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Abstract: Let f : R2 → C be a Lebesgue integrable function on the real plane
R2, and consider the double trigonometric integral defined by

F (x, y) :=

∫ ∫
R2

f(u, v)ei(ux+vy)dudv, (x, y) ∈ R2 := R× R.

We give sufficient conditions in terms of certain integral means of f to ensure
that F (x, y) belong to one of the Zygmund classes Zyg(α, β) or zyg(α, β) for
some 0 < α, β ≤ 2. Our present theorems are the extensions of those proved in
[4] from single to double trigonometric integrals, and they may also be applied
in the case of double Fourier transform. The starting point of our investigation
goes back to the monograph [1] by Boas. We also note that in the recent years
Tikhonov in [7], [8] and Volosivets in [9], [10] dealt with the same problem. In
our auxiliary results we establish interesting interrelations between the order
of magnitude of certain initial integral means and the order of magnitude of
certain tail integral means of a function f ∈ L1

loc(R2). They may be useful in
the investigation of other two-dimensional problems, as well.
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1. Preliminaries

Let g : R → C be a Lebesgue integrable function on the real line
R := (−∞,∞), in symbols: g ∈ L1(R). In [4] we defined the trigono-
metric integral G of g as follows

(1.1) G(x) :=

∫
R
g(u)eiuxdu, x ∈ R.

By virtue of the dominated convergence theorem, G(x) is a continuous
function on R.

We recall (see, e.g., [2, Ch.2] or [12, Vol. I, Ch.2, §3]) that G(x)
is said to belong to the Lipschitz class Lip(α) for some α > 0 if for all
x ∈ R and h ∈ R+ := (0,∞), we have that

|∆G(x;h)| := |G(x+ h)−G(x)| ≤ Cαh
α,

where Cα is a constant. Furthermore, G(x) is said to belong to the little
Lipschitz class lip(α) if

lim
h→0

h−α∆G(x;h) = 0 uniformly in x ∈ R.

We also recall that a continuous function G(x) is said to belong to
the Zygmund class Zyg(α) for some α > 0 if for all x ∈ R and h ∈ R+,
we have that

|∆2G(x;h)| := |G(x+ h)− 2G(x) +G(x− h)| ≤ Cαh
α,

where Cα is a constant. Furthermore, a continuous function G(x) is said
to belong to the little Zygmund class zyg(α) if

lim
h→0

h−α∆2G(x;h) = 0 uniformly in x ∈ R.

Remark 1.1. In the book [12, Vol. I, Ch.2, §3] of Zygmund, the notation
Λ∗ is used for Zyg(1) and the notation λ∗ is used for zyg(1).

It is well known (see also in [2, Ch.2] or [12, Vol. I, Ch.2, §3])
that if G ∈ lip(1); in particular, if G ∈ Lip(α) for some α > 1, then
G(x) is a constant function. Furthermore, if G ∈ zyg(2); in particular, if
G ∈ Zyg(α) for some α > 2, then G(x) is a linear function.

E-mail addresses: fulopv@math.u-szeged.hu, moricz@math.u-szeged.hu



Sufficient Conditions for Double Trigonometric Integrals 55

Remark 1.2. We recall (see, e.g., in [12, Vol I, on p. 43]) that a
continuous function G(x) is said to be smooth at some point x ∈ R
if

lim
h→0

h−1∆2G(x;h) = 0.

Clearly, zyg(1) is exactly the class of those continuous functions that are
uniformly smooth in x ∈ R.

In our recent paper [4] we proved the following two theorems, where
by the symbol g ∈ L1

loc(R) we mean that the function g : R → C is
Lebesgue integrable on all bounded intervals.

Theorem 1.3. Let g ∈ L1
loc(R) and 0 < α ≤ 2. If there exists a constant

Cα such that for all U ∈ R+, we have that

(1.2) Uα−2
∫
|u|<U

u2|g(u)|du ≤ Cα,

then g ∈ L1(R) and G ∈ Zyg(α), where G(x) is defined in (1.1).

Theorem 1.4. Let g ∈ L1
loc(R) and 0 < α < 2. If

lim
U→∞

Uα−2
∫
|u|<U

u2|g(u)|du = 0,

then g ∈ L1(R) and G ∈ zyg(α).

Remark 1.5. In the special case α = 1, our Theorems 1.3 and 1.4 are
the nonperiodic versions of the corresponding theorems of Zygmund [11]
(see also in [12, Vol I, on p. 320]) in the case of trigonometric series.

