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1. Introduction

The concept of positive definite sequences, arising naturally in the
context of a problem in complex function theory posed by Carathéodory
[5], was introduced in 1911 by Toeplitz [22]. Herglotz [8] established
a connection between positive definite sequences and the trigonometric
moment problem. Motivated by the work of Carathéodory and Toeplitz,
Mathias [12] and later Bochner [3] defined and studied the properties of
positive definite functions, specifically their harmonic analysis. Before
these developments, however, Mercer [13] had studied the more general
concept of positive definite kernels in research on integral equations.

According to the classical standard definition, a function f : R→
C is positive definite if

(1.1)
n∑

i,j=1

f(xi − xj) vi vj ≥ 0

for all x1, x2, . . . , xn ∈ R and v1, v2, . . . , vn ∈ C, with any n ∈ N; in
other words, if the matrix

[
f(xi − xj)

]n
i,j=1

is non-negative definite for
all n ∈ N and x1, x2, . . . , xn ∈ R. We shall denote the set of classical
positive definite functions on R by PC. Using (1.1) with n = 2, x1 =
0, x2 = x, v1 = 1 and v2 such that v2f(x) = −|f(x)|, it can be shown
that |f(x)| ≤ f(0) for all x ∈ R. Hence positive definite functions by the
standard definition are always bounded.

However, a positive definite function in this sense need not be posi-
tive or continuous; for example, the function f(x) = 1 if x = 0, f(x) = 0
otherwise (x ∈ R), is positive definite, but not continuous; the cosine
function is positive definite, but not non-negative. For continuous clas-
sically positive definite functions, (1.1) is equivalent to

(1.2)
∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy ≥ 0

for all functions φ ∈ C0(R), see e.g. [6, p.53].
One of the central results on this subject is Bochner’s theorem [3,

Chapter IV.20], which states that a function f : R → C is continuous
and positive definite if and only if it is the (inverse) Fourier transform of
a finite, non-negative measure µ on R, i.e.

(1.3) f(x) = µ̌(x) =
1√
2π

∫
R
eixξ µ(dξ) (x ∈ R) .
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Thus, Bochner’s theorem provides an equivalent characterisation of
whether or not a given continuous function f is positive definite. The
concept of positive definite functions was extended to positive definite
distributions by L. Schwartz [19, Chapter VII, §9], and his analogue
of Bochner’s theorem states that a distribution is positive definite (and
tempered) if and only if it is the Fourier transform of a non-negative mea-
sure of slow increase, i.e. such that the measure of balls is polynomially
bounded in terms of the radius.

As shown above, positive definite functions in the sense of the stan-
dard definition (1.1) are always bounded by their value at 0. However,
there exist functions such as f = |·|−α (0 < α < 1), which are unbounded
at the origin, yet still exhibit properties similar to those of positive def-
inite functions. Such functions arise naturally in potential theory (see,
e.g. [2], [10] and [14]), and recently appeared in the context of extremal
measures ([16], [17]). Functions which are unbounded at the origin and
positive definite in the following extended sense were studied by Cooper
[6].

Definition 1. A function f : R → C is called positive definite w.r.t. a
set J of functions if for every φ ∈ J , the integral in (1.2) exists (in the
Lebesgue sense) and is non-negative [6, p. 54].

Let P(J) denote the class of all functions which are positive definite
w.r.t. the set J . For certain spaces of functions J , Cooper’s definition
enables us to extend the concept of positive definiteness to functions
which have a singularity at 0. In particular, we shall consider the spaces
J = Lp(R) (and their local versions) for various values of p.

Building on the foundations set by Cooper, we study unbounded
positive definite functions in more detail. Our central result is Theorem
2, which, in analogy to Bochner’s theorem for the classical case, charac-
terises a larger class of (generally unbounded) positive definite functions.
Several subsequent results follow from this Theorem. For example, func-
tions which are positive definite w.r.t. L2(R) can be approximated, in
the L1(R) sense, by a sequence of continuous, classically positive defi-
nite functions (see Corollary 1). Functions which arise as ‘convolution
squares’ are positive definite in the new sense (see Corollary 4), and con-
versely, a function which is positive definite w.r.t. L2(R) can be written,
in some sense, as a convolution square (see Corollary 5). Using Theorem
2, we also show that the even reflections of integrable, completely mono-
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tone functions are positive definite w.r.t. L2(R) (see Corollary 8). This
result provides many examples of functions which have a singularity at
zero and are positive definite in the extended sense.

