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Abstract: The object of the present paper is to study of Yamabe solitons on
generalized (k, p)-space-forms with respect to semisymmetric metric connection
and obtained sufficient conditions for which such Yamabe soliton turns out to
be a Yamabe soliton with respect to Levi-Civita connection.

1. Introduction

The notion of Yamabe flow was introduced by Hamilton ([9], [10]) as
a tool for constructing metrics of constant scalar curvature in a given con-
formal class of Riemannian metrics on a Riemannian manifold (M™", g),
n > 3. The Yamabe flow is an evolution equation for metrics on a Rie-
mannian manifold as follows:

—q = —r ,
ot g
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where 7 is the scalar curvature corresponds to g. In dimension n = 2,
the Yamabe flow is equivalent to the Ricci flow. However, in dimension
n > 2, the Yamabe and Ricci flows do not agree as the first one preserves
the conformal class of the metric but the Ricci flow does not in general.

A Yamabe soliton is a special solution of the Yamabe flow that
moves by one parameter family of diffeomorphisms generated by a fixed
(time-independent) vector field V' on M and homothetic.

A Yamabe soliton on a Riemannian manifold (M, g) is a triplet
(g,V,0) such that

(11) SEvg=(r—olg

where £y denotes the Lie derivative in the direction of the vector field V'
and o is a constant. The Yamabe soliton is said to be shrinking, steady
and expanding according as ¢ < 0,= 0 and > 0 respectively. If o is a
smooth function on M then the metric satisfying (1.1) is called almost
Yamabe soliton [2]|. It may be noted that Yamabe solitons coincide with
the Ricci solitons in dimension n = 2 and for n > 2, the Ricci solitons
and Yamabe solitons have different behaviours.

On the analogy of (k, u)-contact metric manifold [4], a contact met-
ric manifold M is said to be a generalized (k, u1)-space [5] if its curvature
tensor R satisfies the condition

(1.2)  R(X,Y)E = k{n(Y)X = n(X)Y} + p{n(¥Y)hX —n(X)hY'}

for some smooth functions £ and 1 on M which are independent of the
choice of vector fields X and Y. If k£ and p are constants then the
manifold M is called a (k, j1)-space.

A (k,p)-space M of dimension greater than 3 with constant -
sectional curvature c is called (k, p)-space-form [12] and its curvature
tensor R is given by [12]

—1
R(X,Y)Z = CZSRl(X, Y)Z+ < [ R(XY)Z

1
(1.3) + (CZS —k) Ry(X.Y)Z + Ru(X.Y)Z + JRs(X.Y)Z

+ (I-pRs(X,Y)Z,
where Rq, Ry, R3, R4, R5, Rg are defined as
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Ro(X,Y)Z = g(X,0Z)pY — g(Y,0Z)pX +29(X, pY)pZ,
Ry(X,Y)Z =n(X)n(2)Y —n(Y)n(Z)X +9(X, Z)n(Y)E—g(Y, Z)n(X)E,
Ri(X,Y)Z = g(Y, Z2)hX — g(X, Z)hY + g(hY, Z)X — g(hX, 2)Y,
Rs(X,Y)Z = g(hY, Z)h X —g(hX, Z)hY +g(phX, Z)phY —g(phY, Z)phX,
Re(X,Y)Z = n(X)n(Z)hY —n(Y)n(Z)hX+g(hX, Z)n(Y)E—g(RY, Z)n(X)¢

for all vector fields X,Y,Z on M, where h = %i’ggp. As a generaliza-
tion of (k, u)-space-form, in [6] Carriazo et al. introduced and studied
the notion of generalized (k, u)-space-form with the existence of such
notion by several interesting examples. An almost contact metric mani-
fold M(p,&,n,g) is called generalized (k, u)-space-form 6] if there exist
f1, f25 f3, 1, 5, f6 € C°°(M), the ring of smooth functions on M, such
that

