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Abstract: This paper exhibits the basics of non-commutative spectral anal-
ysis and spectral synthesis. Classical spectral synthesis deals with translation
invariant function spaces on commutative groups. The building bricks of such
spaces are the exponentials and exponential monomials. The main result is
due to L. Schwartz about spectral synthesis on the reals. Counterexamples
show, however, that this theorem cannot be generalized directly for functions in
several variables. In this work the background of a possible extension is
studied and presented. The idea is based on Gelfand pairs and spherical
functions. "Translation" invariance is replaced by invariance with respect to
the action of affine groups.
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1. Introduction

Spectral analysis and spectral synthesis deal with the
description of translation invariant function spaces over locally com-
pact Abelian groups. We consider the space C(G) of all complex valued
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continuous functions on a locally compact Abelian group G, which is a
locally convex topological linear space with respect to the pointwise
linear operations (addition, multiplication with scalars) and to the
topology of uniform convergence on compact sets. Closed linear
translation invariant subspaces of this space are called varieties.
Continuous homomorphisms of G into the additive topological group
of complex numbers, and into the multiplicative topological group of
nonzero complex numbers, respectively, are called additive, and
exponential functions, respectively. A function is a polynomial if it
belongs to the algebra generated by all continuous additive functions. An
exponential monomial is the product of a polynomial and an
exponential. It turns out that finite dimensional varieties are exactly
those spanned by exponential monomials. Hence exponential monomi-
als can be considered as basic building blocks of varieties. A given va-
riety may or may not contain any nonzero exponential monomial. If
every nonzero subvariety of it contains an exponential monomial, then
we say that spectral analysis holds for the variety. There is, however,
an even stronger property of some varieties, namely, if all exponential
monomials in the variety span a dense subspace of the variety. In this
case we say that the variety is synthesizable. If every subvariety of a
variety is synthesizable, then we say that spectral synthesis holds for
the variety. It follows, that for spectral synthesis for a variety implies
spectral analysis. If spectral analysis, respectively, spectral synthesis
holds for every variety on an Abelian group, then we say that
spectral analysis, respectively, spectral synthesis holds on the Abelian
group. A famous and pioneer result of L. Schwartz [1] exhibits the
situation by showing that if the group is the reals with the Euclidean
topology, then spectral synthesis holds: there are sufficiently many
exponential monomials in every variety in the sense that their linear
hull is dense in the variety. Besides partial generalizations of Schwartz’s
theorem (see e.g. [2, 5]), attempts to extend Schwartz’s result to higher
dimensions failed. Finally, in [6] counterexamples are given proving the
impossibility of a direct extension.

In a former paper (see [13]) we presented a possible way how to
extend Schwartz’s result to functions in several variables. Our idea is
based on the observation that the basic tools of commutative spectral
analysis and synthesis can be adopted in non-commutative situations
using the theory of Gelfand pairs and spherical functions (see [3, 7, 8, 4,
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9]). Our point is to show that the original version of Schwartz’s result
can be considered as a "spherical spectral synthesis" result on the affine
group Aff SO(n) = SO(n)nRn of proper Euclidean motions with n = 1,
as that group is identical with R. Hence, a proper generalization is
to prove the corresponding "spherical" result for n > 1 – and this is
possible. Of course, it is reasonable to ask what is the situation on other
affine groups. Here we consider the case of the group of all Euclidean
motions, that is the affine group Aff O(n) = O(n)nRn of all orthogonal
transformations on Rn. We note that this group reduces to Z2 n R in
the case n = 1, so the situation is different from the case of the special
orthogonal group. Nevertheless, in this paper we show that spherical
spectral synthesis holds on the affine group Aff O(n) for each n ≥ 1.
We shall use the notation and terminology of [13], but in the following
section we give a short summary about the necessary preliminaries.

2. Preliminaries on spherical spectral synthesis

Let G be a locally compact topological group and K a com-
pact subgroup with normalized Haar measure ω. The set C(G) of all
continuous complex valued functions on G is a locally convex topolog-
ical vector space when equipped with the pointwise linear operations
(addition and multiplication by complex scalars) and with the topology
of uniform convergence on compact sets. The topological dual of this
space is identified with the space Mc(G) of all compactly supported
complex Borel measures on G which is a unital topological algebra when
equipped with the pointwise linear operations, with the convolution of
measures and with the weak*-topology. The Dirac measure of the form
δy is supported at y in G, and all Dirac measures span a dense subalgebra
inMc(G).

