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1. Introduction

Throughout this paper, N denotes a left 0-symmetric nearring with
identity and J(N) denotes the J2-radical of N . Also, all N -groups (or
N -modules) will be assumed to be unitary. Numerous results have been
obtained in nearring theory under the assumption that N has the de-
scending chain condition on right ideals (DCCR). Sometimes, however,
this assumption is stronger than necessary. For instance, [11, Theorem
5.4] and [12, Theorem 1] illustrate results where it suffices to merely as-
sume that N/J(N) has DCCR. Six more instances of this will occur
later in this paper. Another assumption weaker than N having DCCR
but stronger than only N/J(N) having DCCR that is emerging to be of
growing importance is when N/J(N) has DCCR and J(N) is nilpotent
which we will call the weak descending chain condition on right ideals
and denote as wDCCR. The main purpose of this paper is to begin to
develop a number of results under the assumption that N has wDCCR
that will form the foundation for future papers. In section 6, an example
will be given of a nearring N that has wDCCR, but not DCCR, so that
wDCCR is indeed a weaker condition than DCCR.

To give a bit of an overview of the issues we will be dealing with, let
us first recall the concepts of tameness for nearrings and their modules.
As first defined in [10], an N -module or N -group V of our nearring N is
tame if each N -subgroup of V is an N -ideal or submodule of V . Further,
N is called a tame nearring ifN has a faithful tame module V . Significant
parts of sections 2 and 3 will be devoted to extending results known to
hold about tame, socle, and Frattini series of tame modules of nearrings
with DCCR to the case where the nearring has wDCCR. (For readers
who have forgotten or are unfamiliar with these series, we will review
them as they arise.)

Besides issues involving the aforementioned series, another place
where the wDCCR condition is coming into play is in studying when
properties of a smaller tame nearring transfer to a larger one. To make
this more precise, we now introduce the notion of a tame triple by which
we mean a triple (N1, N2, V ) where N1 ≤ N2 are nearrings, V is a faithful
tame nearring module for both N1 and N2 (so that N1 ≤ N2 ≤M0(V )),
and the N1- and N2-submodules of V coincide. As an example of a tame
triple, consider any nearring N1 with a faithful tame module V and let
N2 be the set of coset preserving functions C0(V ) of V ,
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C0(V ) = {α ∈M0(V ) : (v + U)α ⊆ vα + U for all v ∈ V
and for all N1-submodules U of V },

which is the same as the set of congruence preserving functions of V in
M0(V ) [6, Proposition 2.2]. Then V is a faithful tame C0(V )-module (in
fact, V has the stronger property of being a compatible C0(V )-module)
for which (N1, C0(V ), V ) is a tame triple. Further, since the elements of
N2 in a tame triple (N1, N2, V ) are coset preserving, C0(V ) is the largest
subnearring N2 of M0(V ) for which (N1, N2, V ) is a tame triple. An
example of a natural transferability question to ask about a tame triple
(N1, N2, V ) is does N2 have DCCR if N1 does? In section 6 we will see
that the answer is no. But also we will see that if DCCR is replaced
by wDCCR the question of transferability becomes a more meaningful
one. Indeed, we will obtain a result (Theorem 6.2) giving us necessary
and sufficient conditions for this to occur. The transferability of wDCCR
fromN1 toN2 for a tame triple (N1, N2, V ) is one of several transferability
questions that the authors intend to explore in future papers. In the
development of section 6, we shall need some results concerning whether
certain N1-isomorphisms within V of a tame triple (N1, N2, V ) are also
N2-isomorphisms that will be obtained in section 4. We further shall
need a result involving a special type of submodule of a nearring module
to be called an isolated submodule in section 5. The results of sections
4 and 5 are also of independent interest.

2. Tame and socle series

Throughout this section V will always denote a tame N -group. If
there is a series of submodules

(2.1) {0} = U0 ≤ U1 ≤ · · · ≤ Un = V

of V such that each factor Ui+1/Ui is a sum of minimal submodules of
V/Ui (or equivalently, is a direct sum of minimal submodules of V/Ui

by [14, Theorem 8.3]), then this series is called a tame series [14] of V .
The socle series [3, 4] of V is formed by first letting the socle of V ,
denoted soc(V ), be the sum of the minimal submodules of V or {0} if V
has no minimal submodules. The socle series,

soc0(V ) ≤ soc1(V ) ≤ soc2(V ) ≤ · · · ,
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is then obtained inductively by letting soc0(V ) = {0} and soci(V ) be the
submodule of V such that

soci(V )/soci−1(V ) = soc(V/soci−1(V ))

for i ≥ 1. It is easy to see that V has a tame series as in (2.1) if and
only if sock(V ) = V for some positive integer k. In this case, the smallest
positive integer m such that socm(V ) = V will be called the length of
the socle series. Further note that if V has a tame series as in (2.1),
Ui ≤ soci(V ) for each i, m ≤ n where m is the length of the socle series,
and the socle series of V is a tame series of V .