The structure of the paper is as follows. In section 2 we introduce
the ideas and discuss the main results of [6]. In section 3 we prove Theo-
rem 2. Sections 4 and 5 present corollaries to Theorem 2 and their proofs.
We conclude the paper with several examples of unbounded positive def-
inite functions.

2. Positive definiteness in the extended sense

We begin with an overview of some basic properties of the positive
definite functions studied in [6], analogous to those for the classical case,
see [21, p. 412]. In the following, let J be a set of complex-valued
measurable functions defined on R. This includes functions defined on a
non-empty, measurable subset of R, which we consider to be extended by
zero to the whole real line. Then the following properties follow directly
from Definition 1.

1. f ∈ P(J)⇔ f ∗ ∈ P(J), where f ∗(x) := f(−x) (x ∈ R).

2. f ∈ P(J)⇔ f ∈ P(J) if J is closed under complex conjugation.

3. If f1, f2, . . . , fn ∈ P(J) and ci ≥ 0 (i = 1, . . . , n), then
∑n

i=1 cifi ∈
P(J).

Before proceeding to present our new results, we highlight the most
relevant results of [6].

For p ∈ [1,∞) ∪ {∞}, let Lp0(R) denote the subspace of functions
in Lp(R) with compact essential support. The functions in P(L1

0(R))
are essentially bounded [6, Th. 5] and almost everywhere equal to a
continuous, positive definite function in the classical sense [7, Sec. 6].
The functions in P(L2

0(R)) need only be locally integrable [6, Lemma 1].
Cooper has the following Bochner-type theorem [6, Th. 6].

Theorem 1. For any function f ∈ P(L2
0(R)), there exists a non-negative,

non-decreasing function ρ, such that for almost all x,

(2.1) f(x) =
1√
2π

∫
R
eixt dρ(t) in (C, 1) sense,

where ρ(t) = o (t) as t→ ±∞.
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Note also that, unlike Bochner’s theorem, the implication here is
only in one direction. The qualification “in (C, 1) sense” in (2.1) means

f(x) =
1√
2π

lim
λ→∞

1

λ

∫ λ

0

( ∫ u

−u
eivx dρ(v)

)
du,

in analogy to Cesàro summation of divergent series.
The P(Lp0(R)) spaces have the following additional properties.

Proposition 1. If f ∈ PC is continuous, then f ∈ P(L2
0(R)).

Proof. By Bochner’s theorem, there exists a finite, non-negative measure
µ on R such that for any φ ∈ L2

0(R),∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy =

1√
2π

∫
R

∫
R

∫
R
ei(x−y)ξ µ(dξ)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∣∣∣∣∫
R
eixξφ(x) dx

∣∣∣∣2 µ(dξ) ≥ 0.

♦

Proposition 2. If f ∈ P(L2
0(R)) and g ∈ PC is continuous, then fg ∈

P(L2
0(R)) [6, Th. 1].

Proof. By Bochner’s theorem, there exists a finite, non-negative measure
µ on R such that for any φ ∈ L2

0(R),∫
R

∫
R
fg (x− y)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∫
R
f(x− y)

∫
R
ei(x−y)ξ µ(dξ)φ(x)φ(y) dxdy

=
1√
2π

∫
R

∫
R

∫
R
f(x− y)(eixξφ(x))(eiyξφ(y))dxdyµ(dξ) ≥ 0.

♦

Proposition 3. For any p ∈ [1, 2], P(Lp0(R)) ⊆ P(L2
0(R)).

Proof. This follows directly from the fact that L2
0(R) ⊆ Lp0(R) (p ∈ [1, 2]).

♦
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Proposition 4. For any q ∈ [2,∞] and r ∈ [0,∞], P(L2
0(R)) = P(Lq0(R)) =

P(Cr
0(R)).

Proposition 4 can be proved using [6, Lemma 1] and the density of
C∞0 (R) in Lq0(R) (q ∈ [2,∞]). The proof is similar to that of Lemma 2
below.