(14) R(X,Y)Z = (fiR1 + faRo + f3Rs + faRy + fsRs + fsRe)(X,Y) Z,

where Ry, Rs, R3, Ry, Rs and Rg are defined as in (1.3) and such a
manifold of dimension (2n + 1), n > 1 (the condition n > 1 is assumed
throughout the paper), is denoted by M(fi, fo, -, f6)-

If, in particular, f1 = %,fg = %,fg, = % — ]{?,f4 = 1,f5 = %
and f¢ = 1 — p then the generalized (k, p)-space-forms turns into the
notion of (k, pu)-space-forms. In this connection it may be noted that
the generalized (k, uu)-space-form is the generalization of the generalized
Sasakian-space-forms introduced by Alegre et al. [1]. The generalized
(k, u)-space-forms have been also studied by Hui et al. ([11], [13]).

In [7] Friedmann and Schouten introduced the notion of semisym-
metric linear connection on a differentiable manifold. Then in 1932 Hay-
den [8] introduced the idea of metric connection with torsion on a Rie-
mannian manifold. A systematic study of the semisymmetric metric
connection on a Riemannian manifold has been given by Yano in 1970
[15].

A linear connection V in an n-dimensional differentiable manifold
M is said to be a semisymmetric connection [15] if its torsion tensor 7 of
the connection V is of the form

(1.5) 7(X,Y) = VxY — Vy X — [X,Y]

satisfies
T(X,Y) =n(Y)X —n(X)Y,
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where 7 is a 1-form. Again, if the semisymmetric connection V satisfies
the condition

(1.6) (Vxg)(Y,Z) =0
forall X, Y, Z € x(M), where x(M) is the Lie algebra of vector fields on

the manifold M, then V is said to be a semisymmetric metric connection.
Semisymmetric metric connection have been studied by many authors in
several ways to a different extent. The semisymmetric connection V in

a generalized (k, p)-space-form M (fy, fo, -, fo) is defined by [14]
(1.7) VxY =VxY +n(Y)X — g(X,Y)E,

where V is the Levi-Civita connection on M.

The object of the present paper is to study Yamabe solitons on
generalized (k, j1)-space-forms with respect to semisymmetric metric con-
nection. The paper is structured as follows. Section 2 is concerned with
preliminaries. Section 3 deals with the study of Yamabe solitons on
generalized (k, u)-space-forms with respect to Levi-Civita and semisym-
metric metric connection. It is shown that if (g,£, o) is a Yamabe soliton
on a generalized (k, p)-space-form then its scalar curvature is constant
and this soliton is shrinking, steady and expanding depending upon the
sign of the scalar curvature. The Yamabe soliton (g, ¢, o) with potential
vector field £ as torse forming on generalized (k, u1)-space-form is also
studied. Also we found the sufficient condition of a Yamabe soliton on a
generalized (k, pu)-space-form with respect to semisymmetric metric con-
nection to be a Yamabe soliton on a generalized (k, u)-space-form with
respect to Levi-Civita connection. The Yamabe soliton on generalized
(k, p)-space-form whose potential vector field is pairwise collinear with
Reeb vector field is also studied.

2. Preliminaries

An odd dimensional smooth manifold M is said to be an almost
contact metric manifold [3] if there exist a (1,1) tensor field ¢, a vector
field &, a 1-form 7 and a Riemannian metric g on M such that

(2.1) QX)) =—-X +n(X)E, ¢£=0,

(2.2) n€) =1, g(X,&) =n(X), n(eX)=0,
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(2.3)  g9(pX,0Y) =g(X,Y) =n(X)n(Y), g(X,Y)=—g(X,pY)

for any vector fields X and Y on M. Such a manifold is said to be a
contact metric manifold 3] if dn(X,Y) = g(X,¢Y) for all X,Y € x(M).