We next record four basic facts involving radicals. The first of our
facts about radicals is the following easily proven result. In the statement
of this result, the nilpotency degree of J(N) is the smallest positive integer
n such that (J(N))n = {0} when J(N) is nilpotent.

Proposition 2.1. If V is a faithful tame N -group and V has a tame se-
ries, then J(N) is nilpotent and coincides with the intersection
∩(0 : H1/H2) over all minimal factors H1/H2 of V . Further, the nilpo-
tency degree of J(N) is at most the length of the socle series of V .

The second fact involves J(N/A) when A is an ideal ofN . From [10,
Proposition 5.2] we have that J(N/A) = (J(N) + A)/A when N has
DCCR. In fact, the argument given there only requires that N/J(N)
haveDCCR which we record as our next result. To keep the presentation
self-contained, we include its proof.

Proposition 2.2. If N is a nearring, N/J(N) has DCCR and A is an
ideal of N , then J(N/A) = (J(N) + A)/A.

Proof. By [9, Proposition 5.15], J(N/A) ≥ (J(N) + A)/A without the
DCCR assumption. With theDCCR assumption, the opposite inclusion
follows from [9, Theorem 5.32]. ♦

Our third and fourth facts involving radicals also deal with results
that have previously appeared for nearrings N with DCCR, but hold
under the weaker assumption of N/J(N) having DCCR. These will be
generalizations of [3, Lemma 3.9 and Theorem 3.11]. Once again we will
include proofs of these results to keep the presentation self-contained.

Lemma 2.3. If V is a tame N -group, N/J(N) has DCCR and H is a
subset of V such that HJ(N) = {0}, then H ≤ soc(V ).
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Proof. Let h ∈ H. Since hNJ(N) = hJ(N) = {0}, hN is a sum of
minimal submodules by [9, Theorem 5.34]. Thus hN ≤ soc(V ) and
hence H ≤ soc(V ). ♦

Proposition 2.4. If V is a tame N -group, N/J(N) has DCCR and H
is a subset of V such that H(J(N))n = {0} where n is a positive integer,
then H ≤ socn(V ).

Proof. We use induction on n. The result holds for n = 1 by 2.3. Sup-
pose it holds for n and H(J(N))n+1 = {0}. As HJ(N)(J(N))n =
{0}, HJ(N) ≤ socn(V ) by the induction hypotheses. Thus ((H +
socn(V ))/socn(V ))J(N) = socn(V )/socn(V ). Since

J(N/(socn(V ) : V )) = (J(N) + (socn(V ) : V ))/(socn(V ) : V )

by 2.2, (H + socn(V ))/socn(V ) ≤ soc(V/socn(V )) by 2.3 and hence H ≤
socn+1(V ). ♦

The remainder of this section deals with existence of tame series
and consequences of their existence. If a nearring N has DCCR and V
is a tame N -group, then we are assured that V has a tame series [14,
Theorem 8.5] (or equivalently, that the socle series of V terminates at V
after a finite number of terms [3, Theorem 3.13]). However, the following
result tells us that N need only satisfy the wDCCR condition for this
to occur. It further includes a weakening of the DCCR assumption
in [3, Corollary 3.14] which deals with the nilpotency degree of J(N) to
wDCCR.

Theorem 2.5. If V is a tame N -group and N has wDCCR, then V has
a tame series. In addition, if V is a faithful N -group, then the nilpotency
degree of J(N) is the length of the socle series of V .

Proof. Let n be the nilpotency degree of J(N). Since V (J(N))n = {0},
2.4 gives us V ≤ socn(V ). Hence the socle series of V terminates at V
after at most n+ 1 terms and V has a tame series. That n is the length
of the socle series of V when V is a faithful N -group now follows from
2.1. ♦

As an immediate consequence of 2.1 and 2.5 we have:

Corollary 2.6. If V is a faithful tame N -group and N has wDCCR,
then J(N) coincides with the intersection ∩(0 : H1/H2) over all minimal
factors of H1/H2 of V .
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As another consequence of 2.1 and 2.5, we obtain the following fact
about radicals of nearrings in a tame triple.

Proposition 2.7. If (N1, N2, V ) is a tame triple where N1 has wDCCR,
then J(Ni), i = 1, 2, are both nilpotent and J(N1) = J(N2) ∩N1.

