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Abstract: Quartic CNS polynomials whose second highest coefficient is at
least −1 preserve their CNS property under addition of sufficiently large posi-
tive integers.

1. Introduction

Canonical number systems (customarily abbreviated by CNS) can
be regarded as generalizations of the classical decimal or binary numer-
ation systems. Preceded by the study of some special cases [13, 18, 12]
they have first been developed by the Hungarian school some decades
ago [16, 14, 15, 20].

CNS polynomials (see Section 2 for the definition) have been intro-
duced by A. Pethő [23] and generalized in the sequel (e.g., see [17, 24]).
Several results on these polynomials are known, however, until now the
characterization of CNS polynomials for degrees at least 3 has remained
an open problem. Moreover, the set of CNS polynomials apparently has
poor algebraic properties. For instance, polynomials can lose their CNS
property by addition of positive integers (e.g., see [8]). For more details
and background the reader is referred to the recent work of A. Pethő
and J. Thuswaldner [24] where some light is shed on the speculation that
canonical number systems seem to be quite exceptional among number
systems.

In view of this situation, S. Akiyama [1] put forward the following
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interesting conjecture: For every CNS polynomial P there exists a natural
number N such that P+n is a CNS polynomial for all n ≥ N . It is known
that this conjecture holds true for many classes of CNS polynomials [9].
Among others, the truth of this conjecture implies pm ≥ −1 for every
CNS polynomial of the form Xd +

∑m
i=0 piX

i [9, Section 2].
In this note we establish Akiyama’s Conjecture for quartic poly-

nomials whose second highest coefficient is at least −1.

2. Definitions and statement of results

Let us briefly recall the definition of a CNS polynomial. We say
that the monic polynomial P ∈ Z[X] is a CNS polynomial if for every
A ∈ Z[X] there exists a polynomial B ∈ {0, . . . , |P (0)| − 1}[X] such
that A ≡ B (mod P ); here we denote by Z (N, N0, C, respectively) the
set of rational integers (the set of natural numbers, nonnegative rational
integers, CNS polynomials, respectively).

Let us illustrate Akiyama’s Conjecture by a simple example.

Example 2.1. The cubic polynomial P := X3+50X2+73X+53 satisfies
P+n ∈ C for every nonnegative integer n 6= 3. For n ≥ 20 this is clear by
the Kovács – Pethő Theorem [21, Theorem 6] (see also [7, Corollary 5]),
and for n < 20 this can be checked algorithmically (e.g., see [10]).

Now we state our main result and postpone its proof to the next sec-
tion. Following Dubickas [11] we say that the real polynomial

∑d
i=0 riX

i

has a strictly dominant constant term provided

|r0| >
d∑

i=1

|ri| .

Theorem 2.2. Let P = X4 + p3X
3 + p2X

2 + p1X + p0 be a CNS poly-
nomial with p3 ≥ −1. If n is a natural number such that P + n has a
strictly dominant constant term then P + n is a CNS polynomial.

Gilbert’s Theorem (see [3, Theorem 3.1]) gives necessary condi-
tions for cubic CNS polynomials. Theorem 2.2 immediately yields the
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analogue of this result for quartic polynomials whose second highest co-
efficient is at least −1. It is known that the second highest coefficient
of a CNS polynomial P is at least −P (0) (see Theorem 3.1 below), and
the author conjectures that it is at least −1 for all CNS polynomials
[9, Conjecture 2.3].

Corollary 2.3. The coefficients of the CNS polynomial X4 + p3X
3 +

p2X
2 + p1X + p0 with p3 ≥ −1 fulfill the following four conditions:

1. p3 + p2 + p1 ≥ −1

2. p3 + p2 ≥ −1

3. p2 ≥ −1

4. p3 = −1 implies p1 < −1.