Given a contact metric manifold M?" "1 (p, &, 1, g), we define a (1,1)
tensor field h by 2h = £L¢p. Then h is symmetric and satisfies the
following relations

(2.4) hE =0, he=—ph, tr(h)=tr(ph)=0, nhX)=0

for all X € x(M).
Moreover, if V denotes the Riemannian connection of g, then the
following relation holds:

(25)  Vx&=—pX —phX, (Vxn)(Y)=g(X + hX, oY)

In a (2n + 1)-dimensional (k, pt)-contact metric manifold, we have

4]

(2.6) R = (k—1)p? k<1,

(2.7) (Vxe)(Y) = g(X +hX,Y)E = n(Y)(X + hX),
(2.8)

(Vxh)(Y) = [(1-k)g(X, oY )+g(X, hoY)|E+n(Y ) h(p X +phX)—pun(X)phY.

For an almost contact metric manifold, a yp-section of M at p € M
is a section m C T,M spanned by a unit vector X, orthogonal to &,
and ¢X,. The g-sectional curvature of 7 is defined by K (X A ¢X) =
g(R(X,0oX)pX,X). A (k,u)-space of dimension greater than 3 with
constant p-sectional curvature c is called a (k, u)-space-form.

In a generalized (k, p)-space-form, we have ([1],[6], [14])

(2.9)
R(X,Y)E = (fi— [3){n(Y)X =n(X)Y} + (fa— fo){n(Y)hX —n(X)hY},
(2.10)
R(EY)Z = (fr—f3)[9(Y, 2)E=n(2)Y |+ (fa— fo) [9(hY, Z)E —n(Z)hY].
(2.11)

QX = 2nfi+ fo— f3) X +[(2n—1) fs— f6)|hX = [3 fo+ (2n—1) f3)|n(X)E,
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S(X,Y) = @nfit fa— f3)9(X,Y) + (20 — 1) fa — folg(hX,Y)

(2.12) — [Bfa+(2n —1)f3)n(X)n(Y),
(2.13) S(X, &) =2n(f1 — f3)n(X),
(2.14) r=2n[(2n+1)f +3fy — fs]

for any X, Y, Z, € x(M) where @ is the Ricci operator and S is the
Ricci tensor of M(f1, fa, -+, f6)-

A vector field ¢ is called a torse-forming vector field [16] on a gen-
eralized (k, p)-space-form if Vx& = pX + y(X)E, where p is a smooth
function and v is a nowhere vanishing 1-form.

Further, if R is the curvature tensor, S is the Ricci tensor and 7 is the
scalar curvature of M (f1, fo, -+, fo) with respect to semisymmetric met-
ric connection then we have [14]

RV = (= fa=5) (00X 10OV + (= )y )b
215) XA} - n()EX) + (X)),
(fr = fo =2{9(Y, 2)§ —n(Z2)Y'}

(f4 - fﬁ){g(hY7 2)5 - U(Z)hy}
9(pY, Z)§ + g(phY, Z2)§ — n(Z)[pY + hY],

R(&Y))Z
(2.16)

+ +

WRX)Z) = (fi= i 3) (0200 - (X, 20}

(2.17) + (fa = fe){g(hY, Z)n(X) — g(hX, Z)n(Y)}
- Oé(Y, Z)TZ(X) + a(X7 Z)U(Y),

2n—1

(2.18) S(X,¢) = {Qn(fl — f3) — — trace(a) | n(X),

(2.19) S(X,Y)=S(X,Y) —trace(a)g(X,Y) — (2n — 1)a(X,Y)
and
(2.20) T =1 —4n trace(a),

where a(X,Y) = g(8(X),Y) and 5(X) = Vx£+ 3X for all X, Y on
M(f1, fay -+ 5 fo)-



Yamabe solitons on generalized (k, p)-space-forms 73

3. Yamabe solitons on generalized (k, u)-space-form

Let (g,&, 0) be a Yamabe soliton on a generalized (k, p)-space-form.
Then we have from (1.1) that

(31) S(£)(Y, 2) = (r = 0)g(Y. 7).
From (2.1)-(2.3) and (2.5) we have

(3.2) (£eg)(Y, Z) = g(VyE, Z) + g(Y,Vz£) = 0.