Proof. From 2.5, V as an N1-group has a tame series which is then also
a tame series of V for N2. Thus the J(Ni), i = 1, 2, are nilpotent and
the intersection ∩(0 : H1/H2)Ni

over all minimal factors H1/H2 of V .
Because (0 : H1/H2)N2∩N1 = (0 : H1/H2)N1 , the proposition follows. ♦

We will call a tame N -group V minimally finite if the number of
N -isomorphism types of minimal factors of V is finite and minimally
complete if every minimal N -group is N -isomorphic to a minimal factor
of V . Since a minimal N -group is a minimal N/J(N)-group it follows
that:

Proposition 2.8. If V is a tame N -group and N has wDCCR, then V
is minimally finite.

When the V of 2.8 is faithful the words minimally finite can be
replaced by minimally complete.

Proposition 2.9. If V is a faithful tame N -group and N has wDCCR,
then V is minimally complete.

Proof. By 2.6, J(N) is the intersection ∩(0 : H1/H2) over all minimal
factors H1/H2 of V . Now N/J(N) is a finite direct sum A1⊕ · · ·⊕An of
minimal ideals and each Ai is a direct sum Ri1⊕· · ·⊕Riki of minimal right
ideals that are isomorphic minimal N -groups. Further, ifM is a minimal
N -group, then, for some j, M is isomorphic to every Rjl. However as
the intersection ∩[(0 : H1/H2)/J(N)] over all H1/H2 is J(N)/J(N), at
least one H1/H2 is such that Aj 6≤ (0 : H1/H2)/J(N). Consequently
(H1/H2)Aj 6= {0}. Thus for some l, (H1/H2)Rjl 6= {0}. Choosing
h ∈ H1/H2 such that hRjl 6= {0}, we have

H1/H2 ' hRjl ' Rjl 'M

which completes our proof. ♦

Let N have wDCCR and V be a faithful tame N -group. Implica-
tions of 2.5, 2.8 and 2.9 are that V has a tame series, is minimally finite
and is minimally complete. We conclude this section with an example
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illustrating that these three consequences of wDCCR are not enough to
yield wDCCR.

Let X be an infinite dimensional vector space over a field F which
we will express in the form X = ⊕i∈IAi where Ai consists of the elements
of X that have an element of F in the ith component and 0 in all other
components. In the ring of all linear transformations from X to X,
EndF (X), let S be the set of all scalar linear transformations, A be the
set of all elements of EndF (X) whose ranges are finite dimensional and
R = S + A. It is easy to check that R is a subring of EndF (X) and A
is an ideal of R. Also since for each 0 6= x1 ∈ X and x2 ∈ X there is an
element β ∈ A such that x1β = x2, A and hence R are primitive on X.

Let Hk, k ∈ K, denote the maximal subspaces of X. We claim
that:

(i) each (0 : Hk) is a minimal right ideal of R that is R-isomorphic to
X and

(ii) A =
∑

k∈K(0 : Hk).

To get (i), first note that there is an Aj such that X = Hk ⊕ Aj. Let
b be a nonzero element of Aj. If λ ∈ (0 : Hk) such that bλ = 0, then
the linear transformation λ is the zero map on Hk ⊕ Aj = X. Thus the
map taking λ in (0 : Hk) to bλ is an R-isomorphism and (i) will follow
if b(0 : Hk) = X. To get this, let λi be a linear transformation taking
Hk to {0} and Aj onto Ai. Since λi ∈ (0 : Hk), Ai ≤ b(0 : Hk) for each
i. Hence X ≤ b(0 : Hk) and we have (i). To get (ii), let β ∈ A and
let H ′ = ker(β). As X/H ′ is finite dimensional, there are 1-dimensional
subspaces B1, . . . , Bn of X such that X = H ′ ⊕ B1 ⊕ · · · ⊕ Bn. Each
Ki = H ′⊕B1⊕· · ·Bi−1⊕Bi+1⊕Bn is a maximal subspace of X. Letting
βi be the linear transformation such that βi ∈ (0 : Ki) and dβi = dβ for
all d ∈ Bi, we have β = β1 + · · ·+ βn and hence A =

∑
k∈K(0 : Hk).