Remark 1.6. It is easy to check that condition (1.2) above may be
weakened as follows: If there exist constants Cα and η > 0 such that
condition (1.2) holds only for all U ≥ η, then we still have g ∈ L1(R)
and G(x) ∈ Zyg(α). Namely if 0 < U < η, then we have that

Uα−2
∫
|u|<U

u2|g(u)|du ≤ Uα

∫
|u|<U

|g(u)|du ≤ ηα
∫
|u|<η
|g(u)|du =: C ′α.

So, if (1.2) holds with a constant Cα for all U > η, then it holds with
the constant max{Cα, C ′α} for all U > 0.
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Remark 1.7. Theorems 1.3 and 1.4 are also valid in the case of the
Fourier transform ĝ of a function g ∈ L1(R) defined by

ĝ(x) :=
1√
2π

∫
R
g(u)e−iuxdu, x ∈ R,

(see, e.g., in [12, Vol. II, on p. 254]) in place of the trigonometric integral
G defined in (1.1).

2. Definitions of double Lipschitz- and Zygmund classes
of continuous functions

Let f : R2 → C be a Lebesgue integrable function on the real plane
R2, in symbols: f ∈ L1(R2). Analogously to (1.1), we define the double
trigonometric integral F of f as follows

(2.1) F (x, y) :=

∫ ∫
R2

f(u, v)ei(ux+vy)dudv, (x, y) ∈ R2.

By Lebesgue’s dominated convergence theorem, we have that the
function F (x, y) is continuous on R2. Thus, the marginal function F (·, y)
is continuous in its first variable for every fixed y ∈ R, and the marginal
function F (x, ·) is also continuous in its second variable for every fixed
x ∈ R.

We recall that the difference operators ∆x,h and ∆y,k are defined by

∆x,hF (x, y) := F (x+ h, y)− F (x, y),

∆y,kF (x, y) := F (x, y + k)− F (x, y), (x, y) ∈ R2 and (h, k) ∈ R2
+.

The iterated applications of these operators are defined in the usual way
as follows

(2.2) ∆F (x, y;h, k) := ∆x,h(∆y,kF (x, y))

= ∆y,k(∆x,hF (x, y)) = ∆y,k(F (x+ h, y)− F (x, y))

= F (x+ h, y + k)− F (x+ h, y)− F (x, y + k) + F (x, y).

Now, we recall (see, e.g., in [5]) that a continuous function F (x, y)
is said to belong to the double (called also multiplicative) Lipschitz class
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Lip(α, β) for some α, β > 0 if for all (x, y) ∈ R2 and (h, k) ∈ R2
+, we have

that
|∆F (x, y;h, k)| ≤ Cα,βh

αkβ,

where Cα,β is a constant. Furthermore, a function F (x, y) ∈ Lip(α, β) is
said to belong to the little Lipschitz class lip(α, β) for some α, β > 0 if

lim
h,k→0

h−αk−β∆F (x, y;h, k) = 0 uniformly in (x, y) ∈ R2.

It is routine to check that

(2.3) ∆2F (x, y;h, k) := ∆(∆F (x, y;h, k);h, k)

= F (x+ 2h, y + 2k) + F (x+ 2h, y) + F (x, y + 2k) + F (x, y)

−2F (x+ 2h, y + k)− 2F (x+ h, y + 2k)− 2F (x+ h, y)

−2F (x, y + k) + 4F (x+ h, y + k).

Next, we recall (see, e.g., in [3]) that a continuous function F (x, y)
belongs to the double (also called multiplicative) Zygmund class Zyg(α, β)
for some (α, β) ∈ R2

+ if for all (x, y) ∈ R2 and (h, k) ∈ R2
+, we have that

(2.4) |∆2F (x, y;h, k)| ≤ Cα,βh
αkβ,

where ∆2F (x, y;h, k) is defined in (2.3) and Cα,β is a constant. Fur-
thermore, a function F (x, y) ∈ Zyg(α, β) is said to belong to the little
Zygmund class zyg(α, β) if

lim
h,k→0

h−αk−β∆2F (x, y;h, k) = 0 uniformly in (x, y) ∈ R2.