Using (3.2) in (3.1) we get r = o= constant and hence we can state the
following;:

Theorem 3.1. If (g,£,0) is a Yamabe soliton on a generalized (k, u1)-
space-form M then its scalar curvature is constant and the soliton is
shrinking, steady and expanding according as (2n+1) f1+3fo—f3 < 0,=0
and > 0 respectively.

Corollary 3.2. If (¢,&, 0) is a Yamabe soliton on a (k, u)-space-form M
then its scalar curvature is constant and the soliton is shrinking, steady
and expanding according as k + 3[(2n + 3)c+ 6n — 3] < 0,= 0 and > 0
respectively.

Remark 1: The Theorem 3.1 is also same for generalized Sasakian-
space-form instead of generalized (k, 11)-space-form.

Corollary 3.3. If (g,£,0) is a Yamabe soliton on a Sasakian-space-
form then its scalar curvature is constant and the soliton is shrinking,
steady and expanding according as (2n + 3)c+6n+ 1< 0,=0 and > 0
respectively.

If ¢ is torse-forming vector field on a generalized (k, p1)-space-form
then by definition, we have

9(Vx& &) = (pm +7)X

and hence by virtue of (2.5) it follows that v = —pn. Thus we obtain

(3.3) Vx& = p{X —n(X)E}
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Using (3.3), we can compute

(3.4) (Leg)(Y, Z) = 2p[g(Y, Z) — n(Y )n(Z)].

In view of (2.14) and (3.4) it follows from (3.1) that

(3.5) plg(Y, Z2) =n(Y)n(Z)] = 2n{(2n + 1) f1 + 3f2 — f3} — olg(Y, Z)

from which we get

(3.6) p= (14 {20+ Vi 43+ fs} —

This leads to the following:

Theorem 3.4. If (g,£,0) is a Yamabe soliton on a generalized (k, j1)-
space-form (respectively generalized Sasakian-space-form) with potential
vector field & as torce-forming then the smooth function p is given in (3.6).

Now, Let us take (g,&,0) be a Yamabe soliton on a generalized
(k, 1)-space-form with respect to semisymmetric metric connection. Then
we have

(3.7) L(Lo)(Y.2) = (7 — 0)g(Y. 2),

where £ ¢ is the Lie derivative along the vector field £ on M with respect
to semisymmetric metric connection.
Again form (1.7), (2.1) - (2.3) and (2.5), we compute

(3.8) (£eg)(Y,Z) = g(Vy&, Z)+g(Y,VzE)
= 2[g(Y,Z) —n(Y)n(Z)].

Using (2.20) and (3.8) in (3.7) we get
[r —4n trace(a) — o — 1g(Y, Z) + n(Y)n(Z) = 0.

Contracting the above relation over Y and 7, we get
r=o+ %(6n3 — 4n? + n — 1)= constant and hence we can state the
following:
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Theorem 3.5. If (¢,£,0) is a Yamabe soliton on a generalized (k, u)-
space-form with respect to semisymmetric metric connection then its
scalar curvature is constant and the soliton is shrinking, steady and ex-
panding according as

1
E(Gn?’ —4n® +n—1)

@2n+1)fi +3fa— fs

VIIA

respectively.

Corollary 3.6. If (¢,£,0) is a Yamabe soliton on a (k, u1)-space-form
with respect to semisymmetric metric connection then its scalar curva-
ture is constant and the Yamabe soliton is shrinking, steady and ex-
panding according as k + $[(2n + 3)c + 6n — 3] § L(6n® —4n* +n—1)
respectively.

Corollary 3.7. If (¢,£,0) is a Yamabe soliton on a Sasakian-space-
form with respect to semisymmetric metric connection then its scalar
curvature is constant and the Yamabe soliton is shrinking, steady and
expanding according as n[(2n + 3)c + 6n + 1] § 4[6n® — 4n* + n — 1]
respectively.