The last two propositions demonstrate that as p increases from 1 to
2, P(Lp0(R)) increases from a smaller class of positive definite functions
to a larger such class. As p increases beyond 2, P(Lp0(R)) remains the
same. Moreover, roughly speaking, as p increases from 1 to 2, P(Lp0(R))
runs from the class of bounded, continuous positive definite functions (in
the standard sense), to a class of functions which are positive definite in
a wider sense and need not be bounded or continuous.

3. An extension of Bochner’s theorem to unbounded
positive definite functions

We use Cooper’s definition of positive definiteness with J = L2(R).
For L2(R), as opposed to the space of compactly supported functions
L2
0(R) of Theorem 1, we obtain the following Bochner-type theorem.

Theorem 2. Let f ∈ L1(R). Then

f ∈ P(L2(R)) if and only if f̂ ≥ 0,

where f̂ denotes the Fourier transform of f .

We remark that under the hypothesis of Theorem 2, f will cor-
respond to a regular, in particular tempered, distribution, and hence
Schwartz’s version of Bochner’s theorem applies. Nevertheless, with re-
gard to applications where both f and its Fourier transform are functions,
the above generalised form of Bochner’s theorem in Cooper’s framework
seems of interest, along with its more elementary proof and the further
consequences shown in Sections 4 and 5 below. The proof of Theorem 2
will be based upon the following two lemmas.

Lemma 1. Let f ∈ L1(R) and φ ∈ L2(R). Then the integral in (1.2)
exists, and

(3.1)
∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy =

∫
R
f(z)(φ ∗ φ∗)(z) dz,
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where φ∗(z) = φ(−z) (z ∈ R).

Proof. Since the convolution of two elements of L2(R) is in L∞(R),∣∣∣∣∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy

∣∣∣∣ =

∣∣∣∣∫
R
f(z)

∫
R
φ(x)φ(x− z) dxdz

∣∣∣∣
=

∣∣∣∣∫
R
f(z)(φ ∗ φ∗)(z) dz

∣∣∣∣ ≤ ‖f‖1 ‖φ ∗ φ∗‖∞.
♦

Lemma 2. Let f ∈ L1(R). Then f ∈ P(L2(R)) if and only if f ∈
P(S(R)), where S(R) denotes the Schwartz space of rapidly decreasing
functions on R.

Proof. Since S(R) ⊂ L2(R), it follows directly that P(L2(R)) ⊂ P(S(R)).
For the reverse implication, we shall use the density of S(R) in L2(R).
Suppose that f ∈ P(S(R)). Then the integral

(3.2)
∫
R

∫
R
f(x− y)ψ(x)ψ(y) dxdy =

∫
R
(f ∗ ψ)ψ

exists in the Lebesgue sense and is non-negative for all ψ ∈ S(R). Since
f ∈ L1(R) and the convolution of an element of L1(R) with an element of
L2(R) is in L2(R), the integral also exists for all ψ ∈ L2(R). By a change
of variables and the Fubini theorem,∫
R

∫
R
f(x−y)ψ(x)ψ(y) dxdy =

∫
R

∫
R
f(z)ψ(z+y)ψ(y) dydz (ψ ∈ L2(R)).

Let φ ∈ L2(R); then there is a sequence (ψn)n∈N in S(R) such that
‖φ− ψn‖2 → 0 as n→∞. Now,

sup
z∈R

∣∣∣∣∫
R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dy

∣∣∣∣
≤ sup

z∈R

∫
R
|φ(z + y)||(φ− ψn)(y)| dy + sup

z∈R

∫
R
|(φ− ψn)(z + y)||ψn(y)| dy

≤ ‖φ‖2 ‖φ− ψn‖2 + ‖φ− ψn‖2 ‖ψn‖2 → 0 as n→∞.
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As f ∈ L1(R), it follows that∣∣∣∣∫
R
f(z)

∫
R

(
φ(z + y)φ(y)− ψn(z + y)ψn(y)

)
dydz

∣∣∣∣→ 0 as n→∞,

and hence∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy = lim

n→∞

∫
R

∫
R
f(x− y)ψn(x)ψn(y) dxdy ≥ 0.