Functions f in C(G) satisfying f(kxl) = f(x) for each x in G and
k, l in K are called K-invariant. They form a closed subspace C(G//K)
in C(G). The notation is related to the fact that these functions can
be considered as continuous functions on the double coset space G//K
with respect to K. In fact, C(G//K) can be identified with the space
of all continuous complex valued functions on the locally compact factor
space G//K. The dualMc(G//K) of C(G//K) can be identified with a
closed subalgebra ofMc(G), its elements are calledK-invariant measures
(see [13]). Clearly, C(G//K) is a module over the algebra Mc(G//K)
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(see [13]). We say that (G,K) is a Gelfand pair, if Mc(G//K) is
commutative.

The projection of C(G) onto C(G//K) is defined in the following
way: for each f in C(G) we let

f#(x) =

∫
K

∫
K

f(kxl) dω(k) dω(l) (x ∈ G);

then f 7→ f# is a continuous linear mapping. The function f# is called
the projection of f , and f is K-invariant if and only if f = f#.

The adjoint mapping fromMc(G//K) ontoMc(G) is defined as

〈µ#, f〉 = 〈µ, f#〉;

µ# is called the projection of µ, and µ isK-invariant if and only if µ = µ#.
Using the projection we define K-translation as follows: for each f

in C(G//K) and y in G we let

τyf(x) = δ#
y−1 ∗ f(x) =

∫
K

f(ykx) dω(k) (x ∈ G).

We call τyf the K-translate of f with increment y. It turns out that
all K-translations form a commuting family if and only if (G,K) is a
Gelfand pair (see [13]).

The closed linear subspace V in C(G//K) is called a K-variety if
it is K-translation invariant: for each f in V the function τyf is in V
whenever y is in G. K-varieties are exactly the closed submodules of the
module C(G//K) over the algebraMc(G//K). The smallest K-variety
including f is called the K-variety of f and it is denoted by τ(f).

Now we are about to formulate the basic problems of spectral
analysis and spectral synthesis for K-varieties. Observe that in the case
of commutative G the space G//K can be identified with the locally
compact factor group G/K and C(G//K) is the space of continuous
complex functions on this group. Moreover, K-translation coincides with
ordinary translation hence a reasonable concept of spectral analysis and
spectral synthesis for K-varieties will provide a proper generalization
of the theory. For this we need the basic functions: the substitutes of
exponential monomials. From now on we always assume that (G,K) is
a Gelfand pair.
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The normalized common K-invariant eigenfunctions of all
K-translations are called K-spherical functions; we note that we do
not assume boundedness of K-spherical functions. In other words, the
nonzero K-invariant continuous function f : G → C is a K-spherical
function if and only if it satisfies∫

K

f(xky) dω(k) = f(x)f(y)

for each x, y in G. It follows f(e) = 1, where e is the identity in G.
It is easy to see that K-spherical functions are exactly the normalized
common eigenfunctions of all K-translations (see [13]).

Given the K-spherical function s and the element y in G we define
the modified difference corresponding to s with increment y as

∆s;y = δ#
y−1 − s(y)δe.

Obviously, the normalized K-invariant function s is a K-spherical
function if and only if

∆s;y ∗ s(x) = 0

for each x, y in G. The iterates of modified differences are used to define
K-monomials as follows: the continuous K-invariant function f on G is
called a K-monomial if there is a K-spherical function s and a natural
number n such that

∆s;y1,y2,...,yn+1 ∗ f(x) = [Πn+1
k=1∆s;yk ] ∗ f(x) = 0

holds for each x, y1, y2, . . . , yn+1 in G. Here Π denotes convolution
product. If f is nonzero, then s is uniquely determined and the we
say that f is an s-monomial, and its degree is defined as the smallest n
satisfying the above requirement.