In the sequel, instead of (2.3) we will use the following equivalent
(symmetric) form:

(2.5) ∆2F (x− h, y − k;h, k)

= F (x+ h, y + k) + F (x+ h, y − k) + F (x− h, y + k) + F (x− h, y − k)

−2F (x+ h, y)− 2F (x, y + k)− 2F (x− h, k)− 2F (x, y − k) + 4F (x, y).

By (2.2) and (2.5) it is easy to check that for all (x, y) ∈ R2 and
(h, k) ∈ R2

+, we have that

∆2F (x− h, y − k;h, k) = ∆F (x, y;h, k)−∆F (x− h, y;h, k)
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−∆F (x, y − k;h, k) + ∆F (x− h, y − k;h, k).

Hence it immediately follows that for all (α, β) ∈ R2
+, we have that

Zyg(α, β) ⊇ Lip(α, β) and zyg(α, β) ⊇ lip(α, β).

Analogously to the corresponding one variable classes, in the sequel
we will assume that 0 < α, β ≤ 2.

Remark 2.1. Motivated by Remark 1.2, a continuous function F (x, y)
may be called to be smooth at some point (x, y) ∈ R2 if

lim
h,k→0

h−1k−1∆2F (x, y;h, k) = 0.

Clearly, zyg(1, 1) is exactly the class of those continuous functions that
are uniformly smooth in (x, y) ∈ R2.

3. Main results

In a recent paper [4] we proved Theorems 1.3 and 1.4 for trigono-
metric integrals, which are the nonperiodic versions of the classical the-
orems by Zygmund [11] (see also in [12, Vol II, on pp. 320-321]) on the
smoothness of the sum of a trigonometric series. In the present paper,
our goal is to prove analogous theorems for the double trigonometric
integral F (x, y) defined in (2.1).

In the case, where a function f : R2 → C is Lebesgue integrable
on any bounded rectangle of R2, it will be indicated in symbols: f ∈
L1

loc(R2). In the sequel, we will also assume that there exists some con-
stant η ∈ R+ such that

(3.1) f ∈ L1((R× [−η, η]) ∪ ([−η, η]× R))

Now, our main results are formulated in the following two theorems.

Theorem 3.1. Let f ∈ L1
loc(R2), η ∈ R+ and 0 < α, β ≤ 2. If conditions

(3.1) and

(3.2) Uα−2V β−2
∫
|u|<U

∫
|v|<V

u2v2|f(u, v)|dudv ≤ Cα,β

are satisfied, the latter one for all U, V ≥ η, where Cα,β is a constant,
then f ∈ L1(R2) and the double trigonometric integral F (x, y) defined
in (2.1) belongs to the class Zyg(α, β).
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Theorem 3.2. Suppose 0 < α, β < 2 and that the conditions in Theorem
3.1 are satisfied. If, in addition, we have that

(3.3) lim
U,V→∞

Uα−2V β−2
∫
|u|<U

∫
|v|<V

u2v2|f(u, v)|dudv = 0,

then the double trigonometric integral F (x, y) defined in (2.1) belongs to
the class zyg(α, β).

Remark 3.3. A real-valued function G(U, V ) defined for all U, V >
η may converge to 0 as U, V → ∞, and yet it is not bounded. This
explains the fact that we required the fulfillment of both (3.2) and (3.3)
in Theorem 3.2.

4. Auxiliary results

The next Lemmas 4.1-4.4 will be the basic tools in the proofs of
our Theorems 3.1 and 3.2. They are also of some interest in themselves,
since they exhibit useful interrelations between the order of magnitude
of certain initial integral means and the order of magnitude of certain
tail integral means of any function f ∈ L1

loc(R2).

Lemma 4.1. Let f ∈ L1
loc(R2), η > 0 and 0 < α, β ≤ 2. If condition

(3.2) is satisfied for all U, V ≥ η, then there exists another constant C(1)
α,β

such that for all U, V ≥ η, we also have that

(4.1) UαV β−2
∫
|u|≥U

∫
|v|<V

v2|f(u, v)|dudv ≤ C
(1)
α,β.

Proof. By (3.2), for any p ∈ N0 := {0, 1, 2, . . .} and V ≥ η, we have that

(2pη)2
∫
2pη≤|u|<2p+1η

∫
|v|<V

v2|f(u, v)|dudv

≤
∫
2pη≤|u|<2p+1η

∫
|v|<V

u2v2|f(u, v)|dudv

≤ Cα,β(2p+1η)2−αV 2−β = 22−αCα,β(2pη)2−αV 2−β.