To see that R has a faithful tame R-group V that has a tame
series and is both minimally finite and complete, we set V = R. Since
R/A ' F , (i) and (ii) give us that {0} < A < R is a tame series for
V and V is minimally finite. To get V is minimally complete, let M be
a minimal R-group. If MA 6= {0}, then for some m ∈ M and k ∈ K
we have m(0 : Hk) 6= {0}. Thus m(0 : Hk) = M and consequently
M ' (0 : Hk) since (0 : Hk) is a minimal right ideal. If MA = {0}, then
M ' R/A which completes our argument that V is minimally complete.
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Finally, we show R does not have wDCCR. If it did, it would then
have DCCR since R being primitive on X implies J(R) = 0. Now, R
being a primitive ring with DCCR then tells us R must be a simple ring
which is impossible since X and R/A are minimal R-modules that are
not R-isomorphic. Thus R does not have wDCCR.

3. Frattini series

A discussion of the Frattini series for a nearring module appears in
the last section of [7] some of the details of which we briefly review for the
convenience of the reader. Generalized from group theory, the Frattini
N-subgroup of an N -module V is the intersection of the maximal N -
subgroups of V , or is V when V has no maximal N -subgroups. The
Frattini series of V is the series

V = Φ0(V ) ≥ Φ1(V ) ≥ Φ2(V ) ≥ . . .

where
Φi(V ) = Φ(Φi−1(V ))

for i > 0. To the knowledge of these authors, the first appearance of
this series for nearring modules appears in [3, Corollary 3.18] where its
terms are denoted by Li. If V has a tame series as in (2.1), it is easy
to verify that Φi(V ) ≤ Un−i for each i = 0, . . . , n. When N has DCCR
and V is a faithful tame N -group, the Frattini series, as noted in [7], is
a dual series to the socle series with the properties: (i) it terminates in
{0} after a finite number of steps which is the same as the nilpotency
degree of J(N); (ii) each Frattini factor Φi−1(V )/Φi(V ) is a direct sum
of minimal N -modules; (iii) the annihilator of the Frattini series (that is,
the intersection of the annihilators of its factors) is J(N) [3, Corollaries
3.15 and 3.18]; (iv) each minimal N -module is isomorphic to a summand
of some Frattini factor Φi−1(V )/Φi(V ). In this section, we shall see that
these properties in fact hold when N has wDCCR. We begin by proving
the following proposition.

Proposition 3.1. If V is a tame N -group and N/J(N) has DCCR,
then V/Φ(V ) is completely reducible.

Proof. If Φ(V ) = V , the result is trivial so that we may assume V has
maximal submodules. As V J(N) ≤M for each maximal submoduleM of
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V , it follows that V J(N) ≤ Φ(V ). Since J(N/(0 : V/Φ(V ))) = (J(N) +
(0 : V/Φ(V )))/(0 : V/Φ(V )) by 2.2, we must have soc(V/Φ(V )) =
V/Φ(V ) by 2.3 which in turn tells us that V/Φ(V ) is completely re-
ducible. ♦

As a corollary to 2.2 and 3.1, we have:

Corollary 3.2. If U is a submodule of a tame N -group V where N/J(N)
has DCCR, then U/Φ(U) is completely reducible.

We are now ready to extend the four properties of the Frattini series
given earlier when N has DCCR to the wDCCR setting.

Theorem 3.3. If V is a faithful tame N -group and N has wDCCR,
then:

(i) The Frattini series of V terminates in {0} after a finite number of
steps which is the same as the nilpotency degree of J(N).

(ii) Each Frattini factor Φi−1(V )/Φi(V ) is a direct sum of minimal N -
modules.

(iii) The annihilator of the Frattini series is J(N).

(iv) Each minimal N -module is isomorphic to a summand of some Frat-
tini factor Φi−1(V )/Φi(V ) for some i.

Proof. We have (ii) by 3.2. Suppose that the socle series of V has length
m. Since Φi(V ) ≤ socm−i(V ) for each i, the Frattini series has length
at most m and hence is a tame series for V by (ii). Thus (iv) now
follows from 2.9. Since the annihilator of all the factors Φi−1(V )/Φi(V )
is a nilpotent ideal of N , (iv) yields (iii). Finally, as the length of the
Frattini series is at most m, we only need that its length cannot be less
than m to obtain (i). But this follows from 2.5 and (iii). ♦

As a consequence of 2.2 and part (i) of 3.3, we have:

Corollary 3.4. If V is a tame N -group and N has wDCCR, then the
lengths of the Frattini and socle series of V are the same.
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Initially, the authors thought it might be possible to obtain 3.1
whenever V has a tame series. However, this is not possible. To see
why, consider any primitive nearring N with 1 that has a tame series
when viewed as a right module over itself but does not have DCCR.
The example given at the end of the previous section is such a nearring.
Since N is primitive, Φ(N) = J(N) = {0}. Suppose N/Φ(N) = N is
completely reducible. Then N = ⊕i∈IRi where I is an index set and each
Ri is a minimal right ideal of N . Because all elements of N are finite
sums of elements from the Ri, in particular 1 is a finite sum of elements
from the Ri. Consequently it follows that I is a finite set and hence
N has DCCR, which is a contradiction. Thus N cannot be completely
reducible. Further, for the particular example with the ring R in the
previous section, the length of the Frattini series of R is 1 while the
length of its socle series is 2. Thus, in comparison with 3.4, the Frattini
series may be shorter than the socle series when the nearring does not
have wDCCR. Also, note that it is possible for the nilpotency degree of
J(N) in 2.1 to be less than the length of the socle series.