Proof. Using Theorem 2.2 we add a suitable integer to the given polyno-
mial such that the resulting polynomial is a CNS polynomial with strictly
dominant constant term. Then [6, Theorem 5.4] yields our claim. ♦

Finally, we exhibit a further example in support of our conjecture
that the second highest nonzero coefficient of a CNS polynomial must be
at least −1. The polynomial

Xd − aX2 + bX + c (d ≥ 4, 2 ≤ a ≤ c, a− 2 ≤ b ≤ c− 2)

admits the nonzero periodic element

(10 · · · 10) 7→ (01 · · · 01) 7→ (10 · · · 10)

if d is even, and

(01 · · · 010) 7→ (10 · · · 101) 7→ (01 · · · 010)

if d is odd.

3. Proof of Theorem 2.2

In this section we let

(3.1) P = pdX
d + pd−1X

d−1 + · · ·+ p1X + p0 ∈ Z[X]

be a monic integer polynomial of positive degree d with non-vanishing
constant term.
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3.1. Some important properties of CNS polynomials

In this subsection we collect some useful properties of CNS polyno-
mials.

Theorem 3.1. Let P be a CNS polynomial .

1. P is expansive, i.e., every root of P lies outside the closed unit disc.

2. If r is a real root of P then r < −1.

3. p0 ≥ max{2, 1 + (−1)d−1 +
∑d−1

i=1 (−1)i−1pi}

4.
∑d

i=1 pi ≥ 0 .

Proof. (i) [22, Theorem 6.1].
(ii) This was shown by Gilbert [12, Proposition 6] under the (unused)
assumption of the irreducibility of P .
(iii) From (i) and (ii) we infer p0 ≥ 2 and P (−1) ≥ 1.
(iv) See [5, Lemma 2]. ♦

To P we associate the mapping τP : Zd → Zd by1

τP (a1, . . . , ad) := (a2, . . . , ad,−bsP (a1, . . . , ad)/ |p0|c)

with

sP (a1, . . . , ad) :=
d−1∑
j=0

pd−j aj+1

and the set2

NP := {z ∈ Zd : τ kP (z) = 0 for some k ∈ N}.

If there is no fear of confusion we occasionally symbolize the action of τP
by an arrow and omit the subscript P .

We tacitly exploit the following fundamental fact [2, Section 3].

Lemma 3.2. If there exists a nonzero τP -periodic element in Zd then P
is not a CNS polynomial.

1We denote by b. . .c the usual floor function.
2For a map f : X → X we let f0 = id and fk+1 = fk ◦ f .
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The next two observations play an important role in the proof of
Theorem 2.2.

Lemma 3.3. Let the coefficients of P satisfy
∑d

i=1 pi ≥ 0 and p0 > 1. If
e ∈ {0, 1}d and τP (e) = e then we have e = 0.

Proof. We have3

e = (e1, . . . , ed) = (e2, . . . , ed, (τP (e))d),

hence

ei+1 = ei (i = 1, . . . , d− 1) and (τP (e))d = ed .

This implies
ei = e1 (i = 2, . . . , d).

The assumption e 6= 0 would yield e = (1, . . . , 1), in particular, (τP (e))d =
1, and subsequently the contradiction

d∑
i=1

pi < 0 .

♦

Lemma 3.4. Let P ∈ C and n ∈ N such that Q := P + n has a strictly
dominant constant term. If Q /∈ C then there exists some e ∈ {0, 1}d\{0}
with the following properties:

(i) e is purely τQ-periodic.

(ii) The period length k of e is minimal among all non-vanishing purely
τQ-periodic elements in {0, 1}d, and we have k > 1.

(iii) There exists m0 ∈ N such that

τmP (e)d 6= τ iQ(e)d (m ∈ {0, . . . ,m0}, i ∈ {1, . . . , k − 1}).
3For i ∈ I we write xi for the i-th component of the element x ∈ XI .
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Proof. For simplicity we write τ := τP and σ := τQ, and for a ∈ Zd put

t(a) := min{` ∈ N0 : τ `(a) = 0}.

Then clearly

t(τm(a)) = max{0, t(a)−m} (m ∈ N0).