We now consider (g,V,o) is a Yamabe soliton on a generalized
(k, p)-space-form M (f1, f2,- -, fs) with respect to semisymmetric metric
connection. Then we have

(3.9) (Lvg)(Y,Z) = (r —o)g(Y, Z)

N | —

where £y is the Lie derivative along the vector field V on M with respect
to semisymmetric metric connection. By virtue of (1.7), we have
(3.10) (Lvo)(Y,Z2) = g(VyV,Z) +g(Y.VzV)

= (Lvg)Y, 2) +2n(V)g(Y, Z)

— m(2)9(Y. V) +n(Y)g(Z,V)].

Using (2.20) and (3.10) in (3.9), we get

SLvo)(V.2) = (r—0)g(Y. Z) ~ [2n(3n — 2) +n(V)a(Y. 2)
1
2

(3.11) + S(Z2)g(Y, V) +n(Y)g(Z,V)].
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Theorem 3.8. A Yamabe soliton (g,V, o) be on a generalized (k, u)-
space-form M (f1, fa, -+, fs) is invariant under semisymmetric metric
connection if and only if the relation

1
{2n(3n =2) +0(V)}9(Y, 2) = 5In(Z)g(Y, V) +n(Y)9(Z, V)]
holds for arbitrary vector fields Y and Z.

Let (g, V, o) be a Yamabe soliton on a generalized (k, u1)-space-form
M(f1, fo, -, f¢) with respect to semisymmetric metric connection such
that V is pairwise collinear with &, i.e, V = b&, where b is a function.
Then (3.9) holds, which implies by virtue of (2.20) and (3.8) that

(312) Mo(¥.2) —a(V)n(Z)] + SOVB(Z) + 5 (Zb)n(Y)
= [r—2n(3n—2) —olg(Y, 2).
Putting Z = ¢ in (3.12) and using (2.1)-(2.2) we get
(313)  S(VB)+ 5(@)n(Y) = [r —20(3n — 2) — oln(Y).
Again setting Y = ¢ in (3.13) and using (2.2) we obtain
(3.14) (€0) =7 — 2n(3n — 2) — o
In view of (3.14), it follows from (3.13) that
(3.15) db = [r — 2(3n — 2) — oln.
Applying d on (3.15) we get
(3.16) I — 2n(3n — 2) — oldy = 0.

Since dn # 0 we have from (3.16) that » — 2n(3n —2) — o = 0 and hence
from (3.15) that db = 0, which implies that b is constant. This leads to
the following:

Theorem 3.9. If (¢,V,0) is a Yamabe soliton on a generalized (k, u)-
space-form M (f1, fo, -, fs) with respect to semisymmetric metric con-
nection such that V' is pointwise collinear with ¢ then V' is a constant
multiple of ¢ and the Yamabe soliton is shrinking, steady and expanding
according as (2n + 1)f1 +3fo — f3 § 2n(3n — 2) respectively.
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Corollary 3.10. If (¢, V, o) is a Yamabe soliton on a (k, p1)-space-form M
with respect to semisymmetric metric connection such that V' is pointwise
collinear with ¢ then V' is a constant multiple of ¢ and the Yamabe soliton
is shrinking, steady and expanding according as k+ i [(2n+3)c+6n—3] §
2n(3n — 2) respectively.

Corollary 3.11. If (g,V,0) is a Yamabe soliton on a Sasakian-space-
form M with respect to semisymmetric metric connection such that V'
is pointwise collinear with £ then V' is a constant multiple of ¢ and the
Yamabe soliton is shrinking, steady and expanding according as (2n +

< .
3)c+6n+ 1 = 8n(3n — 2) respectively.

Remark 2: If (g,V,0) is a Yamabe soliton on a generalized (k, u)-
space-form M(f1, fa, -+, f¢) with respect to Levi-Civita connection such
that V' is pointwise collinear with £ then V is a constant multiple of &
and the Yamabe soliton is shrinking, steady and expanding according as
2n+1)fi+3f2— f5 § 0 respectively.
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