♦

Proof of Theorem 2. Since f ∈ L1(R), the integral in (3.2) exists for
all ψ ∈ S(R). Since the space of Schwartz functions is closed under
convolution [20, Th. 3.3], ψ ∗ψ∗ ∈ S(R) for all ψ ∈ S(R), where ψ∗(z) =
ψ(−z) (z ∈ R). Hence, for any z ∈ R and ψ ∈ S(R),

(ψ ∗ ψ∗) (z) =
1√
2π

∫
R

(ψ ∗ ψ∗)̌(x) e−ixz dx =

∫
R
ψ̌(x) ψ̌∗(x) e−ixz dx

=

∫
R
|ψ̌(x)|2 e−ixz dx,

since

ψ̌∗(x) =
1√
2π

∫
R
ψ(−ξ) eiξx dξ =

1√
2π

∫
R
ψ(ξ) e−iξx dξ = ψ̌(x) (x ∈ R).

(3.3)

By Lemma 1,∫
R

∫
R
f(x− y)ψ(x)ψ(y) dxdy =

∫
R
f(z)(ψ ∗ ψ∗)(z) dz

=

∫
R

∫
R
f(z) |ψ̌(x)|2 e−ixzdxdz =

√
2π

∫
R
f̂(x) |ψ̌(x)|2dx.(3.4)

From (3.4) it is clear that if f̂ ≥ 0, then f ∈ P(S(R)). By Lemma 2 it
follows that f ∈ P(L2(R)).

Conversely, suppose that f̂(z) < 0 at some point z ∈ R. f̂ is
continuous and bounded because f ∈ L1(R). It follows that f̂ is negative
on some interval I = [z − δ, z + δ] with δ > 0. Let

ψ1(x) =

{
exp

[
((x− z)2 − δ2)−1

]
if z − δ < x < z + δ

0 otherwise
(x ∈ R).
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Then ψ1 ∈ C∞0 (R) ⊂ S(R). For ψ2 := ψ̂1 ∈ S(R), it follows by (3.4) that

0 ≤
∫
R

∫
R
f(x− y)ψ2(x)ψ2(y) dxdy =

√
2π

∫
R
f̂(x) |ψ̌2(x)|2 dx

=
√

2π

∫ z+δ

z−δ
f̂(x) |ψ1(x)|2 dx < 0,

which is a contradiction. ♦

Remark 1. It follows from Theorem 2 that if f ∈ L1(R) ∩ P(L2(R)),
then f = f ∗ almost everywhere. Indeed, f̂ ∗ = f̂ ≥ 0 by (3.3), and thus
f = f ∗ almost everywhere by the uniqueness of the Fourier transform on
L1(R) [4, Th. 5].

4. Approximation by positive definite functions and
convolution squares

In this section we present some corollaries to Theorem 2. In particu-
lar, we show that functions in P(L2(R)) can be approximated by continu-
ous, classically positive definite functions. We also establish connections
between functions which are positive definite for L2(R) and functions
which arise as convolution squares. We begin by proving the following
technical lemma, which shows that L1(R) ∩ P(L2(R)) is a closed subset
of L1(R).

Lemma 3. Let (fn)n∈N be a sequence of functions such that fn ∈ L1(R)
and fn ∈ P(L2(R)) (n ∈ N). If limn→∞ ‖fn − f‖1 = 0 for some f ∈
L1(R), then f ∈ P(L2(R)).

Proof. Let φ ∈ L2(R). By Lemma 1,∣∣∣∣∫
R

∫
R

(fn(x− y)− f(x− y))φ(x)φ(y) dxdy

∣∣∣∣ ≤ ‖fn − f‖1‖φ ∗ φ∗‖∞ → 0

(n→∞). Thus,∫
R

∫
R
f(x− y)φ(x)φ(y) dxdy = lim

n→∞

∫
R

∫
R
fn(x− y)φ(x)φ(y) dxdy ≥ 0.

♦
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Lemma 3 is analogous to the pointwise convergence property for
the classical positive definite functions, see [21, p. 412].

We now present some consequences of Theorem 2. The first obser-
vation is that L1(R) ∩ P(L2(R)) is the closure of L1(R) ∩ PC.