Since Q /∈ C we have {0, 1}d 6⊂ NQ by [6, Corollary 4.4]. Thus
we can choose a purely σ-periodic element e ∈ {0, 1}d \ {0} of minimal
period length k. More explicitly, we have

σk(e) = e and σi(e) 6= e (i = 1, . . . , k − 1)

with k > 1: Indeed, in view of Theorem 3.1 the assumption k = 1 yields
e = 0 by Lemma 3.4.

Furthermore, we may assume

t(e) = min{t(σi(e)) : i = 1, . . . , k − 1}.

Thus we have
m0 := t(e) > 0 ,

and we deduce

τm(e) 6= σi(e) (m ∈ {0, . . . ,m0}, i ∈ {1, . . . , k − 1}) .

Indeed, set
mi := t(σi(e)) (i = 1, . . . , k − 1)

and assume τm(e) = σi(e) for some m ∈ {0, . . . ,m0} and
i ∈ {1, . . . , k − 1}. Then we see

mi = t(σi(e)) = t(τm(e)) = t(e)−m = m0 −m,

which implies
mi +m = m0 ≤ mi,

hence m = 0 and e = σi(e): Contradiction. ♦

We find it convenient to mention the following observation.
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Lemma 3.5. Let P have a positive strictly dominant constant term and
d ≥ 3. If

e = (e1, e2, 0, . . . , 0) ∈ {0, 1}d \ NP

then we have

pd−1 < −e1, e2 = 1 and τP (e) = (1, 0, . . . , 0, 1) .

Proof. The assumption e2 = 0 implies the impossibility

τ(e1, e2, 0, . . . , 0) = 0.

Thus we have e2 = 1 and there exists δ ∈ {0, 1} such that

τ(e1, 1, 0, . . . , 0) = (1, 0, . . . , 0, δ).

Clearly, we must have δ = 1 and therefore pd−1 < −e1. ♦

3.2. Auxiliary results on quartic CNS polynomials

Now we collect some facts on quartic expansive polynomials which
will play an important role in our further considerations. Throughout we
let

P = X4 + p3X
3 + p2X

2 + p1X + p0

be a monic integer polynomial.

Lemma 3.6. If P is expansive and p0 is positive then the following
statements hold.

(i) p0 ≥ 2, |p1 − p0p3| ≤ p20 − 2, |p1 + p3| ≤ p0 + p2 and

∆(P ) := p30 − (p0 − 1)2p2 + (p0 + 1)p1p3 − p0p23 − p21 − p20 − p0 ≥ 0.

(ii) If p2 ≥ p0 − ap1 − bp3 − c then we have

f(p1, p3) ≤ (c+ 1)p0(p0 − 2) + c,

where we set

f(x, y) := x2 − a(p0 − 1)2x− (b(p0 − 1)2 + (p0 + 1)x− p0y)y .
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(iii) If p1 ≥ 0 and p3 ≤ 0 then we have p2 ≤ p0.

Proof. (i) [4, Lemma 3.2].
(ii) From (i) we deduce

0 ≤ p30 − (p0 − 1)2(p0 − ap1 − bp3 − c) + (p0 + 1)p1p3 − p0p23 − p21 − p20 − p0
= p30 − (p0 − 1)2p0 − p20 − p0 + c(p0 − 1)2 − p21 + a(p0 − 1)2p1 +

+(b(p0 − 1)2 + (p0 + 1)p1 − p0p3)p3
= p20 − 2p0 + c(p20 − 2p0 + 1)− f(p1, p3),

which implies our assertion.
(iii) Assume p2 > p0. Then an application of (ii) with a = b = 0, c = −1
yields the absurdity

0 ≥ p21 + (p0 + 1)(−p3)p1 + p0p
2
3 + 1 ≥ 1 .

♦

We now list some particular instances of non-CNS polynomials.

Lemma 3.7. The polynomial P is not a CNS polynomial if its coefficients
have one of the following three properties.