Clearly, it follows that for all p ∈ N0 and V ≥ η, we also have that

(4.2)
∫
2pη≤|u|<2p+1η

∫
|v|<V

v2|f(u, v)|dudv ≤ 22−αCα,β(2pη)−αV 2−β,
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whence we conclude that for any r ∈ N0 and V ≥ η, we have that
(4.3)∫
|u|≥2rη

∫
|v|<V

v2|f(u, v)|dudv =
∞∑
p=r

∫
2pη≤|u|<2p+1η

∫
|v|<V

v2|f(u, v)|dudv

≤ 22−αCα,βV
2−β

∞∑
p=r

(2pη)−α =
4

2α − 1
Cα,β(2rη)−αV 2−β.

This proves (4.1) in the special case U := 2rη with r ∈ N0 and V ≥
η. Hence the fulfillment of (4.1) in the general case U, V ≥ η clearly
follows. ♦

Lemma 4.2. Let f ∈ L1
loc(R2), η > 0 and 0 < α, β ≤ 2. If condition

(3.3) is satisfied, then

(4.4) lim
U,V→∞

UαV β−2
∫
|u|≥U

∫
|v|<V

v2|f(u, v)|dudv = 0.

Proof. By (3.3), for every ε > 0 there exists some p0 = p0(ε) ∈ N0 such
that for all U ≥ 2p0η and V ≥ 2p0 , we have that

Uα−2V β−2
∫
|u|<U

∫
|v|<V

u2v2|f(u, v)|dudv ≤ ε.

Let r(≥ p0) be an arbitrary integer. Analogously to (4.2) and (4.3), this
time we obtain that∫

|u|≥2rη

∫
|v|<V

v2|f(u, v)|dudv ≤ 4ε

2α − 1
(2rη)−αV 2−β,

whence we conclude that for any integer r ≥ p0 and V ≥ 2p0 , we also
have that

(2rη)αV β−2
∫
|u|≥2rη

∫
|v|<V

v2|f(u, v)|dudv ≤ 4ε

2α − 1
.

Since ε > 0 is arbitrary, the inequality just received proves (4.4). ♦

Lemma 4.3. Let f ∈ L1
loc(R2), η > 0 and 0 < α, β ≤ 2. If condition

(3.2) is satisfied for all U, V ≥ η, then there exists another constant C(2)
α,β

such that for all U, V ≥ η, we have that

(4.5) U2V 2

∫
|u|≥U

∫
|v|≥V

|f(u, v)|dudv ≤ C
(2)
α,β.
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In particular, from (4.5) it follows that

(4.6) f ∈ L1({u ∈ R : |u| ≥ η} × {v ∈ R : |v| ≥ η}).

Proof. By (3.2), for any p, q ∈ N0, we have that

(2pη)2(2qη)2
∫
2pη≤|u|<2p+1η

∫
2qη≤|v|<2q+1

|f(u, v)|dudv

≤
∫
2pη≤|u|<2p+1η

∫
2qη≤|v|<2q+1η

u2v2|f(u, v)|dudv

≤ Cα,β(2p+1η)2−α(2q+1η)2−β,

whence it follows that∫
2pη≤|u|<2p+1η

∫
2qη≤|v|<2q+1η

|f(u, v)|dudv ≤ 24−α−βCα,β(2pη)−α(2qη)−β.

Now, similarly to (4.3), this time for all r, s ∈ N0 we conclude that∫
|u|≥2rη

∫
|v|≥2sv

|f(u, v)|dudv

=
∞∑
p=r

∞∑
q=s

∫
2pη≤|u|<2p+1η

∫
2qη≤|v|<2q+1η

|f(u, v)|dudv

≤ 24−α−βCα,β

∞∑
p=r

(2pη)−α
∞∑
q=s

(2qη)−β

=
16

(2α − 1)(2β − 1)
Cα,β(2rη)−α(2sη)−β.

The inequality just received proves (4.5) in the special case U := 2rη and
V := 2sη with r, s ∈ N0. Hence the fulfillment of (4.5) in the general
case U, V ≥ η clearly follows. ♦

Lemma 4.4. Let f ∈ L1
loc(R2), η > 0 and 0 < α, β ≤ 2. If condition

(3.3) is satisfied, then we have that

lim
U,V→∞

UαV β

∫
|u|≥U

∫
|v|≥V

|f(u, v)|dudv = 0.