Corollary 1. Let f ∈ L1(R). Then, f ∈ P(L2(R)) if and only if there
is a sequence (gn)n∈N of continuous, classically positive definite functions
such that gn ∈ L1(R) (n ∈ N) and limn→∞ ‖gn − f‖1 = 0.

Proof. Suppose f ∈ P(L2(R)). As f ∈ L1(R), its Fourier transform f̂ is
continuous, bounded and tends to 0 at ±∞. Also, by Theorem 2, f̂ ≥ 0.
For n ∈ N, let

ηn(ξ) =
n√
2π

e−(nξ)
2/2 (ξ ∈ R),

so that
∫
R ηn(x) dx = 1. Define

hn(ξ) :=
√

2π f̂(ξ) η̂n(ξ) = f̂(ξ) e−ξ
2/(2n2) ≥ 0 (ξ ∈ R).

Then hn ∈ L1(R). Let gn = ȟn be the inverse Fourier transform of hn.
By Bochner’s theorem [3, Chapter IV.20], gn is continuous and classically
positive definite. In particular, it has the property that |gn(u)| ≤ gn(0) <
∞ (u ∈ R). Also, gn = f ∗ ηn, so by Young’s inequality, gn ∈ L1(R)
(n ∈ N). Since f ∈ L1(R), it follows that limn→∞ ‖gn − f‖1 = 0 [20, Th.
1.18].

For the reverse direction, we need only show that gn ∈ P(L2(R))
(n ∈ N). Since gn ∈ L1(R) (n ∈ N), gn has a continuous Fourier trans-
form, and it follows from Bochner’s theorem that ĝn ≥ 0 (n ∈ N). Thus,
gn ∈ P(L2(R)) (n ∈ N) by Theorem 2. ♦

We show next that L1(R) ∩ P(L2(R)) is closed under convolution
and, under the further assumption of square integrability, under point-
wise multiplication as well.

Corollary 2. Let f, g ∈ L1(R). If f, g ∈ P(L2(R)) then f ∗g ∈ P(L2(R)).

Proof. Suppose f, g ∈ P(L2(R)). By Theorem 2, f̂ , ĝ ≥ 0. By Young’s
inequality, f ∗ g ∈ L1(R); moreover

f̂ ∗ g =
√

2π f̂ ĝ ≥ 0,

so f ∗ g ∈ P(L2(R)) by Theorem 2. ♦
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Corollary 3. Let f, g ∈ L1(R) ∩ L2(R). If f, g ∈ P(L2(R)) then fg ∈
P(L2(R)).

Proof. Suppose f, g ∈ P(L2(R)). By Theorem 2, f̂ , ĝ ≥ 0. By the
Cauchy-Schwarz inequality, fg ∈ L1(R); furthermore

f̂ g =
1√
2π

f̂ ∗ ĝ ≥ 0,

hence fg ∈ P(L2(R)) by Theorem 2. ♦

The next statement shows that functions which arise as ‘convolution
squares’ are positive definite in the new sense, note that p∗(z) = p(−z)
(z ∈ R) as before.

Corollary 4. If f = p ∗ p∗ for some p ∈ L1(R), then f ∈ P(L2(R)).

Proof. Suppose f = p ∗ p∗ with p ∈ L1(R). By Young’s inequality,
f ∈ L1(R). From (3.3) it follows that

f̂ = p̂ ∗ p∗ =
√

2π p̂ p̂∗ = |p̂|2 ≥ 0.

Thus, f ∈ P(L2(R)) by Theorem 2. ♦

This result is analogous to the classical result that if f = g ∗ g∗
for some g ∈ L2(R), then f is positive definite in the original sense [11,
Th. 4.2.4]. Note that in the classical case we have f ∈ L∞(R), since the
convolution of two elements of L2(R) is in L∞(R), whereas in our present
situation we have f = p ∗ p∗ ∈ L1(R), again by Young’s inequality.

