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Abstract: The object of the present paper is to study of Yamabe solitons on
generalized (k, µ)-space-forms with respect to semisymmetric metric connection
and obtained sufficient conditions for which such Yamabe soliton turns out to
be a Yamabe soliton with respect to Levi-Civita connection.

1. Introduction

The notion of Yamabe flow was introduced by Hamilton ([9], [10]) as
a tool for constructing metrics of constant scalar curvature in a given con-
formal class of Riemannian metrics on a Riemannian manifold (Mn, g),
n ≥ 3. The Yamabe flow is an evolution equation for metrics on a Rie-
mannian manifold as follows:

∂

∂t
g = −rg,
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where r is the scalar curvature corresponds to g. In dimension n = 2,
the Yamabe flow is equivalent to the Ricci flow. However, in dimension
n > 2, the Yamabe and Ricci flows do not agree as the first one preserves
the conformal class of the metric but the Ricci flow does not in general.

A Yamabe soliton is a special solution of the Yamabe flow that
moves by one parameter family of diffeomorphisms generated by a fixed
(time-independent) vector field V on M and homothetic.

A Yamabe soliton on a Riemannian manifold (M, g) is a triplet
(g, V, σ) such that

(1.1)
1

2
£V g = (r − σ)g,

where £V denotes the Lie derivative in the direction of the vector field V
and σ is a constant. The Yamabe soliton is said to be shrinking, steady
and expanding according as σ < 0,= 0 and > 0 respectively. If σ is a
smooth function on M then the metric satisfying (1.1) is called almost
Yamabe soliton [2]. It may be noted that Yamabe solitons coincide with
the Ricci solitons in dimension n = 2 and for n > 2, the Ricci solitons
and Yamabe solitons have different behaviours.

On the analogy of (k, µ)-contact metric manifold [4], a contact met-
ric manifold M is said to be a generalized (k, µ)-space [5] if its curvature
tensor R satisfies the condition

(1.2) R(X, Y )ξ = k{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }

for some smooth functions k and µ on M which are independent of the
choice of vector fields X and Y . If k and µ are constants then the
manifold M is called a (k, µ)-space.

A (k, µ)-space M of dimension greater than 3 with constant ϕ-
sectional curvature c is called (k, µ)-space-form [12] and its curvature
tensor R is given by [12]

R(X, Y )Z =
c+ 3

4
R1(X, Y )Z +

c− 1

4
R2(X, Y )Z

+

(
c+ 3

4
− k

)
R3(X, Y )Z +R4(X, Y )Z +

1

2
R5(X, Y )Z(1.3)

+ (1− µ)R6(X, Y )Z,

where R1, R2, R3, R4, R5, R6 are defined as

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y,
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R2(X, Y )Z = g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ,

R3(X, Y )Z = η(X)η(Z)Y −η(Y )η(Z)X+g(X,Z)η(Y )ξ−g(Y, Z)η(X)ξ,

R4(X, Y )Z = g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,

R5(X, Y )Z = g(hY, Z)hX−g(hX,Z)hY+g(ϕhX,Z)ϕhY−g(ϕhY, Z)ϕhX,

R6(X, Y )Z = η(X)η(Z)hY−η(Y )η(Z)hX+g(hX,Z)η(Y )ξ−g(hY, Z)η(X)ξ

for all vector fields X, Y, Z on M , where h = 1
2
£ξϕ. As a generaliza-

tion of (k, µ)-space-form, in [6] Carriazo et al. introduced and studied
the notion of generalized (k, µ)-space-form with the existence of such
notion by several interesting examples. An almost contact metric mani-
fold M(ϕ, ξ, η, g) is called generalized (k, µ)-space-form [6] if there exist
f1, f2, f3, f4, f5, f6 ∈ C∞(M), the ring of smooth functions on M , such
that

(1.4) R(X, Y )Z = (f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6)(X, Y )Z,

where R1, R2, R3, R4, R5 and R6 are defined as in (1.3) and such a
manifold of dimension (2n + 1), n > 1 (the condition n > 1 is assumed
throughout the paper), is denoted by M(f1, f2, · · · , f6).

If, in particular, f1 = c+3
4
, f2 = c−1

4
, f3 = c+3

4
− k, f4 = 1, f5 = 1

2

and f6 = 1 − µ then the generalized (k, µ)-space-forms turns into the
notion of (k, µ)-space-forms. In this connection it may be noted that
the generalized (k, µ)-space-form is the generalization of the generalized
Sasakian-space-forms introduced by Alegre et al. [1]. The generalized
(k, µ)-space-forms have been also studied by Hui et al. ([11], [13]).