Now we are in the position to define spectral analysis and spectral
synthesis for K-varieties. Given a K-variety V we say that K-spectral
analysis holds for V if every nonzero K-variety in V contains a K-
spherical function. This equivalent to the requirement that every nonzero
K-variety in V contains a nonzero K-monomial. If all K-monomials in
K span a dense subspace in K, then we say that V is K-synthesizable.
We say that K-spectral synthesis holds for V if every K-variety in V is
K-synthesizable. If K-spectral analysis, resp. K-spectral synthesis holds
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for every K-variety on G, then we say that K-spectral analysis, resp. K-
spectral synthesis holds on G. It is obvious that for commutative G these
concepts coincide with the corresponding concepts related to ordinary
spectral analysis, resp. spectral synthesis on the locally compact Abelian
group G/K. Nevertheless, we may have Gelfand pairs (G,K) with
different choices of non-commutative G, where the compact subgroup
K is not even normal subgroup. In [13] we considered the case where
G is the affine group Aff SO(n) of the special orthogonal group SO(n)
over Rn and we proved K-spectral synthesis for this group when K is
the compact subgroup of Aff SO(n) topologically isomorphic to SO(n).
As SO(1) is the trivial group, hence Aff SO(1) is topologically isomor-
phic to R, this result provides a proper generalization of L. Schwartz’s
spectral synthesis result for functions in several variables. In the
subsequent paragraphs we shall present a similar result with O(n) in-
stead of SO(n). In the real case n = 1 this gives a "spherical" spectral
synthesis result for even continuous functions.

3. Affine groups

In this section we specialize the above setting to affine groups.
Let n be a positive integer and V an n-dimensional vector space over
the field F. We denote by GLn(V,F) the general linear group of V , i.e.
the group of all linear automorphisms of V . Sometimes we can use any
of the notations GL(V,F), GL(n,F) or GL(V ). Given a subgroup H in
GL(V,F) the affine group Aff (H,V ) of H over V is an extension of H
by the group of translations in V : it is the semidirect product

Aff (H, V ) = H n V.

We can also write simply Aff H for Aff (H, V ). We recall that Aff H is a
group with basic set H × V and the group operation is defined by

(h, u) · (k, v) =
(
h ◦ k, u+ h · v

)
for each h, k in H and u, v in V . Here ◦ is the composition of automor-
phisms and h·v is the image of v under the automorphism h. The identity
of this operation is (id, 0), and the inverse of (h, u) is (h−1,−h−1 ·u) as it
is easy to check. Hence the operation in Aff H imitates the composition
of the affine mappings of the form

(h, u) · v = h · v + u
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with h in H and u, v in V . It is easy to verify that the elements of Aff H
of the form (h, 0) form a subgroup in Aff H isomorphic to H – we shall
identify this subgroup with H. Similarly, the elements of Aff H of the
type (id, u) form a normal subgroup in Aff H which is isomorphic to V
– we shall identify this normal subgroup with V .

In this work we shall deal with the case V = Rn only, and we
assume thatK is a compact subgroup of GL(Rn,R) which will be written
simply as GL(Rn). We let G = Aff (K,Rn) = Aff K, the affine group of
K over Rn. Clearly, G is a locally compact group when equipped with
the product topology. Let f : Aff K → C be a continuous K-invariant
function. This means

f(h, x) = f
(
(k, 0) · (h, x) · (l, 0)

)
holds for each h, k, l in K and x in Rn. This is equivalent to

f(h, x) = f(k ◦ h ◦ l, k · x)

for each h, k, l in K and x in Rn. Choosing an arbitrary k in K and
taking l = h−1 ◦ k−1 we have that f is K-invariant if and only if

f(h, x) = f(id, k · x)

holds for each h, k in K and x in Rn. In other words, f is independent of
the first variable, hence it can be identified with a continuous function on
Rn, and this function is invariant with respect to the action of K on Rn.
The set of all continuousK-invariant functions on Aff K is identified with
the closed linear subspace of all continuous complex valued functions ϕ
in C(Rn) satisfying