4. Homomorphisms within direct sums

Suppose that (N1, N2, V ) is a tame triple and V1 and V2 are disjoint
submodules of V (in which case V1 + V2 = V1 ⊕ V2) and µ is an N1-
homomorphism from V1 to V2. In the first result of this section, we show
that µ is also an N2-homomorphism.

Proposition 4.1. If (N1, N2, V ) is a tame triple, V1 and V2 are disjoint
N1-submodules of V and µ : V1 → V2 is an N1-homomorphism, then µ is
an N2-homomorphism.

Proof. Since the sum V1+V2 is direct and µ is an N1-homomorphism of V1
into V2, the set S of all v1 +v1µ, v1 ∈ V1, is an N1-submodule of V . Thus
v1α+v1µα, α ∈ N2, is in S. As v1α+v1αµ is in S, −v1αµ+v1µα, which
lies in V2, is in S. Since the only element of V2 in S is 0, v1µα = v1αµ
and 4.1 is proved. ♦

A special case of 4.1 that comes up frequently in practice is when
µ is an N1-isomorphism where we have the following as an immediate
corollary to 4.1.
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Corollary 4.2. If (N1, N2, V ) is a tame triple and V1 and V2 are disjoint
N1-isomorphic submodules of V , then V1 and V2 are N2-isomorphic.

As a consequence of 4.2, we have the following result we shall need
in section 6 involving the transferability of minimal finiteness in a tame
triple.

Theorem 4.3. If (N1, N2, V ) is a tame triple and N1 has wDCCR, then
V is a minimally finite N2-group.

Proof. Consider a factor of socle series terms soci+1(V )/soci(V ) of V .
Since V is a minimally finite N1-group by 2.8, soci+1(V )/soci(V ) has
finitely many N1-isomorphism classes of minimal submodules which are
the same as the N2-isomorphism classes of minimal submodules of this
factor by 4.2. As socn(V ) = V for some nonnegative integer n by 2.5,
the result now follows. ♦

In the setting of 4.2, the question arises as to whether N1-auto-
morphisms of V1 or V2 are also N2-automorphisms. This holds when the
N1-automorphism is fixed point free.

Proposition 4.4. If (N1, N2, V ) is a tame triple and V1 and V2 are
disjoint N1-isomorphic submodules of V , then a fixed point free N1-
automorphism δ of V2 is an N2-automorphism.

Proof. Let µ be an N1-isomorphism of V1 onto V2. Clearly µδ is also an
N1-isomorphism of V1 onto V2. Thus X1 = {v1 + v1µ : v1 ∈ V1} and
X2 = {v1 + v1µδ : v1 ∈ V1} are both N1-submodules of V . They are
also N2-submodules. The map λ of X1 onto X2 taking v1 + v1µ in X1 to
v1 + v1µδ in X2 is readily seen to be an N1-homomorphism of X1 onto
X2. However X1 ∩X2 = {0} since if u1 + u1µ = u2 + u2µδ for u1 and u2
in V1, we must have u1 = u2 and u1µ = u1µδ. Thus u1µδ = 0 since δ is
fixed point free. As this means u1 = 0, X1 ∩X2 = {0}.

It follows from 4.1 that λ is an N2-homomorphism of X1 onto X2.
Thus for α in N2 and v1 in V1,

(v1 + v1µ)αλ = (v1 + v1µ)λα = (v1 + v1µδ)α = v1α + v1µδα.

However, since µ is an N2-isomorphism of V1 onto V2 by 4.1,
(v1 + v1µ)αλ = (v1α + v1αµ)λ = v1α + v1αµδ = v1α + v1µαδ.

This can only mean v1µδα = v1µαδ. Hence δ is an N2-automorphism on
V1µ = V2 and 4.4 is proved. ♦
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We finish this section with a more specialized proposition we shall
need in section 6 whose proof depends on 4.4.