In [7] Friedmann and Schouten introduced the notion of semisym-
metric linear connection on a differentiable manifold. Then in 1932 Hay-
den [8] introduced the idea of metric connection with torsion on a Rie-
mannian manifold. A systematic study of the semisymmetric metric
connection on a Riemannian manifold has been given by Yano in 1970
[15].

A linear connection ∇̄ in an n-dimensional differentiable manifold
M is said to be a semisymmetric connection [15] if its torsion tensor τ of
the connection ∇̄ is of the form

(1.5) τ(X, Y ) = ∇̄XY − ∇̄YX − [X, Y ]

satisfies
τ(X, Y ) = η(Y )X − η(X)Y,
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where η is a 1-form. Again, if the semisymmetric connection ∇̄ satisfies
the condition

(1.6) (∇̄Xg)(Y, Z) = 0

for all X, Y , Z ∈ χ(M), where χ(M) is the Lie algebra of vector fields on
the manifoldM , then ∇̄ is said to be a semisymmetric metric connection.
Semisymmetric metric connection have been studied by many authors in
several ways to a different extent. The semisymmetric connection ∇̄ in
a generalized (k, µ)-space-form M(f1, f2, · · · , f6) is defined by [14]

(1.7) ∇̄XY = ∇XY + η(Y )X − g(X, Y )ξ,

where ∇ is the Levi-Civita connection on M .
The object of the present paper is to study Yamabe solitons on

generalized (k, µ)-space-forms with respect to semisymmetric metric con-
nection. The paper is structured as follows. Section 2 is concerned with
preliminaries. Section 3 deals with the study of Yamabe solitons on
generalized (k, µ)-space-forms with respect to Levi-Civita and semisym-
metric metric connection. It is shown that if (g, ξ, σ) is a Yamabe soliton
on a generalized (k, µ)-space-form then its scalar curvature is constant
and this soliton is shrinking, steady and expanding depending upon the
sign of the scalar curvature. The Yamabe soliton (g, ξ, σ) with potential
vector field ξ as torse forming on generalized (k, µ)-space-form is also
studied. Also we found the sufficient condition of a Yamabe soliton on a
generalized (k, µ)-space-form with respect to semisymmetric metric con-
nection to be a Yamabe soliton on a generalized (k, µ)-space-form with
respect to Levi-Civita connection. The Yamabe soliton on generalized
(k, µ)-space-form whose potential vector field is pairwise collinear with
Reeb vector field is also studied.

2. Preliminaries

An odd dimensional smooth manifold M is said to be an almost
contact metric manifold [3] if there exist a (1,1) tensor field ϕ, a vector
field ξ, a 1-form η and a Riemannian metric g on M such that

(2.1) ϕ2(X) = −X + η(X)ξ, ϕξ = 0,

(2.2) η(ξ) = 1, g(X, ξ) = η(X), η(ϕX) = 0,
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(2.3) g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY )

for any vector fields X and Y on M . Such a manifold is said to be a
contact metric manifold [3] if dη(X, Y ) = g(X,ϕY ) for all X, Y ∈ χ(M).

Given a contact metric manifoldM2n+1(ϕ, ξ, η, g), we define a (1,1)
tensor field h by 2h = £ξϕ. Then h is symmetric and satisfies the
following relations

(2.4) hξ = 0, hϕ = −ϕh, tr(h) = tr(ϕh) = 0, η(hX) = 0

for all X ∈ χ(M).
Moreover, if ∇ denotes the Riemannian connection of g, then the

following relation holds:

(2.5) ∇Xξ = −ϕX − ϕhX, (∇Xη)(Y ) = g(X + hX,ϕY ).

In a (2n + 1)-dimensional (k, µ)-contact metric manifold, we have
[4]

(2.6) h2 = (k − 1)ϕ2, k ≤ 1,

(2.7) (∇Xϕ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.8)
(∇Xh)(Y ) = [(1−k)g(X,ϕY )+g(X, hϕY )]ξ+η(Y )h(ϕX+ϕhX)−µη(X)ϕhY.

