 c "

In(|vi(5)]) = In(=(j)) = ln(—e(g)@mm —) = —1n(1—(5)(5)(’“+1”+ ).

We shall test the convergence of the series > .| In(7i(5)) |
Let a; = In(]7%(j)]) = —In(1 — (£)(£)**Di+) and b; = (£)*+15. Then
for each i € {1,2,... k+ 1} we get

) _Q (k+1)j+3
S O

j—o0 j Jj—o0 (5)(

v
0
Using L’Hospital’s rule we obtain

aj

. (D)) EHIH (L) (k + 1) F41)5 AN
jlg?ob_j:_}ir?o (1= (5)()H+i+) /((a>( ) ln(a)(k+1))_(b)(5)'
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Therefore, the series 37° | In(v,(j)) | is convergent.
It follows that there are k 4+ 1 real numbers pq, ps, ...,pr+1 such that

hm ‘x(k-i—l)m-f—ll = pPi ,’L: 1,27,k+1
_]*)OO
Now set im0 Zo(kt1ymti = pi, 0 = 1,2,..., Kk + 1.
Then we get
2m—+1
Tkt 1ymtkt1+i = Tk—1+i H %i(J) = Tagks1ymeivi(2m + 1).
§=0

It follows that gy = —pi, 1 =1,2,...,k+ 1.
But for each 1 <4 <k + 1, {Zog+1ym+itmeo a0 {T204 1)mtk+14+i Fmeo
are subsequences of {Z (x4 1)m+i}o—o, from which we get

il = pi, 1 <i<k+1.

That is
pi = pior (—p;), 1 <1 <k+1.

Without loss of generality, we can take
pi=pi, 1<i<k+1

Then the solution {z,}5 , ; converges to the period-2(k + 1) solution

{' < Py P2y -5 PR+1 TP P25 - o5 TP+ - - }

This completes the proof.
¢

Example (3) Figure 3 shows that if k =3, a = 2.5, b= 1.8 and ¢ = 0.7
(a — ¢ = b), then the solution {x,}° , with initial conditions z_, = 2,
r_g = —1.8 .9 = —0.1, z_; = —3.1 and zg = 3.5 converges to a
period-8 solution.

5. Casea=b=rc

We end this work by introducing the main results when a = b = c.
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Figure 3: z,,1 = B T L —

Proposition 5.1. Assume that a = b = ¢. Then the forbidden set G of
equation (1.1) is

G = LJ;;O{(UO,U_lw..,ufkfl) € RE+2 . ug = u,k,l(ﬁif)} U
VU o{(uo, u—1y . u_j 1) € RFF2 1y =0},

Theorem 5.2. Let x_,_1,...,x_1 and xy be real numbers such that
(0, x-1y..., 1) ¢ G. If a = ¢, then the solution {x,}>> , | of
equation (1.1) is

(5.1) ( B
xkakiém, n=1k+22k+3,...,
ey | far —1fa((ki1)j+2)’ n=2k+3,2k+4,...,
T, = :
n—k
x—lw iig l—a«kilﬁ+k)7 n=~k2k+1,3k+2,...,
n—(k4+1
| 2olli0" ey n= R L2k 2.3k 43,
where @ = -0
T—k—1

Theorem 5.3. Let {,,}°° , ; be a solution of equation (1.1) such that
(xo,Z—1,..., k1) ¢ G. If a =b=c, then {x,}52 , ; converges to 0.

Example (4) Figure 4 shows that if ¥ = 3 and @ = b = ¢, then the
solution {z, }°° _, with initial conditions z_4 = 2, x_3 = —1, x_5 = —0.5,
r_1 = —5.1 and zg = 3.5 converges to 0.
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Flgure 4: Tntl1 = e —
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