(i) p2 ≤ −2 and p1 + p3 ≥ 0

(ii) p1 ≥ p0 − 1, p2 ≥ −1 and p3 = −1

(iii) p1 ≥ 0, p2 ∈ {p0 − 1, p0} and p3 = −1

Proof. Assume P ∈ C, hence

(3.2) p0 ≥ p1 − p2 + p3

by Theorem 3.1 (iii). An inspection of [19, Section 25] reveals p0 ≥ 3, a
fact which we tacitly use in the sequel.
(i) In view of (3.2) and our prerequisites we have

0 ≤ p1 + p3 ≤ p0 + p2 < p0

and
−2 ≥ p2 ≥ p1 + p3 − p0 ≥ −p0 ,
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and we immediately verify

0101→ 1010→ 0101,

which contradicts our assumption.
(ii) Note that we have

(3.3) p1 − p2 ≤ p0 + 1

by (3.2).

First, let p2 = −1, hence

p0 − 1 ≤ p1 ≤ p0 ,

and in both cases we find nonzero periodic elements: For p1 = p0 − 1 we
have

1001→ 001− 1→ 01− 11→ 1− 110→ −1100→ 1001 ,

and for p1 = p0 we have

1001→ 001− 1→ 01− 12→ 1− 12− 2→ −12− 22→ · · ·

· · · → 2− 22− 1→ −22− 11→ 2− 110→ −1100→ 1001 .

Now, let p2 ≥ 0, hence by Lemma 3.6 (iii)

p2 ≤ p0 − 1 ,

thus by (3.3)
p1 ≤ p0 + 1 + p2 ≤ 2p0 .

Observe that we have
p1 − p2 ≥ 1 ,

since otherwise we had

p1 = p2 = p0 − 1 ,

yielding the impossibility ∆(P ) < 0 (see Lemma 3.6 (i)). We check

1001→ 001− 1 .
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Case 1 p1 − p2 ≤ p0

We verify
001− 1→ 01− 11→ 1− 110

yielding
p2 ≥ p0 − 2 ,

since otherwise we get the contradiction

1− 110→ −1100→ 1001 .

Now, a straightforward application of Lemma 3.6 (i) excludes p2 = p0−1 ,
thus we have

p2 = p0 − 2 ,

But then we must have
p1 ≤

7

5
p0 −

9

5
.

Indeed, assuming the contrary we infer from Lemma 3.6 (i)

0 ≤ ∆(P ) < p30−(p0−1)2(p0−2)−1

5
(p0+1)(7p0−9)− 1

25
(7p0−9)2−p20−2p0 ≤ 0

which is absurd.

By direct computation we check that (1, 1,−2, 2) is τP -periodic (of
period length 11) in case p0 ≤ 6. Therefore we may now assume p0 ≥ 7
and verify

0−12−1→ −12−10→ 2−102→ 2−102→ −102−2→ 02−21→ · · ·

· · · → 2−211→ −211−2→ 11−22→ 1−220→ −220−1→ 20−12→ 0−12−1 .

Again by Lemma 3.2 P cannot be a CNS polynomial.

Case 2 p1 − p2 > p0

Then we have
p1 − p2 = p0 + 1

and further

001−1→ 01−12→ 1−12−2→ −12−22→ 2−22−1→ −22−11→ · · ·

· · · → 2− 110→ −1100→ 1001
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yielding a contradiction.

(iii) First, let p2 = p0. The inequality

p21 + (p0 + 1)p1 + p0 − p20 + 2p0 ≤ 0

is a consequence of Lemma 3.6 (ii) (with a = b = c = 0) and yields
p1 ≤ p0 − 3. We immediately check that (1, 0, 0, 1) is a τP -periodic
element (of period length 10): Contradiction.

Second, let p2 = p0 − 1. If

p1 < p0 − 1

then the period
1001→ 0010→ 0100→ 1001

establishes our claim. If
p1 ≥ p0 − 1

we deduce
p21 + (p0 + 1)p1 + p0 − p20 + 2p0 ≤ 0

from Lemma 3.6 (ii) (with a = b = 0, c = 1) which is impossible. ♦

3.3. Proof of Theorem 2.2

After these preparations we are now in a position to prove Akiyama’s
Conjecture for particular quartic CNS polynomials. First recall

(3.4) p1 + p2 + p3 ≥ −1

and

(3.5) p0 ≥ p1 − p2 + p3

by Theorem 3.1.