For an almost contact metric manifold, a ϕ-section of M at p ∈M
is a section π ⊆ TpM spanned by a unit vector Xp orthogonal to ξp
and ϕXp. The ϕ-sectional curvature of π is defined by K(X ∧ ϕX) =
g(R(X,ϕX)ϕX,X). A (k, µ)-space of dimension greater than 3 with
constant ϕ-sectional curvature c is called a (k, µ)-space-form.

In a generalized (k, µ)-space-form, we have ([1],[6], [14])
(2.9)
R(X, Y )ξ = (f1−f3){η(Y )X−η(X)Y }+(f4−f6){η(Y )hX−η(X)hY },

(2.10)
R(ξ, Y )Z = (f1−f3)

[
g(Y, Z)ξ−η(Z)Y

]
+(f4−f6)

[
g(hY, Z)ξ−η(Z)hY

]
.

(2.11)
QX = (2nf1+f2−f3)X+[(2n−1)f4−f6)]hX− [3f2+(2n−1)f3)]η(X)ξ,
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S(X, Y ) = (2nf1 + f2 − f3)g(X, Y ) + [(2n− 1)f4 − f6]g(hX, Y )

− [3f2 + (2n− 1)f3)]η(X)η(Y ),(2.12)

(2.13) S(X, ξ) = 2n(f1 − f3)η(X),

(2.14) r = 2n[(2n+ 1)f1 + 3f2 − f3]

for any X, Y , Z, ∈ χ(M) where Q is the Ricci operator and S is the
Ricci tensor of M(f1, f2, · · · , f6).

A vector field ξ is called a torse-forming vector field [16] on a gen-
eralized (k, µ)-space-form if ∇Xξ = ρX + γ(X)ξ, where ρ is a smooth
function and γ is a nowhere vanishing 1-form.
Further, if R̄ is the curvature tensor, S̄ is the Ricci tensor and r̄ is the
scalar curvature ofM(f1, f2, · · · , f6) with respect to semisymmetric met-
ric connection then we have [14]

R̄(X, Y )ξ =

(
f1 − f3 −

1

2

)
{η(Y )X − η(X)Y }+ (f4 − f6){η(Y )hX

− η(X)hY } − η(Y )β(X) + η(X)β(Y ),(2.15)

R̄(ξ, Y )Z = (f1 − f3 − 2){g(Y, Z)ξ − η(Z)Y }
+ (f4 − f6){g(hY, Z)ξ − η(Z)hY }(2.16)
+ g(ϕY, Z)ξ + g(ϕhY, Z)ξ − η(Z)[ϕY + ϕhY ],

η(R̄(X, Y )Z) =

(
f1 − f3 −

1

2

)
{g(Y, Z)η(X)− g(X,Z)η(Y )}

+ (f4 − f6){g(hY, Z)η(X)− g(hX,Z)η(Y )}(2.17)
− α(Y, Z)η(X) + α(X,Z)η(Y ),

(2.18) S̄(X, ξ) =

[
2n(f1 − f3)−

2n− 1

2
− trace(α)

]
η(X),

(2.19) S̄(X, Y ) = S(X, Y )− trace(α)g(X, Y )− (2n− 1)α(X, Y )

and

(2.20) r̄ = r − 4n trace(α),

where α(X, Y ) = g(β(X), Y ) and β(X) = ∇̄Xξ + 1
2
X for all X, Y on

M(f1, f2, · · · , f6).
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3. Yamabe solitons on generalized (k, µ)-space-form

Let (g, ξ, σ) be a Yamabe soliton on a generalized (k, µ)-space-form.
Then we have from (1.1) that

(3.1)
1

2
(£ξg)(Y, Z) = (r − σ)g(Y, Z).

From (2.1)-(2.3) and (2.5) we have

(3.2) (£ξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ) = 0.

Using (3.2) in (3.1) we get r = σ= constant and hence we can state the
following:

Theorem 3.1. If (g, ξ, σ) is a Yamabe soliton on a generalized (k, µ)-
space-form M then its scalar curvature is constant and the soliton is
shrinking, steady and expanding according as (2n+1)f1+3f2−f3 < 0,= 0
and > 0 respectively.

Corollary 3.2. If (g, ξ, σ) is a Yamabe soliton on a (k, µ)-space-form M
then its scalar curvature is constant and the soliton is shrinking, steady
and expanding according as k + 1

4
[(2n + 3)c + 6n− 3] < 0,= 0 and > 0

respectively.

Remark 1: The Theorem 3.1 is also same for generalized Sasakian-
space-form instead of generalized (k, µ)-space-form.

