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Abstract: Certain multiple factorizations of finite abelian groups can be used
to construct complex Hadamard matrices.

1. Introduction

Let H be an n by n matrix whose entries are complex mth roots of
unity. If HH∗ = nI, then we say that H is a complex Hadamard matrix.
Here I is the n by n identity matrix and H∗ is the Hermite transpose
of H. In the m = 2 particular case the entries of H are +1 or −1 and
we get back the Hadamard matrices in the ordinary sense. Ordinary
Hadamard matrices have important applications in combinatorics. For
instance they can be used to construct error correcting codes and certain
block designs.

The columns of a complex Hadamard matrix can be considered as
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a finite set of orthogonal functions defined on a finite set. Let G be a
finite abelian group with elements g1, . . . , gn and let χ1, . . . , χn be the
characters of G. By the standard orthogonality relations the columns of
the matrix  χ1(g1) . . . χ1(gn)

... . . . ...
χn(g1) . . . χn(gn)


are orthogonal and the rows of the matrix are orthogonal. In other words
the character table of a finite abelian group forms a set of orthogonal
functions. In the Fourier analysis these orthogonal functions are called
Vilenkin systems. The character table of a subgroup of G is clearly a
Vilenkin system too. Restricting the characters of G to a subset of G
in a typical case does not lead to an orthogonal system. As it turns out
complex Hadamard matrices are related to certain multiple factorizations
of finite abelian groups. Exploiting this connection we will be able to
construct complex Hadamard matrices. We will see that there is a large
collection of subsets of G such that restricting the characters of G to
these subsets yield an orthogonal system of functions.

Let G be a finite abelian group and let A1, . . . , An be subsets of G.
If each element g of G can be expressed in the form

g = a1 · · · an, a1 ∈ A1, . . . , an ∈ An

in exactly k ways, then we say that the product A1 · · ·An is a k-fold
factorization of G. We speak about multiple factorizations of G when we
do not wish the refer to the value of k. If A is a subset of G and χ is a
character of G, then the notation χ(A) stands for the complex number∑

a∈A

χ(a).

It is known (see for example [11]) that the product A1 · · ·An forms a mul-
tiple factorization of G if and only if χ(A1 · · ·An) = χ(A1) · · ·χ(An) = 0
for each nonprincipal character χ of G.

2. Lemmas

Let the groupG be the direct product of the cyclic groupsG1, . . . , Gn

of orders q1, . . . , qn. We assume that qi = u(i)v(i), u(i), v(i) ≥ 2 for each
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i, 1 ≤ i ≤ n. In other words we assume that the order of the cyclic group
Gi is composite. Let x1, . . . , xn be basis elements of the cyclic groups
G1, . . . , Gn, respectively. We may say that the elements x1, . . . , xn are
basis elements of the group G. Let ρ be a root of unity whose order is the
least common multiple of q1, . . . , qn. For each i, 1 ≤ i ≤ n there is a posi-
tive integer w(i) such that the order of ρw(i) is equal to qi. Each character
χi of Gi can be represented in the form χ(xi) = ρw(i)ν(i). Consequently
each character χ of G can be represented in the form

(2.1) χ(x1) = ρw(1)ν(1), . . . , χ(xn) = ρw(n)ν(n),

where
0 ≤ ν(1) ≤ q1 − 1, . . . , 0 ≤ ν(n) ≤ qn − 1.

For the sake of clarity we single out two special cases. When q1 = · · · =
qn = q, then G is a homocyclic abelian group. In this case the least
common multiple of q1, . . . , qn is q and the w(1), . . . , w(n) numbers are
all equal to one. When q1, . . . , qn are pair-wise relatively primes, then
G is a cyclic group. Now the least common multiple of q1, . . . , qn is the
product q1 · · · qn and w(i) = (q1 · · · qn)/qi for each i, 1 ≤ i ≤ n.