Proof. It goes along analogous lines as Lemma 4.2 was proved above. ♦
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5. Proofs of our main results

Proof of Theorem 3.1. By condition (3.2), we may apply Lemma 4.3
with U, V ≥ η, where η ∈ R+ occurs in condition (3.1). As a result,
we obtain (4.5), whence (4.6) follows. Combining (3.1) and (4.6) yields
that f(x, y) ∈ L1(R2) as it is stated in Theorem 3.1. Thus, the double
trigonometric integral defined in (2.1) exists and it is continuous on R2.

It remains to prove that inequality (2.4) is satisfied. For the sake of
brevity in writing, instead of (2.3) we make use of (2.5) with 2h and 2k
in place of h and k, respectively. By (2.1) and (2.5), we get the following
representations:

(5.1) ∆2F (x− 2h, y − 2k; 2h, 2k)

=

∫ ∫
R2

f(u, v)(ei(u(x+2h)+v(y+2k)) − ei(u(x+2h)+v(u−2k))

+ei(u(x−2h)+v(y+2k)) + ei(u(x−2h))+v(y−2k))

−2ei(u(x+2h)+vy) − 2ei(ux+v(y+2k))

−2ei(u(x−2h)+vy) − 2ei(ux+v(y−2k)) + 4ei(ux+vy))dudv

=

∫ ∫
R2

f(u, v)ei(ux+vy)(eiu2h + e−iu2h − 2)(eiv2k + e−iv2k − 2)dudv

= 16

∫ ∫
R2

f(u, v)ei(ux+vy) sin2 uh sin2 vkdudv.

Without loss of generality, we may assume that 0 < h, k ≤ 1/η, where η
occurs in (3.1). We set

(5.2) U :=
1

h
and V :=

1

k
.

By virtue of (5.1), we estimate as follows

(5.3) Q(F ; 2h, 2k) := sup
(x,y)∈R2

|∆2F (x− 2h, y − 2k; 2h, 2k)|
(2h)α(2k)β

≤ 24−α−β
(
h2−αk2−β

∫
|u|<U

∫
|v|<V

u2v2|(u, v)|dudv

+h−αk2−β
∫
|u|≥U

∫
|v|<V

v2|f(u, v)|dudv
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+h2−αk−β
∫
|u|<U

∫
|v|≥V

u2|f(u, v)|dudv

+h−αk−β
∫
|u|≥U

∫
|v|≥V

|f(u, v)|dudv
)

=: 24−α−β(I1 + I2 + I3 + I4),

say, where U and V are defined in (5.2).
By (5.2) and (5.3), we get

I1 ≤ Uα−2V β−2
∫
|u|<U

∫
|v|<V

u2v2|f(u, v)|dudv ≤ Cα,β.

By Lemma 4.1, we get

I2 ≤ UαV β−2
∫
|u|≥U

∫
|v|<V

v2|f(u, v)|dudv ≤ C
(1)
α,β.

By the symmetric counterpart of Lemma 4.1, where the roles of U and
V are interchanged, we get that

I3 ≤ Uα−2V β

∫
|u|<U

∫
|v|≥V

u2|f(u, v)|dudv ≤ C
(1)
β,α,

where the constant C(1)
β,α is the symmetric counterpart the constant of

C
(1)
α,β when the roles of α and β are interchanged. Finally, by Lemma 4.3,

we get that

I4 ≤ UαV β

∫
|u|≥U

∫
|v|≥V

|f(u, v)|dudv ≤ C
(2)
α,β.

Combining (5.3) and the last four inequalities gives that for all
(x, y) ∈ R2 we have that

(5.4) Q(F ; 2h, 2k) ≤ 24−α−β(Cα,β + C
(1)
α,β + C

(1)
β,α + C

(2)
α,β).

Keeping in mind the notation in (5.3), the inequality (5.4) proves the
fulfillment of (2.4) with 2h and 2k in place of h and k, respectively, for
all (x, y) ∈ R2. Thus, we conclude that F (x, y) ∈ Zyg(α, β) and the
proof of Theorem 3.1 is complete.