Corollary 3.3. If (g, ξ, σ) is a Yamabe soliton on a Sasakian-space-
form then its scalar curvature is constant and the soliton is shrinking,
steady and expanding according as (2n+ 3)c+ 6n+ 1 < 0,= 0 and > 0
respectively.

If ξ is torse-forming vector field on a generalized (k, µ)-space-form
then by definition, we have

g(∇Xξ, ξ) = (ρη + γ)X

and hence by virtue of (2.5) it follows that γ = −ρn. Thus we obtain

(3.3) ∇Xξ = ρ{X − η(X)ξ}.
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Using (3.3), we can compute

(3.4) (£ξg)(Y, Z) = 2ρ[g(Y, Z)− η(Y )η(Z)].

In view of (2.14) and (3.4) it follows from (3.1) that

(3.5) ρ[g(Y, Z)− η(Y )η(Z)] = [2n{(2n+ 1)f1 + 3f2 − f3} − σ]g(Y, Z)

from which we get

(3.6) ρ = (1 +
1

2n
)[2n{(2n+ 1)f1 + 3f2 + f3} − σ]

This leads to the following:

Theorem 3.4. If (g, ξ, σ) is a Yamabe soliton on a generalized (k, µ)-
space-form (respectively generalized Sasakian-space-form) with potential
vector field ξ as torce-forming then the smooth function ρ is given in (3.6).

Now, Let us take (g, ξ, σ) be a Yamabe soliton on a generalized
(k, µ)-space-form with respect to semisymmetric metric connection. Then
we have

(3.7)
1

2
(£̄ξg)(Y, Z) = (r̄ − σ)g(Y, Z),

where £̄ξ is the Lie derivative along the vector field ξ on M with respect
to semisymmetric metric connection.
Again form (1.7), (2.1) - (2.3) and (2.5), we compute

(£̄ξg)(Y, Z) = g(∇̄Y ξ, Z) + g(Y, ∇̄Zξ)(3.8)
= 2[g(Y, Z)− η(Y )η(Z)].

Using (2.20) and (3.8) in (3.7) we get

[r − 4n trace(α)− σ − 1]g(Y, Z) + η(Y )η(Z) = 0.

Contracting the above relation over Y and Z, we get
r = σ + 1

n
(6n3 − 4n2 + n − 1)= constant and hence we can state the

following:
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Theorem 3.5. If (g, ξ, σ) is a Yamabe soliton on a generalized (k, µ)-
space-form with respect to semisymmetric metric connection then its
scalar curvature is constant and the soliton is shrinking, steady and ex-
panding according as

(2n+ 1)f1 + 3f2 − f3 S
1

n
(6n3 − 4n2 + n− 1)

respectively.

Corollary 3.6. If (g, ξ, σ) is a Yamabe soliton on a (k, µ)-space-form
with respect to semisymmetric metric connection then its scalar curva-
ture is constant and the Yamabe soliton is shrinking, steady and ex-
panding according as k + 1

4
[(2n + 3)c + 6n − 3] S 1

n
(6n3 − 4n2 + n − 1)

respectively.

Corollary 3.7. If (g, ξ, σ) is a Yamabe soliton on a Sasakian-space-
form with respect to semisymmetric metric connection then its scalar
curvature is constant and the Yamabe soliton is shrinking, steady and
expanding according as n[(2n + 3)c + 6n + 1] S 4[6n3 − 4n2 + n − 1]
respectively.

We now consider (g, V, σ) is a Yamabe soliton on a generalized
(k, µ)-space-formM(f1, f2, · · · , f6) with respect to semisymmetric metric
connection. Then we have

(3.9)
1

2
(£̄V g)(Y, Z) = (r̄ − σ)g(Y, Z)

where £̄V is the Lie derivative along the vector field V onM with respect
to semisymmetric metric connection. By virtue of (1.7), we have

(£̄V g)(Y, Z) = g(∇̄Y V, Z) + g(Y, ∇̄ZV )(3.10)
= (£V g)(Y, Z) + 2η(V )g(Y, Z)

− [η(Z)g(Y, V ) + η(Y )g(Z, V )].