Proposition 4.5. Suppose that (N1, N2, V ) is a tame triple and V1 and
V2 are disjoint N1-isomorphic minimal submodules of V . If N1/J(N1)
has DCCR, then V1 and V2 are N2-isomorphic and N1 + (0 : V1)N2 =
N1 + (0 : V2)N2 = N2.

Proof. We already know V1 and V2 are N2-isomorphic by 4.2. Let µ be
an N2-isomorphism from V1 onto V2. The existence of the diagonal Ni-
subgroup {v1+v1µ : v1 ∈ V1} of V1+V2 = V1⊕V2 yields that V1+V2 is an
Ni-ring module (that is, Ni/(0 : V1 + V2)Ni

is a ring and V1 + V2 is a ring
module of this ring) by [14, Proposition 6.4]. Take N3 as the nearring
[N1 +(0 : V2)N2 ]/(0 : V2)N2 and N4 as the nearring N2/(0 : V2)N2 . Clearly
N3 ≤ N4 and both are subnearrings of M0(V2) that are tame on V2. It is
easy enough to see 4.5 will be proved if it is shown N3 = N4. Let D be
the division ring consisting of 0 and all N3-automorphisms of V2. The N3-
automorphisms are N1-automorphisms and, apart from 1, are fixed point
free. It follows from 4.4 that D is the division ring consisting of 0 and
all N4-automorphisms of V2. However, as N3 is primitive on V2 and has
DCCR, N3 is just the ring EndD(V2) of all D-endomorphisms of V2. Now
N4 consists of D-endomorphisms of V2 so that N4 ≤ EndD(V2) = N3.
Because N3 ≤ N4, the proposition holds. ♦

5. Isolated submodules

We shall say that a submodule U of an N -group V is isolated if
for each submodule H of V either H ≤ U or U ≤ H. In [1], an element
β of a bounded lattice L is said to cut the lattice L if for each element
α of L either α ≤ β or β ≤ α. Thus saying that a submodule U of an
N -group V is isolated is the same as saying U cuts the submodule lattice
of V . Of course, V always has two trivial isolated submodules, namely,
V and {0}. In this section we shall develop some results about C0(V )
involving isolated submodules of V . We begin with a technical lemma for
producing elements of C0(V ) via an isolated submodule U of V . Before
stating this lemma, we note that if β is an element of C0(V )/(0 : U)C0(V ),
then any two coset representatives α1 and α2 of β in C0(V ) have the same
action on U ; that is, if β = α1 + (0 : U)C0(V ) = α2 + (0 : U)C0(V ), then
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uα1 = uα2 for all u ∈ U . In particular, we may then view β as defining
a map on U by setting uβ = uα1 for u ∈ U .
Lemma 5.1. Suppose that V is a faithful N -group, U is an isolated
submodule of V and vi, i ∈ I, is a transversal of U in V where 0 is in
I and v0 = 0. If β is an element of C0(V )/(0 : U)C0(V ) and S is the
set of maps γ in M0(V ) defined on the elements of the cosets vi + U by
(vi + u)γ = uγi where γi ∈ {0, β}, then S ⊆ C0(V ).

Proof. Suppose v is in V , W is a submodule of V and γ ∈ S. We prove
this lemma by showing (v + W )γ ⊆ vγ + W . We have v = vi + u
where i ∈ I and u ∈ U . If v is in V \U and W ≤ U , then for w in W ,
(v + w)γ = (u + w)γi = uγi + w′ with w′ ∈ W . As uγi = vγ, it follows
in this case that (v + W )γ ⊆ vγ + W . If v is in V \U and W > U , then
(v + W )γ ⊆ U < W = vγ + W . When v is in U and W ≤ U , we have
(v+w)γ = (u+w)γi = uγi+w

′ with w′ ∈ W . Since uγi = vγ, (v+W )γ ⊆
vγ+W . For v in U andW > U , (v+W )γ ⊆ U < W = vγ+W . Because
(v +W )γ ⊆ vγ +W in all cases, our proof is complete. ♦

An element of S in 5.1 that we make special note of and denote
by e occurs when β is the identity map, γ0 = β and γi = 0 for i 6= 0.
This map e is the same as the map in M0(V ) that takes each element of
V \U to 0 and is the identity map on U which we record as the following
corollary to 5.1.

Corollary 5.2. Suppose V is a faithful N -group and U is an isolated
submodule of V . The element e of M0(V ) that takes each element of
V \U to 0 and is the identity map on U is in C0(V ).