Set Ci = {e, xi, x2
i , . . . , x

u(i)−1
i }. We may call Ci a cyclic subset of

G. We should keep in mind that Ci is not necessarily a cyclic subgroup
of G. Note that Ci is a subgroup of G if and only if |xi| = u(i). Suppose
that AC1 · · ·Cn is a multiple factorization of G. Let a1, . . . , aα be all the
elements of A. Each ai can be written uniquely in the form

ai = x
λ(i,1)
1 · · · xλ(i,n)

n ,

where
0 ≤ λ(i, 1) ≤ q1 − 1, . . . , 0 ≤ λ(i, n) ≤ qn − 1.

For the sake of brevity we introduce the notation

s(i) = [λ(i, 1), . . . , λ(i, n)].

Thus s(i) is a vector with integer components. Pick a nonprincipal char-
acter χ of G defined by (2.1). Let d = [ν(1), . . . , ν(n)]. Therefore d is a
vector with integer components.

Lemma 2.1. Suppose that

(2.2) χ(C1) 6= 0, . . . , χ(Cn) 6= 0.
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Then

(2.3) 0 = ρ〈d,s(1)〉 + · · ·+ ρ〈d,s(α)〉.

Here 〈d, s(i)〉 stands for

w(1)ν(1)λ(i, 1) + · · ·+ w(n)ν(n)λ(i, n).

The notation 〈d, s(i)〉 simply a short hand notation for the usual product
of the vectors d and s(i).

Proof. Let us watch the multiple factorization AC1 · · ·Cn = AB of G. As
χ is a nonprincipal character of G, by the result we quoted, it follows that
0 = χ(A)χ(C1) · · ·χ(Cn). Using (2.2) we get that χ(A) = 0. Therefore

0 = χ(A)

=
α∑
i=1

χ(ai)

=
α∑
i=1

ρw(1)ν(1)λ(i,1) · · · ρw(n)ν(n)λ(i,n)

=
α∑
i=1

ρw(1)ν(1)λ(i,1)+···+w(n)ν(n)λ(i,n)

=
α∑
i=1

ρ〈d,s(i)〉

as required. ♦

Using equation (2.3) we can construct complex Hadamard matrices.
Let us start with a multiple factorization AC1 · · ·Cn = AB of G. Suppose
that |A| ≤ |B|. Choose a subset B1 of B such that |B1| = |A|. Let
b1, . . . , bα be all the elements of B1 and write the element bj in the form

bj = x
µ(j,1)
1 · · ·xµ(j,n)

n .

Set
t(j) = [µ(j, 1), . . . , µ(j, n)].
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Finally let hi,j = ρ〈t(i),s(j)〉 and

H =

 h1,1 . . . h1,α
... . . . ...

hα,1 . . . hα,α

 .
Lemma 2.2. The H defined above is a complex Hadamard matrix.

Proof. Multiplying the ith row of H by the jth column of H∗ gives that

α∑
k=1

ρ〈t(i),s(k)〉−〈t(j),s(k)〉 =
α∑
k=1

ρ〈t(i)−t(j),s(k)〉.

If i = j, then this sum is equal to α as required. It remains to show that
it is zero if i 6= j. If (2.2) holds, then Lemma 2.1 is applicable with the
d = t(i)− t(j) choice. Note that χ(Ck) = 0 if and only if χ(xk) 6= 1 and
χ(x

u(k)
k ) = 1. We assume that χ(x

u(k)
k ) = 1 and we show that in this case

χ(xk) = 1 holds. χ(x
u(k)
k ) = 1 means that ρu(k)w(k)[µ(i,k)−µ(j,k)] = 1. This

in turns means

u(k)[µ(i, k)− µ(j, k)] ≡ 0 (mod u(k)v(k)).

Hence
µ(i, k)− µ(j, k) ≡ 0 (mod v(k)).