Using (2.20) and (3.10) in (3.9), we get

1

2
(£V g)(Y, Z) = (r − σ)g(Y, Z)− [2n(3n− 2) + η(V )]g(Y, Z)

+
1

2
[η(Z)g(Y, V ) + η(Y )g(Z, V )].(3.11)
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Theorem 3.8. A Yamabe soliton (g, V, σ) be on a generalized (k, µ)-
space-form M(f1, f2, · · · , f6) is invariant under semisymmetric metric
connection if and only if the relation

{2n(3n− 2) + η(V )}g(Y, Z) =
1

2
[η(Z)g(Y, V ) + η(Y )g(Z, V )]

holds for arbitrary vector fields Y and Z.

Let (g, V, σ) be a Yamabe soliton on a generalized (k, µ)-space-form
M(f1, f2, · · · , f6) with respect to semisymmetric metric connection such
that V is pairwise collinear with ξ, i.e, V = bξ, where b is a function.
Then (3.9) holds, which implies by virtue of (2.20) and (3.8) that

b[g(Y, Z)− η(Y )η(Z)] +
1

2
(Y b)η(Z) +

1

2
(Zb)η(Y )(3.12)

= [r − 2n(3n− 2)− σ]g(Y, Z).

Putting Z = ξ in (3.12) and using (2.1)-(2.2) we get

(3.13)
1

2
(Y b) +

1

2
(ξb)η(Y ) = [r − 2n(3n− 2)− σ]η(Y ).

Again setting Y = ξ in (3.13) and using (2.2) we obtain

(3.14) (ξb) = r − 2n(3n− 2)− σ.

In view of (3.14), it follows from (3.13) that

(3.15) db = [r − 2(3n− 2)− σ]η.

Applying d on (3.15) we get

(3.16) [r − 2n(3n− 2)− σ]dη = 0.

Since dη 6= 0 we have from (3.16) that r− 2n(3n− 2)− σ = 0 and hence
from (3.15) that db = 0, which implies that b is constant. This leads to
the following:

Theorem 3.9. If (g, V, σ) is a Yamabe soliton on a generalized (k, µ)-
space-form M(f1, f2, · · · , f6) with respect to semisymmetric metric con-
nection such that V is pointwise collinear with ξ then V is a constant
multiple of ξ and the Yamabe soliton is shrinking, steady and expanding
according as (2n+ 1)f1 + 3f2 − f3 S 2n(3n− 2) respectively.
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Corollary 3.10. If (g, V, σ) is a Yamabe soliton on a (k, µ)-space-formM
with respect to semisymmetric metric connection such that V is pointwise
collinear with ξ then V is a constant multiple of ξ and the Yamabe soliton
is shrinking, steady and expanding according as k+ 1

4
[(2n+3)c+6n−3] S

2n(3n− 2) respectively.

Corollary 3.11. If (g, V, σ) is a Yamabe soliton on a Sasakian-space-
form M with respect to semisymmetric metric connection such that V
is pointwise collinear with ξ then V is a constant multiple of ξ and the
Yamabe soliton is shrinking, steady and expanding according as (2n +

3)c+ 6n+ 1 S 8n(3n− 2) respectively.

Remark 2: If (g, V, σ) is a Yamabe soliton on a generalized (k, µ)-
space-formM(f1, f2, · · · , f6) with respect to Levi-Civita connection such
that V is pointwise collinear with ξ then V is a constant multiple of ξ
and the Yamabe soliton is shrinking, steady and expanding according as
(2n+ 1)f1 + 3f2 − f3 S 0 respectively.

References
[1] P. ALEGRE, D. E. BLAIR and A. CARRIAZO, Generalized Sasakian-space-

forms, Israel J. Math., 14 (2004), 157-183.
[2] E. BARBOSA and E. RIBEIRO, On conformal solutions of the Yamabe flow,

Arch. Math., 101 (2013), 79-89.
[3] D. E. BLAIR, Contact manifolds in Riemannian Geometry, Lecture Notes in

Math., 509, Springer-Verlag, 1976.
[4] D. E. BLAIR, T. KOUFOGIORGOS and B. J. PAPANTONIOU, Contact metric

manifolds satisfying a nullity condition, Israel J. Math., 19 (1995), 189-214.
[5] E. BOECKX, A full classification of contact metric (k, µ)-spaces, Illinois J.

Math., 44 (2000), 212-219.
[6] A. CARRIAZO, V. M. MOLINA and M. M. TRIPATHI, Generalized (k, µ)-

space-forms, Mediterranean J. Math., 10 (2013), 475-496.
[7] A. FRIEDMANN and J. A. SCHOUTEN, Über die Geometric der halbsym-
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