As defined in [7], two factors A/B and C/D of submodules A ≥ B
and C ≥ D of an N -group V are said to be coprime if A/B and C/D
have no common isomorphic minimal factors. If V is an N -group and
U is a submodule of V , an element ε of N such that V ε ≤ U and
uε = u for all u ∈ U is called a projection idempotent of V onto U
in [5]. Projection idempotents have played an important role in the
study of units of compatible nearrings [2, 7, 8]. Whenever a projection
idempotent ε from V onto U exists, V/U and U must be coprime since
ε acts as the zero map on V/U and the identity map on U . Thus as a
consequence of 5.2 we have another corollary.

Corollary 5.3. If V is a faithfulN -group and U is an isolated submodule
of V , then V/U and Uare coprime C0(V )-groups.
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6. DCCR is not transferred

At the end of section 2, we considered the question of whether a
nearring N which is tame on an N -group V that has a tame series, is
minimally finite and is minimally complete must have wDCCR and saw
an example showing the answer to this question is no. This is but one
of a number of questions involving finiteness conditions that arise in the
study of tame nearrings. Another is: if (N1, N2, V ) is a tame triple and
N1 has DCCR, does N2 have DCCR? Here it is quite easy to produce
examples showing the answer to this latter question is no. Consider a
finite dimensional vector space over an infinite field F and let N1 be
the ring of linear transformations of V and N2 = C0(V ). Then N1 has
DCCR while N2 does not since C0(V ) = M0(V ) and M0(V ) has DCCR
if and only if V is a finite group. But what about if we impose a further
restriction on V as an N2-group such as it be a soluble N2-group by which
we mean (see [13] or [14]) V has a series {0} = V0 ≤ V1 ≤ · · · ≤ Vr = V of
N2-submodules of V such that each factor Vi+1/Vi is an N2 ring module?
While initially it might seem that this question has a positive answer, we
now give an example to show this in not the case.

To begin the construction of our example, let F be an infinite field
and V the vector space F⊕F⊕F⊕F of dimension four over F . It will be
convenient to denote each successive copy of F by Fi, i = 1, . . . , 4. For N1

we will use the ring generated by the set of scalar linear transformations
of V , which we will denote by d(V ), and the linear transformations µ13,
µ14, µ23 and µ24 that respectively take a vector (a1, a2, a3, a4) in V to
(0, 0, a1, 0), (0, 0, 0, a1), (0, 0, a2, 0) and (0, 0, 0, a2). For N2 we will use
C0(V ) of the N1-group V .

Of course, we may identify d(V ) with F making F ≤ N1. Setting
K = {µ13a1 + µ14a2 + µ23a3 + µ24a4 : a1, . . . , a4 ∈ F},

it is easy to see that N1 = F +K, F ∩K = {0}, K is a nilpotent ideal of
N1 of nilpotency degree 2, N1/K isomorphic to F , each µijF is minimal
right ideal of N1 and K is the sum of these minimal right ideals of N1.
The final three of these observations give us that N1 has DCCR.

We next show that V is a soluble N2-group. Observe that F3 ⊕ F4

is the direct sum of the two N1-isomorphic N1-submodules F3 and F4 of
V . Also V/(F3 ⊕ F4) has the properties that (V/(F3 ⊕ F4))K = {0},
V/(F3 ⊕ F4) is the direct sum of the two N1-isomorphic N1-submodules
(F1 ⊕ F3 ⊕ F4)/(F3 ⊕ F4) and (F2 ⊕ F3 ⊕ F4)/(F3 ⊕ F4) of V/(F3 ⊕ F4)
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and K = (0 : F3⊕F4) = (0 : V/(F3⊕F4)). Now, by 4.5 the action of N2

on F3 ⊕ F4 is the same as that of N1. The same applies to V/(F3 ⊕ F4).
Thus since F3⊕F4 and V/(F3⊕F4) are ring modules as an N1-group, V
is N2-soluble.

Finally, we show that N2 does not have DCCR. To do so, we first
show that F3 ⊕ F4 is isolated in V . To see this, note that if v is in
V \(F3 ⊕ F4), then there exists an element of {µ13, µ14, µ23, µ24} taking v
to a nonzero element of F3 and another taking v to a nonzero element of
F4. This means vR ≥ F3 ⊕ F4 and hence F3 ⊕ F4 is isolated. Now, to
obtain that N2 does not have DCCR, let e be the projection idempotent
of 5.2 in C0(V ) = N2 from V onto U = F3 ⊕ F4 and let v1, v2, . . . be
an infinite sequence of distinct elements of V \(F3 ⊕ F4). The maps βi,
i = 1, 2, . . ., of N2 given by (−vi + w)e − (−vi)e = (−vi + w)e = wβi
for all w in V are nonzero elements of Ri = (0 : V \(vi + F3 ⊕ F4))N2 .
It now follows readily that R1, R1 + R2, R1 + R2 + R3, . . . is a properly
ascending chain of right ideals of C0(V ). Indeed, if for some integer
m ≥ 1, R1 + · · · + Rm ≥ Rm+1 then, as all of the Ri, i = 1, . . . ,m,
annihilate vm+1 + F3 ⊕ F4, Rm+1 annihilates vm+1 + F3 ⊕ F4 which is
impossible since βm+1 does not do this. Thus N2 does not have DCCR
since, if it did, it must also have the ascending chain condition on right
ideals by [10, Theorem 5.7].