Let us assume Q := P + n /∈ C. From Lemma 3.4 we infer the
existence of a purely σ-periodic element f ∈ {0, 1}4 \ {0} with minimal
period length k ≥ 2 and

(3.6) s(f) < −p0 or s(f) ≥ p0,
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where we set σ := τQ and

s(e) := e1 + e2p3 + e3p2 + e4p1 (e ∈ Z4).

We aim at proving the impossibility of the existence of f , and if
this cannot be achieved we show that P cannot be a CNS polynomial.
Our proof is divided into two main parts consisting of the inspection of
several cases and subcases.

In the first main part we assume that there is some j ∈ {0, . . . , k−1}
such that

s(σj(f)) < −p0 .

Setting e := σj(f) we have

e(i) := σi(e) ∈ {0, 1}4 \ {0} (i ∈ N0),

(3.7) e1 + e2p3 + e3p2 + e4p1 < −p0

and e(1) = (e2, e3, e4, 1).

Case 1 e4 = 0

Thus we deal with e = (e1, e2, e3, 0) and

e1 + e2p3 + e3p2 < −p0 .

by (3.7).

We must have e3 = 1. Indeed, the assumption e3 = 0 yields e2 = 1
by Lemma 3.5 and then

−1 ≤ e1 + p3 < −p0

by (3.7) which is impossible.

Then we have e = (e1, e2, 1, 0), e(1) = (e2, 1, 0, 1) and

(3.8) e1 + e2p3 + p2 < −p0 .

We deduce e2 = 1, since otherwise (3.8) would yield

p2 < −p0
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contradicting Lemma 3.6 (i).
Thus we have

p2 + p3 < −p0,

by (3.7), hence

p2 ≤ −p0 − 1− p3 ≤ −p0 − 1 + 1 = −p0

and then
p1 + p3 = 0

by Lemma 3.6 (i) again, and we obtain the absurdity

0 = p1 + p3 ≥ −1− p2 ≥ −1 + p0 > 0 .

Case 2 e4 = 1

We note e = (e1, e2, e3, 1), e(1) = (e2, e3, 1, 1) and

e1 + e2p3 + e3p2 + p1 < −p0 .

Case 2.1 e3 = 0

Then e = (e1, e2, 0, 1), e(1) = (e2, 0, 1, 1) and

e1 + e2p3 + p1 < −p0 .

Case 2.1.1 e2 = 0

Thus e = (e1, 0, 0, 1), e(1) = (0, 0, 1, 1), k > 2 and

p1 ≤ −p0 − e1 − 1 ≤ −p0 − 1

yielding
p2 + p3 ≥ −1− p1 ≥ p0

by (3.4).

Case 2.1.1.1 p1 + p2 ≥ 0

Then we have p2 ≥ p0 + 1, e(2) = (0, 1, 1, 0), e(3) = (1, 1, 0, 0),
e(4) = (1, 0, 0, 0) and e(5) = 0: Contradiction.

Case 2.1.1.2 p1 + p2 < 0
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Now, p1 + p2 + p3 ≥ 0 is impossible, since then we would have
e(6) = 0, and similarly we exclude p1 + p2 + p3 = −1. Thus in view of
(3.4) this case cannot occur.

Case 2.1.2 e2 = 1

Then e = (e1, 1, 0, 1), e(1) = (1, 0, 1, 1), k > 2,

(3.9) p1 + p3 ≤ −p0 − e1 − 1 ≤ −p0 − 1

and
p2 ≥ −1− (p1 + p3) ≥ p0 .

The assumption p1 + p2 ≥ −1 yields e(2) = (0, 1, 1, 0), e(3) =
(1, 1, 0, 0), e(4) = (1, 0, 0, 0) and e(5) = 0: Contradiction. Therefore,
we have

p1 + p2 < −1 ,

thus e(2) = (0, 1, 1, 1), p3 ≥ 1 by (3.4), hence by (3.9)

p1 ≤ −p0 − 1− p3 ≤ −p0 − 2

and then

(3.10) p1 + p2 + p3 ≥ 0 ,

because otherwise we had e(3) = (1, 1, 1, 1), e(4) = (1, 1, 1, 0), e(5) =
(1, 1, 0, 0), e(6) = (1, 0, 0, 0) and e(7) = 0: Contradiction.