ϕ(x) = ϕ(k · x)

for each k in K and x in Rn. Obviously, we may consider C(Rn) as
embedded in C(Aff K), since Rn is embedded in Aff K. We shall denote
the space of all continuousK-invariant functions – as a subspace of C(Rn)
– by CK(Rn). Similarly, the topological dual of this space is identified
with a closed subspace of the spaceMc(Rn) of all compactly supported
complex Borel measures on Rn when the latter is equipped with the
weak*-topology. The dual of CK(Rn) will be denoted by MK(Rn), its
elements are the K-invariant measures when considered as measures on
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Aff K – their support is a compact subset of Rn. Hence the measure µ
inMc(Rn) is K-invariant if and only if∫

Rn
f dµ =

∫
Rn
f(kv) dµ(v)

holds for each f in C(Rn) and k in K. Finally, in this situation
convolution of K-invariant measures, and also convolution of K-invariant
measures with K-invariant functions reduces to ordinary convolution of
measures, and to ordinary convolution of measures with functions on Rn,
as it is easy to check.

4. Euclidean motions

In this paper we focus on the affine group Aff O(n) of
O(n) = O(n,R), the orthogonal group. The elements of this group are
called Euclidean motions. In other words

Aff O(n) = O(n,R) nRn

with the operation

(O, x) · (P, y) = (O ◦ P, x+O · y)

for each orthogonal operators O,P and vectors x, y in Rn. This operation
corresponds to the composition of the affine mappings ϕ : u 7→ x+O · u
and ψ : u 7→ y + P · u. Indeed, we have

ϕ ◦ ψ(u) = x+O · ψ(u) = x+O · (y + P · u) = x+O · y + (O ◦ P ) · u.

The orthogonal group O(n) is compact and its normalized Haar measure
will be denoted by ω.

For each f in C(Aff O(n)) the O(n)-projection of f is given by

f#(h, x) =

∫
O(n)

∫
O(n)

f(l, kx) dω(l) dω(k),

for each h in O(n) and x in Rn. Clearly, this is independent of h and
we simply write f#(x) for f#(h, x). Accordingly, the projection of the
measure δ(h,x) is

〈δ#
(h,x), f〉 = f#(x) =

∫
O(n)

f(l, kx) dω(k) dω(l)
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for each h in O(n) and x in Rn. We can simply write δ#
x for δ#

(h,x), as
this measure is in Mc(Rn), it is independent of h. It follows that the
O(n)-translate with y in Rn of each f in Cr(Rn) is given by the equation

τyf(x) = δ#
y−1 ∗ f(x) =

∫
O(n)

f(x+ ky) dω(k)

for each x in Rn. Clearly, the K-translation operators τy for each y in
Rn form a commuting family, hence (Aff O(n), O(n)) is a Gelfand pair.
The continuous radial function f : Rn → C is an O(n)-spherical function
if and only if it satisfies∫

O(n)

f(x+ ky) dω(k) = f(x)f(y), f(0) = 1.

The following theorem is of basic importance (see [13]).

Theorem 4.1. The continuous O(n)-invariant function f : Rn → C is an
O(n)-spherical function if and only if it is C∞ and it is an eigenfunction
of the Laplacian on Rn with f(0) = 1.

The proof can be found in [9]. Although the proof in [9] is given for
SO(n), but it is easy to see that it works for O(n) as well. In fact,
O(n)-invariant functions and measures coincide with SO(n)-invariant
functions and measures unless n = 1 as it is shown by the following
theorem.

Theorem 4.2. For n ≥ 2 the space of O(n)-invariant functions on Rn

coincides with the space of SO(n)-invariant functions on Rn.

Proof. We note that for n ≥ 1 SO(n) acts transitively on Sn−1: if
‖x‖ = ‖y‖ = 1, then there exists k in SO(n) such that k · x = y.
Now suppose that f is SO(n)-invariant on Rn: f(k · x) = f(x) holds for
each x in Rn and k in SO(n). Let ‖x‖ = ‖y‖ for x, y 6= 0 in Rn. Then
we have

x

‖x‖
=

y

‖y‖
= 1,

hence there exists k in SO(n) such that

k · x

‖x‖
=

y

‖y‖
,
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i.e. k · x = y, hence f(x) = f(k · x) = f(y). In other words, we have
proved that if x, y are in Rn with ‖x‖ = ‖y‖, then f(x) = f(y).