While N2 does not have DCCR, it does happen to have wDCCR.
To see this, we next prove a preliminary lemma followed by a theorem
involving transferability of wDCCR.

Lemma 6.1. Suppose V is an N -group and Vi, i = 1, . . . , k, are submod-
ules of V . If each V/Vi has the descending chain condition (ascending
chain condition) on submodules, then so does V/(V1 ∩ · · · ∩ Vk).

Proof. As the proof for the ascending chain condition is similar to that
for the descending chain condition (DCC), we deal only with the latter.
The lemma is immediate for k = 1. If the lemma is proved for k = 2, it
will follow for k ≥ 3 by induction because ∩ki=1Vi = (V1 ∩ V2) ∩ [∩k

i=3Vi].
For k = 2, not only do submodules of V between V1 and V have

DCC, but so do submodules of V between V1 ∩ V2 and V1. Indeed, for
a descending chain H1 ≥ H2 ≥ . . . of such submodules, there exists a
positive integer n such that V2 +Hi = V2 +Hi+1 for all i ≥ n. Using the
modular law, Hi = [V2 +Hi]∩ V1 = [V2 +Hi+1]∩ V1 = Hi+1 for all i ≥ n
which gives us the required DCC condition between V1 ∩ V2 and V1.
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Now suppose X1 ≥ X2 ≥ . . . is a descending chain of submodules of
V between V1 ∩ V2 and V . We have that there exists a positive integer r
such that V1 +Xi = V1 +Xi+1 for all i ≥ r and, from what has just been
proved, there exists a positive integer s such that V1∩Xi = V1∩Xi+1 for
all i ≥ s. Another use of the modular law gives us Xi = [V1+Xi+1]∩Xi =
V1∩Xi+Xi+1 = Xi+1 for all i ≥ max{r, s} which completes our proof. ♦

Theorem 6.2. Suppose that (N1, N2, V ) is a tame triple and N1 has
wDCCR. Then N2 has wDCCR if and only if N2/(0 : H1/H2)N2 has
DCCR for each minimal factor H1/H2 of V .

Proof. As the only if part is trivial, we need only give a proof of the if
part. Suppose that N2/(0 : H1/H2)N2 has DCCR for each minimal fac-
tor H1/H2 of V . Since V has a tame series as an N1-group by 2.5 which
is then a tame series for V as an N2-group, J(N2) is nilpotent by 2.1. To
complete this proof, we must show that N2/J(N2) has DCCR. We know
that V is a minimally finite N2-group by 4.3. Let L1/K1, . . . , Ln/Kn be
minimal factors of V that serve as representatives for theN2-isomorphism
classes of minimal factors of V . We have that J(N2) ≤ ∩i(0 : Li/Ki)N2 .
Conversely since ∩i(0 : Li/Ki)N2 annihilates each factor in any tame
series of V , ∩i(0 : Li/Ki)N2 is nilpotent which tells us that ∩i(0 :
Li/Ki)N2 ≤ J(N2). Thus ∩i(0 : Li/Ki)N2 = J(N2). This in turn gives us
∩i((0 : Li/Ki)N2 + J(N2)) is the zero ideal in N2/J(N2). Applying 6.1
with V = N2/J(N2) and Vi = (0 : Li/Ki)N2 + J(N2) then gives us the
required condition that N2/J(N2) has DCCR. ♦

Now, let us return to our example. We have seen that the action of
N2 on each of F3 ⊕ F4 and V/(F3 ⊕ F4) is the same as that of N1 when
showing that V is N2-soluble. As each minimal factor H1/H2 of V is
N2-isomorphic to one of F3 ⊕ F4 or V/(F3 ⊕ F4) and N1/(0 : H1/H2)N1

has DCCR, we must have each N2/(0 : H1/H2)N2 has DCCR. Hence
N2 has wDCCR by 6.2. In particular, we have an example of a nearring
with wDCCR, but not DCCR as promised in the introduction. We shall
leave the further study of transferability of wDCCR from N1 to N2 in a
tame triple (N1, N2, V ) for future investigations.
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