In Corollary 5 we show that a version of the converse to Corollary
4 is also true, viz. that a function which is positive definite w.r.t. L2(R)
can be written, in some sense, as a convolution square. An analogous
statement is known for continuous, classically positive definite functions
(Khinchine’s criterion, [11, Th. 4.2.5]). In particular, if f : R→ C is a
characteristic function then there exists a sequence (gn)n∈N of complex-
valued functions, such that for any n ∈ N,

∫
R |gn(x)|2 dx = 1, and f(t) =

limn→∞ gn ∗ g∗n(t) holds uniformly in every finite t-interval. Note that
a function f : R → C is a characteristic function if and only if it is
continuous, classically positive definite and f(0) = 1. The final condition
can always be achieved via normalisation due to the bounded nature of
classical positive definite functions.
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Corollary 5. Let f ∈ L1(R). If f ∈ P(L2(R)), then there is a sequence
(pn)n∈N of functions such that pn ∈ L2(R), pn ∗ p∗n ∈ L1(R) (n ∈ N), and
limn→∞ ‖pn ∗ p∗n − f‖1 = 0.

Proof. Let gn = ȟn (n ∈ N) be the functions constructed in the proof of
Corollary 1, then limn→∞ ‖gn − f‖1 = 0. By [11, Th. 4.2.4], there exists
pn ∈ L2(R) such that gn = pn ∗ p∗n (n ∈ N). ♦

Note that here pn /∈ L1(R) in general; also we don’t have
∫
R |pn(x)|2 dx =

1 as in Theorem 4.2.4 (ii) [11], since we do not assume that hn is the den-
sity of a probability measure.

5. Sufficient criteria for generalised positive definite-
ness

The criterion of Theorem 2 for a function to be positive definite
for L2(R) is that its Fourier transform is non-negative. We now give
sufficient conditions for this.

For a measurable set I ⊂ R and p ∈ [1,∞), let

Lp(I) =

{
f : I → C

∣∣∣∣ ∫
I

|f(x)| dx <∞
}
.

Naturally Lp(I) ⊂ Lp(R), extending functions by zero on R\I. We always
use this embedding by extension in the following.

The next result is an analogue of Pólya’s criterion [11, Th. 4.3.1]
for continuous positive definite functions. Our extension also applies to
unbounded functions with an integrable singularity at 0.

Theorem 3. Let f ∈ L1(R) be a function with the following three prop-
erties.

1. f is locally absolutely continuous on (0,∞), and f ′ ∈ L1
loc((0,∞))

has a non-positive, non-decreasing representative.

2. f(x) = f(−x) (x ∈ R).

3. f ≥ 0.

Then f ∈ P(L2(R)).
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Proof. By Theorem 2, we need only show that the Fourier transform
f̂ ≥ 0. Since f is even and real-valued, its Fourier transform f̂ is given
by

f̂(ξ) =

√
2

π

∫ ∞
0

f(x) cos(x ξ) dx (ξ ∈ R) ,

a real-valued, even, bounded function. It is immediate from property iii
that f̂(0) ≥ 0. Hence, it suffices to consider ξ > 0 in the following. By
property i, f is non-decreasing on (0,∞). Using this property combined
with the facts that f is non-negative and integrable, it follows that

(5.1) lim
x→∞

f(x) = 0.

By the Mean Value Theorem, for any x > 0 there is 0 < ξx < x such
that ∫ x

0

f(y) dy = xf(ξx).

Hence, since f is non-increasing on (0,∞), it follows that

0 ≤ xf(x) ≤
∫ x

0

f(y) dy (x > 0)

and consequently

(5.2) lim
x→0

xf(x) = 0.

Since f is locally absolutely continuous on (0,∞), we can use integration
by parts to obtain∫ x2

x1

f(x) cos(x ξ) dx =
1

ξ
[f(x) sin(x ξ)]x2x1 −

1

ξ

∫ x2

x1

f ′(x) sin(x ξ) dx

(0 < x1 < x2 <∞), where

1

ξ
[f(x) sin(x ξ)]x2x1 =

1

ξ
f(x2) sin(x2 ξ)− x1f(x1)

sin(x1 ξ)

x1ξ
.

Since | sin(x)|, | sin(x)
x
| ≤ 1 (x ∈ R), it follows from (5.1) and (5.2) that

lim
x1→0
x2→∞

1

ξ
[f(x) sin(x ξ)]x2x1 = 0.
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Hence ∫ ∞
0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞
0

f ′(x) sin(x ξ) dx.