Now let x be in Rn and k in O(n). Then ‖x‖ = ‖k · x‖, hence
f(x) = f(k · x), and our statement is proved. ♦

Corollary 4.3. For n ≥ 2 the space of O(n)-invariant measures on Rn

coincides with the space of SO(n)-invariant measures on Rn.

Hence for n ≥ 2 the O(n)-invariant functions on the group Aff O(n)
are those functions on Rn which are rotation invariant, i.e. they depend
on the norm only. These functions are called radial, and the space of
all continuous radial functions will be denoted by Cr(Rn). Similarly, the
space of all compactly supported O(n)-invariant measures will be denoted
byMr(Rn) – they are called radial measures.

In the case n = 1 every continuous function on R and every measure
in Mc(R) is SO(1)-invariant, as SO(1) = {id}, but O(1) = {id,−id},
hence O(1)-invariant functions are exactly the even functions on R.

5. Spherical spectral synthesis on the Euclidean mo-
tion group

In order to prove O(n)-spectral analysis and O(n)-spectral
synthesis for the Euclidean motion group we need some general results
from [13]. In the subsequent paragraphs AnnV denotes the annihilator in
Mc(G//K) of the submodule V in C(G//K). We recall (see [13]) that a
maximal ideal in a commutative complex algebra is called an exponential
maximal ideal, if its residue algebra is the complex field.

Theorem 5.1. Suppose that (G,K) is a Gelfand pair. Let V be a K-
variety on G. Then K-spectral analysis holds for V if and only if every
maximal ideal inMc(G//K) containing AnnV is exponential. In other
words, K-spectral analysis holds for V if and only if every maximal ideal
in the residue algebraMc(G//K)/AnnV is exponential.

Corollary 5.2. K-spectral analysis holds on G if and only if every
maximal ideal inthe algebraMc(G//K) is exponential.

For synthesizability of varieties we have the following result
(see [10, 11, 12, 13]).
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Theorem 5.3. The nonzero K-variety V is K-synthesizable if and only
if

AnnV =
⋂
M

⋂
n∈N

(AnnV +Mn+1),

where the first intersection is taken for all exponential maximal K-ideals
M containing AnnV andMc(G//K)/Mn+1 is finite dimensional.

In [13] we introduced the following definition: let R be a
commutative complex topological algebra with unit. The proper closed
ideal I in R is called synthesizable if

(5.1) I =
⋂
M

⋂
n∈N

(I +Mn+1),

where the first intersection is taken for all exponential maximal ideals
M containing I and R/Mn+1 is finite dimensional. Accordingly, we say
that spectral analysis holds on R, if every maximal ideal is exponential,
and spectral synthesis holds on R, if every closed ideal I in R
satisfies the above equation. In particular, K-spectral analysis holds
on the Gelfand pair (G,K) if spectral analysis holds onMc(G//K), and
K-spectral synthesis holds on G if and only if this spectral synthesis
holds onMc(G//K). The following theorem is a simple consequence of
the above definitions.

Theorem 5.4. Let R,Q be commutative complex topological algebras
with unit. If spectral analysis, resp. spectral synthesis holds on R,
and there exists a continuous surjective homomorphism Φ : R→ Q, then
spectral analysis, resp. spectral synthesis holds on Q.

Proof. Let M be a maximal ideal with Q, then M = Φ(N) with some
ideal N in R such that N = Φ−1(M). Let ψ : Q → Q/M denote the
natural mapping, then ψ is continuous and open. We define

F (r) = ψ
(
Φ(r)

)
for each r in R, then F : R → Q/M is a continuous homomorphism.
Clearly, F is surjective. If F (r) = 0, then Φ(r) is in Kerψ = M , that is,
r is in N . It follows that R/N ∼= Q/M , a field, hence N is a maximal
ideal. If N is exponential, then M is exponential, too, which proves the
statement about spectral analysis.
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Let J be a proper closed ideal in Q and let I = Φ−1(J). Then I is
a proper closed ideal in R, hence it is synthesizable, by assumption. It
follows that (5.1) holds. Then we have

(5.2) J =
⋂

Φ(M)

⋂
n∈N

(J + Φ(M)n+1),

and here the first intersection extends for all maximal ideals Φ(M)
containing J . Indeed, the left hand side is clearly a subset of the right
hand side. Suppose now that q = Φ(r) is not in J , then r is not in I.
By equation (5.1), there exists a maximal ideal M with I ⊆ M , and a
natural number n0 such that r is not in I + Mn0+1, hence q = Φ(r) is
not in J + Φ(M)n0+1. It follows that (5.2) holds.