An application of

p2 ≥ −(p1 + p3) ≥ p0 + 1

to Lemma 3.6 (ii) (with a = b = 0, c = −1) yields the absurdity

0 ≥ p21−(p0+1)p1p3+p0p
2
3+1 > p21−(p0+1)p1+p0 > (p0+2)2+(p0+2)(p0+1) .

Case 2.2 e3 = 1

Then e = (e1, e2, 1, 1), e(1) = (e2, 1, 1, 1) and

e1 + e2p3 + p2 + p1 < −p0 ,

hence
p1 + p2 ≤ −p0 − 1− e2p3 − e1 .
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The assumption e2 = 1 would imply

p1 + p2 ≤ −p0 − p3 − 1

contradicting (3.4).

Therefore, we have e2 = 0, e = (e1, 0, 1, 1), e(1) = (0, 1, 1, 1), k > 2,

−p3 − 1 ≤ p1 + p2 ≤ −p0 − 1 ,

hence p3 ≥ p0 and then (3.10): Indeed, the assumption

p1 + p2 + p3 = −1

yields e(2) = (1, 1, 1, 1), e(3) = (1, 1, 1, 0) and then by periodicity

(3.11) p2 + p3 < −1 ,

yielding p2 ≤ −p0−2, e(4) = (1, 1, 0, 1), e(5) = (1, 0, 1, 0), e(6) = (0, 1, 0, 1),
and e(7) = e(5) which leads to the contradiction k = 2.

We conclude e(2) = (1, 1, 1, 0), deduce (3.11) and then similarly as
above e(3) = (1, 1, 0, 1), e(4) = (1, 0, 1, 0), e(5) = (0, 1, 0, 1), and e(6) = e(4)

which again leads to the contradiction k = 2.

This terminates the proof of the first main part, and we now assume

s(σj(f)) ≥ −p0 (j = 0, . . . , k − 1),

hence by (3.6)

p0 ≤ s(f) ≤ e1p3 + e2p2 + e3p1 + 1 ,

where we set
e := σ(f) := (e1, e2, e3, 0).

For convenience we collect the following inequalities:

(3.12) p0 − 1 ≤ e1p3 + e2p2 + e3p1 ,

(3.13) s(e(j)) ≥ −p0 (j ∈ N0) ,
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and by Lemma 3.5

(3.14) s(e(i)) < 0 for some i ∈ {0, 1} .

We may assume that i is minimal with this property.

Case 1 i = 0

Thus e(1) = (e2, e3, 0, 1), further

(3.15) −p0 ≤ e1 + e2p3 + e3p2 < 0

by (3.13) and (3.14), and

(3.16) p1 ≥ −p0 − e3p3 − e2

by (3.13) again.

Case 1.1 e3 = 0

Then we infer e2 = 1 from Lemma 3.5, thus e = (e1, 1, 0, 0), e(1) =
(1, 0, 0, 1), further

p3 ≤ −1− e1 ≤ −1

by (3.15) yielding p3 = −1, e1 = 0 and e = (0, 1, 0, 0). Then we have

p2 ≥ p0 − 1

by (3.12), and
p1 ≥ −p0 − 1

by (3.16).

Case 1.1.1 p1 < −1

Then e(2) = (0, 0, 1, 1) and e(3) = (0, 1, 1, 0) by (3.4). But this
implies the contradiction e(4) = (1, 1, 0, 0), e(5) = (1, 0, 0, 0) and e(6) = 0.