Using the same technique as in [23, Eq. 4] we find

−
∫ ∞
0

f ′(x) sin(x ξ) dx = −
∞∑
j=0

∫ 2π(j+1)
ξ

2πj
ξ

f ′(x) sin(x ξ) dx

=
1

ξ

∞∑
j=0

∫ π

0

[
f ′
(

2πj + θ

ξ
+
π

ξ

)
− f ′

(
2πj + θ

ξ

)]
sin(θ) dθ.(5.3)

Since sin(θ) ≥ 0 on [0, π] and f ′ is non-decreasing, it follows that∫ ∞
0

f(x) cos(x ξ) dx = −1

ξ

∫ ∞
0

f ′(x) sin(x ξ) dx ≥ 0.

♦

Up to this point, we stipulated that the (generalised) positive def-
inite functions must be in L1(R). This assumption ensures both the
existence of the integral (3.2) for φ ∈ L2(R) and the pointwise existence
of f̂ . In the following we show that the generalised definition of posi-
tive definiteness can be localised, extending it from L1(R) to functions
in L1

loc(R) or in L1(I) for some bounded interval I.
Let I = [a, b] ⊂ R be a closed, bounded interval. Let f ∈ L1([−|I|, |I|]),

where |I| = b−a denotes the length of the interval I. Similarly to Lemma
1, for any φ ∈ L2(I),∫

R

∫
R
f(x− y)φ(x)φ(y) dxdy =

∫ |I|
−|I|

f(z)φ ∗ φ∗(z) dz,(5.4)

since φ∗φ∗ has support in [−|I|, |I|]. The existence of the integral is guar-
anteed by the fact that f ∈ L1([−|I|, |I|]). By Theorem 2, if the Fourier
transform of fχ[−|I|,|I|] is non-negative, then fχ[−|I|,|I|] ∈ P(L2(R)) ⊂
P(L2(I)), which in turn shows the non-negativity of the integral in (5.4).

The next result is a local variant of Theorem 3, based on the natural
embedding of Lp(I) into Lp(R). We need a further technical condition at
the end-point of the interval.
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Corollary 6. Let I = [a, b] ⊂ R be any closed, bounded interval, and
|I| = b − a its length. Let f ∈ L1([−|I|, |I|]) be a function with the
following properties.

i. f is locally absolutely continuous on (0, |I|], and f ′ ∈ L1
loc((0, |I|])

has a non-positive, non-decreasing representative.

ii. f(x) = f(−x) (x ∈ [−|I|, |I|]).

iii. f(x) ≥ 0 (x ∈ [−|I|, |I|]).

iv. f(|I|) = 0 if f ′(|I|) = 0.

Then f ∈ P(L2(I)).

Proof. Define

f̃(x) =

{
f(x) if |x| ≤ |I|
f(|I|) e(|x|−|I|) f ′(|I|)/f(|I|) otherwise

if f(|I|) 6= 0; if f(|I|) = 0, we set f̃(x) = 0 for |x| > |I|.
Then the function f̃ satisfies the hypotheses of Theorem 3, and

hence is an element of P(L2(R)) ⊂ P(L2(I)). Moreover, f̃(x) = f(x)
(x ∈ [−|I|, |I|]), so f ∈ P(L2(I)). ♦

Remark 2. If f ′(|I|) = 0 and f(|I|) 6= 0, then it is not possible to
find an extension of the function f from [−|I|, |I|] to the whole real line
which is continuous, integrable and has a derivative with a non-decreasing
representative.

A function f : (0,∞) → [0,∞) is completely monotone if f ∈
C∞((0,∞)) and

(−1)n f (n) ≥ 0 on (0, ∞)

for all n ∈ N0 [15, Def. 1.3]. In particular, any completely monotone
function is non-negative and non-increasing. The family of all completely
monotone functions is denoted by CM. Completely monotone functions
can be bounded or unbounded at zero. If f is a bounded completely
monotone function, then it can be extended continuously to [0, ∞) by
taking f(0) := f(0+) = lim

x→0
f(x) [15, p. 28].