What is left is to show that Q/Φ(M)n+1 is finite dimensional for
every maximal ideal M with I ⊆M and for each natural number n. We
define F : R/Mn+1 → Q/Φ(M)n+1 by

F (r +Mn+1) = Φ(r) + Φ(M)n+1

for each r in R. We have to show that the value of F is independent of
the choice of r in the coset r+Mn+1. Suppose that r−r1 is inMn+1, that
is r − r1 =

∑
x1x2 · · ·xn+1, where the sum is finite, and x1, x2, . . . , xn+1

is in M . Then

Φ(r) = Φ(r1) +
∑

Φ(x1)Φ(x2) · · ·Φ(xn+1),

hence Φ(r) and Φ(r1) are in the same coset of Φ(M)n+1. As F is clearly a
surjective homomorphism, we infer that Q/Φ(M)n+1 is finite dimensional
and the proof is complete. ♦

Using the above results we can extend Schwartz’s spectral synthesis
result for the Euclidean motion group in the following form.

Theorem 5.5. For each positive integer n O(n)-spectral synthesis holds
for the Gelfand pair (Aff O(n),Rn).

Proof. For n ≥ 2 the statement follows from Corollary 4.3 and form
the results in [13]. The case n = 1 can be treated separately, using
the ideas in [13]. We recall again that the O(1)-invariant continuous
functions on R are exactly the continuous even functions. It is enough
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to show that there exists a surjective algebra homomorphism of the
measure algebraMc(R) ontoMr(R). Indeed, for each µ inMc(R) and f
continuous even function we define µr as the restriction of µ to the space
of continuous even functions. Clearly, the mapping µ 7→ µr is an algebra
homomorphism ofMc(R) ontoMr(Rn). ♦

6. O(n)-spherical functions and monomials

The radial eigenfunctions of the Laplacian in Rn for n ≥ 2 can be
obtained from the radial form of the Laplacian: suppose that sλ : Rn → C
is C∞, and

∆sλ = λsλ, sλ(0) = 1

holds with some complex λ. If sλ is radial, then sλ(x) = ϕ(‖x‖) holds
with some C∞ even function ϕ : R→ C satisfying the Bessel differential
equation

d2ϕ

dr2
+
n− 1

r

dϕ

dr
= λϕ

and ϕ(0) = 1. Using this the explicit form of sλ can be given as

sλ(x) = Γ
(n

2

) ∞∑
k=0

λk

k!Γ
(
k + n

2

) (‖x‖
2

)2k

for each x in Rn.
In the case of n = 1 O(1)-spherical functions are the functions of

the form
sλ(x) = coshλx

for each x in R, where λ is any complex number (see [13]).
The O(n)-monomials can be described in the same way as in [14]:

given the O(n)-spherical function sλ with some complex λ all
sλ-monomials of degree at most d are linear combinations of the
functions djsλ

dλj
with j = 0, 1, . . . , d. The explicit form can be given using

the formula

djsλ
dλj

(x) = Γ
(n

2

) ∞∑
k=0

λk

k!Γ
(
k + j + n

2

) (‖x‖
2

)2(k+j)

for each x in Rn.
For instance, in the special case n = 1 we can formulate our result

as follows.
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Theorem 6.1. Let V be a linear space of even continuous complex valued
functions on the real line which is closed under uniform
convergence on compact sets. Suppose that for each f in V the function
x 7→ f(x+ y) + f(x− y) is in V whenever y is in R. Then there exists a
complex λ such that the function x 7→ coshλx is in V . In addition, every
function in V is a uniform limit on compact sets of a sequence of linear
combinations of functions of the form x 7→ xk sinhλx and x 7→ xk coshλx
where λ is a complex number such that these functions are in V .
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