♦
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Proof of Theorem 3.2. It runs along analogous lines as the proof of
Theorem 3.1, except that this time we use Lemmas 4.2 and 4.4 instead
of Lemmas 4.1 and 4.3, respectively. We emphasize that we also have
that f ∈ L1(R2), due to the conditions (3.1) and (3.2). We do not enter
into further details. ♦

6. Concluding remarks

Remark 6.1. Analysing the proof of [4, Lemma 3.1] it turns out that
one can even prove the following more general auxiliary result in the
one-dimensional case (cf. the proof of Lemma 4.1 of the present paper).

Lemma 6.2. Let g ∈ L1
loc(R), η > 0 and 0 < α ≤ 2. If for every U ≥ η

we have that
Uα−2

∫
|u|<U

u2|g(u)|du ≤ Cα,

where Cα is a constant, then there exists another constant C(1)
α such that

for every U ≥ η we have that

Uα

∫
|u|≥U

|g(u)|du ≤ C(1)
α .

In particular, we also have that g ∈ L1(R).

Now, let f ∈ L1
loc(R2) and consider the function

(6.1) g(u) :=

∫
|v|≤η
|f(u, v)|dv, u ∈ R.

It is clear that g ∈ L1
loc(R). Applying Lemma 6.2 for the function

g defined in (6.1) results in the following auxiliary result in the two-
dimensional case.

Lemma 6.3. Let f ∈ L1
loc(R2), η > 0 and 0 < α ≤ 2. If there exists a

constant Cα such that for every U ≥ η, we have that

(6.2) U2−α
∫
|u|<U

∫
|v|≤η

u2|f(u, v)|dudv ≤ Cα,

then the function g(u) defined in (6.1) belongs to L1(R), and conse-
quently, we have that

f ∈ L1(R× [−η, η]).
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We note that the symmetric counterpart of (6.2) says that if f ∈
L1

loc(R2) and there exists another constant Cβ such that for every V ≥ η,
we have that

(6.3) V 2−β
∫
|u|≤η

∫
|v|<V

v2|f(u, v)|dudv ≤ Cβ,

then we also have that f ∈ L1([−η, η]× R).
After these preliminaries, the next version of Theorem 3.1 also holds

true.

Theorem 6.4. Let f ∈ L1
loc(R2), η ∈ R+ and 0 < α, β ≤ 2. If conditions

(6.2) and (6.3) are satisfied for all U, V ≥ η, respectively, and condition
(3.2) is also satisfied for all U, V ≥ η, where Cα, Cβ and Cα,β are con-
stants, then f ∈ L1(R2) and the double trigonometric integral F (x, y)
defined in (2.1) belongs to the class Zyg(α, β).

Likewise, the next version of Theorem 3.2 also holds true.

Theorem 6.5. Suppose 0 < α, β < 2 and that the conditions of Theorem
6.4 are satisfied. If, in addition, condition (3.3) is also satisfied, then the
double trigonometric integral F (x, y) defined in (2.1) belongs to the class
zyg(α, β).

Remark 6.6. In the particular case, where f(u, v) ∈ L1(R2) as well as
u2v2f(u, v) ∈ L1(R2), the proof of the statement that the trigonometric
integral F (x, y) defined in (2.1) belongs to the class Zyg(2, 2) is very
simple. Indeed, by (5.1) we may estimate as follows

∆2F (x− 2h, y − 2k; 2h, 2k)

(2h)2(2k)2
=

=
1

h2k2

∫ ∫
R2

f(u, v)ei(ux+vy) sin2 uh sin2 vkdudv,

whence we get that

Q(F ; 2h, 2k) ≤
∫ ∫

R2

|f(u, v)|
(

sinuh

h

)2(
sin vk

k

)2

dudv,

where Q(F ; 2h, 2k) is defined in (5.3). Then because of sin2 uh ≤ u2h2

and sin2 vk ≤ v2k2, we have that

Q(F ; 2h, 2k) ≤
∫ ∫

R2

u2v2|f(u, v)|dudv <∞,
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due to the assumption that u2v2f(u, v) ∈ L1(R2). This completes the
proof of our above statement that F (x, y) ∈ Zyg(2, 2).

Remark 6.7. Our Theorems 3.1 and 3.2 as well as our statement in
Remark 6.6 are also valid for the double Fourier transform f̂ of f ∈
L1(R2) defined by (see, e.g., in [6, on p.2])

f̂(x, y) :=

∫ ∫
R2

f(u, v)e−2πi(ux+vy)dudv, (x, y) ∈ R2,

in place of the double trigonometric integral F (x, y) defined in (2.1).
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