The following theorem belongs to Schoenberg (along with a number
of other theorems on classically positive definite functions, e.g. [15, Prop.
4.4], [15, Th. 12.14], [1, Th. 1.6]). Note that positive definite functions
on Rd are defined by property (1.1) with x1, . . . , xn ∈ Rd.
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Theorem 4. A function ψ : [0,∞) → [0,∞) is a bounded completely
monotone function if and only if for all d ∈ N, the function f = ψ(‖·‖2) :
Rd → [0,∞) is continuous and positive definite [18, Th. 3].

In particular, bounded completely monotone functions with a squared
argument are continuous and classically positive definite in the one-
dimensional case d = 1. The following result generalizes this observation
to potentially unbounded completely monotone functions.

Corollary 7. Let f ∈ CM, and g(x) = f(x2) (x > 0). If g ∈ L1(R),
then g ∈ P(L2(R)).

Proof. By [15, Th. 1.4], f is the Laplace transform of a non-negative
measure µ on [0,∞). That is, for any x > 0,

f(x) =

∫
[0,∞)

e−xt µ(dt).

By the Fubini theorem, for any ξ ∈ R,

ĝ(ξ) =
1√
2π

∫
[0,∞)

∫
R
e−x

2te−ixξ dxµ(dt) =

∫
[0,∞)

1√
2t
e−ξ

2/(4t)µ(dt) ≥ 0.

Thus, g ∈ P(L2(R)) by Theorem 2. ♦

We remark that the result of squaring, or taking the square root
of, the argument in a completely monotone function will in general not
be a completely monotone function.

If we do not square the argument, but just extend the completely
monotone function to an even function on the line, then the resulting
function will satisfy the hypotheses of Theorem 3, yielding the following
Corollary 8, which is similar to Corollary 7. However, the function g
of Corollary 7, with a squared argument, does not satisfy property i. in
Theorem 3, since g′(x) = 2xf ′(x2) is not non-decreasing on (0,∞); for
this reason Corollary 7 above cannot be obtained in this simple way.

Corollary 8. Let f ∈ CM. If g = f(| · |) ∈ L1(R), then g ∈ P(L2(R)).

Moreover, we have the following localised versions.

Corollary 9. Let I ⊂ R be any closed interval. Let f ∈ CM be non-
constant. If g = f(| · |) ∈ L1([−|I|, |I|]), then g ∈ P(L2(I)).
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Proof. If f ∈ CM, then by [15, Remark 1.5] f (n)(x) 6= 0 for all n ≥ 1 and
all x > 0 unless f is identically constant. Thus g satisfies the hypotheses
of Corollary 6. ♦

Corollary 10. Let f ∈ CM be non-constant. If g = f(| · |) ∈ L1
loc(R),

then g ∈ P(L2
0(R)).

Proof. For any φ ∈ L2
0(R),

(5.5)
∫
R

∫
R
g(x− y)φ(x)φ(y) dxdy =

∫
I

∫
I

g(x− y)φ(x)φ(y) dxdy,

where I includes the compact support of φ. Since g ∈ L1
loc(R), it follows

that g ∈ L1([−|I|, |I|]), and by Corollary 9 the integral in (5.5) is non-
negative. ♦

Completely monotone functions can be obtained as derivatives of Bern-
stein functions [15, p.18]. Taking functions fi from the list of Bernstein
functions in [15, Chapter 15], the following derived functions gi = f ′i(| · |)
are elements of P(L2

0(R)) \ PC by Corollary 10.

g1(x) = |x|−α, 0 < α < 1;

g8(x) = |x|α−1/(1 + |x|)α+1, 0 < α < 1;

g11(x) =
(
α|x|α−1(1− |x|β)− β|x|β−1(1− |x|α)

)
/(1− |x|α)2,

0 < α < β < 1 ;

g16(x) =
(
α1|x|−α1−1 + . . .+ αn|x|−αn−1

)
/
(
|x|−α1 + . . .+ |x|−αn

)2
,

0 ≤ α1, . . . , αn ≤ 1;

g18,19(x) =
(

1± (2a
√
|x| − 1)e−2a

√
|x|
)
/
√
|x|, a > 0;

g23(x) = |x| (1 + 1/|x|)1+|x| log (1 + 1/|x|) (x ∈ R \ {0}).
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