Case 1.1.2 p1 ≥ −1

Then e(2) = (0, 0, 1, 0), e(3) = (0, 1, 0, 0) and e(4) = e(1), hence k = 3
and e1 = 0. Lemma 3.6 (ii) (with a = −1, b = c = 0) shows p1 6= −1.
Thus we have p1 ≥ 0 and by Lemma 3.6 (iii) p2 ≤ p0, thus

p2 ∈ {p0, p0 − 1},

and our claim follows from Lemma 3.7 (iii).
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Case 1.2 e3 = 1

Then e = (e1, e2, 1, 0), e(1) = (e2, 1, 0, 1), further

(3.17) −p0 ≤ e1 + e2p3 + p2 ≤ −1

by (3.15),
−p0 − e2 ≤ p1 + p3

by (3.16), and
p0 − 1 ≤ e1p3 + e2p2 + p1

by (3.12).
Further we have

p1 + p3 ≥ −e2 .

Indeed, the opposite inequality, (3.4) and (3.17) yield

−e2 > p1 + p3 ≥ −1− p2 ≥ e2p3 ,

hence e2 = 1 and then the impossibility −1 > p3.

Thus we have e(2) = (1, 0, 1, 0) and by (3.17)

p2 ≤ −1− e2p3 − e1 .

Case 1.2.1 e2 = 0

This implies
p1 + p3 ≥ 0

and e = (e1, 0, 1, 0), e(1) = (0, 1, 0, 1), further

−p0 − e1 ≤ p2 ≤ −1− e1 ≤ −1

and

(3.18) p0 − 1 ≤ p1 + e1p3 .

Case 1.2.1.1 p2 = −1

Then we successively find e1 = 0, e = (0, 0, 1, 0), e(3) = (0, 1, 0, 0),
p3 = −1 and p1 ≥ p0 − 1. Lemma 3.7 (ii) shows that P is not a CNS
polynomial: Contradiction.
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Case 1.2.1.2 p2 < −1

Then we have e1 = 1: Indeed, otherwise we would have e =
(0, 0, 1, 0), e(1) = (0, 1, 0, 1), e(2) = (1, 0, 1, 0) and e(3) = e(1), which would
yield k = 2, hence e = e(2): Contradiction.

Thus, from (3.15) we infer

−p0 − 1 ≤ p2 ≤ −2,

then
p1 + p3 ≥ 1

from (3.4) and p3 = −1 from Lemma 3.7 (i). Now (3.18) yields

p1 ≥ p0

and then (3.5) the absurdity

p0 ≥ p0 + 2− 1 > p0 .

Case 1.2.2 e2 = 1

By the above we have

p1 + p3 ≥ −1, p2 + p3 ≤ −1− e1

and e = (e1, 1, 1, 0), e(1) = (1, 1, 0, 1), e(2) = (1, 0, 1, 0) and k > 2.

Now we have p2 ≥ −1. Indeed, the assumption p2 < −1 yields
e(3) = (0, 1, 0, 1), and in view of k > 2 we must have

p1 + p3 = −1 ,

which implies the impossibility

p2 ≥ −1− (p1 + p3) = 0 .

Thus we find e(3) = (0, 1, 0, 0) yielding

p3 = −1, p1 ≥ 0 ,

and e(4) = (1, 0, 0, 1), e(5) = (0, 0, 1, 0) and then p2 = −1, since otherwise
we would have e(6) = e(3)) yielding k = 3 and the absurdity e = e(3).
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From (3.4) we infer p1 ≥ 1 yielding e(6) = (0, 1, 0, 1), e(7) = e(2),
hence k = 5 and the contradiction e = e(5).

Case 2 i = 1

Our assumptions imply

e3p2+e2p3+e1 = s(e) ≥ 0, e(1) = (e2, e3, 0, 0) and e3p3+e2 = s(e(1)) < 0 ,

and applying Lemma 3.5 we deduce

e3 = 1, p3 = −1, e2 = 0, e = (e1, 0, 1, 0) and p2 ≥ −e1 .

Now (3.12) implies

p1 ≥ p0 − 1 + e1 ≥ p0 − 1 ,

and then Lemma 3.7 (ii) leads to the contradiction

−e1 ≤ p2 < −1 .

The proof is now complete.
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