The kth component of t(i) is running from 0 to v(k)− 1 and so it follows
that µ(i, k) = µ(j, k). Using this we get that χ(xk) = 1. This completes
the proof. ♦

3. An example

In order to illustrate the procedure of constructing complex Hada-
mard matrices we work out a toy example. Let the group G be the direct
product of three cyclic groups of order four. Let x1, x2, x3 be a basis of
G. Let Ci = {e, xi} and let B = C1C2C3. Choosing A to be

{e, x1x
2
3, x

2
2x3, x

2
2x

3
3, x

2
1x2, x

3
1x

2
3, x

2
1x

3
2, x

2
1x

2
2x

2
3}

the reader can verify that the productAC1C2C3 is a multiple factorization
of G. In fact it is a 1-fold factorization of G. The values of s(i) and t(j)
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Table 1: The values of s(i), t(i)

i s(i) t(i)
1 (0, 0, 0) (0, 0, 0)
2 (1, 0, 2) (0, 0, 1)
3 (0, 2, 1) (0, 1, 0)
4 (0, 2, 3) (0, 1, 1)
5 (2, 1, 0) (1, 0, 0)
6 (3, 0, 2) (1, 0, 1)
7 (2, 3, 0) (1, 1, 0)
8 (2, 2, 2) (1, 1, 1)

are listed in Table 1 Let ρ be a 4th primitive root of unity. Computing the
scalar products 〈s(i), t(i)〉 we get the following 8 by 8 complex Hadamard
matrix

H =



ρ0 ρ0 ρ0 ρ0 ρ0 ρ0 ρ0 ρ0

ρ0 ρ2 ρ0 ρ2 ρ1 ρ3 ρ1 ρ3

ρ0 ρ1 ρ2 ρ3 ρ0 ρ3 ρ2 ρ3

ρ0 ρ3 ρ2 ρ1 ρ0 ρ1 ρ2 ρ1

ρ0 ρ0 ρ1 ρ1 ρ2 ρ3 ρ3 ρ3

ρ0 ρ2 ρ0 ρ2 ρ3 ρ1 ρ3 ρ1

ρ0 ρ0 ρ3 ρ3 ρ2 ρ1 ρ1 ρ1

ρ0 ρ2 ρ2 ρ0 ρ2 ρ2 ρ0 ρ2


.

Plainly there is another way to arrive at H. First write up the 64 by
64 character table of G. Then restrict the characters of G to the set A.
Finally cancel the rows of the character table that does not correspond to
elements of A. In short we can get H by restricting the character table of
G to the subset A. We claim that H is not a character table of any finite
abelian group. In other words H is not a Vilenkin system. The rows of
H form an orthogonal system. Suppose that the rows of H are the rows
of the character table of an abelian group G1 of order 8. G1 must have
an element of order two and so the character table of G1 must contain
two columns in which the entries are +1 or −1. But H does not have
two such columns. The columns of H form an orthogonal system too.
Suppose that the columns of H are the rows of the character table of an
abelian group G1 of order 8. The elements of the first row of H are the
values of the characters of G1 on the identity element e. The elements
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of the last row of H are the values of the characters of G1 on a second
order element of G1 and we can see that G1 cannot have more elements
of order two. Consequently G1 is a cyclic group of order 8. But in H
each complex number has multiplicative order at most four. Therefore
H is not a Vilenkin system.

4. The multiple cover problem

In this section we describe how to find multiple factorizations with
the help of a computer.

Given an integer k, a universal set U and subsets A1, . . . , Am of U .
The problem is to decide if there are subsets B1, . . . , Bs ⊂ {A1, . . . , Am}
such that each element of U appears in B1 ∪ · · · ∪ Bs exactly k times.
The sets B1, . . . , Bs form a k-fold covering of U and so the problem can
be called the k-fold covering problem or simply the multiple covering
problem. The k = 1 special case is called the exact cover problem. It is
known that the exact cover problem is NP complete. Thus one cannot
expect a polynomial running time algorithm for the k-fold cover problem.
D. E. Knuth [6] describes an algorithm for the exact cover problem and
this can be adopted to handle the multiple cover problem too.

We organize the data of the k-fold covering problem into an m by
|U | incidence matrix M . We label the rows of M by the sets A1, . . . , Am
and we label the columns of M by the elements of U . For a u ∈ U if
u ∈ Ai, then we put a bullet into cell in the row of Ai and the column
of u. If B1, . . . , Bs is a k-fold covering of U , then each column of M
contains exactly k bullets in the rows of B1, . . . , Bs.

Let G be a finite abelian group and let A, B subsets of G. Note that
the product AB is a k-fold factorization of G if and only if the sets aB,
a ∈ A form a k-fold covering of G. Multiple factorizations are particular
instances of the multiple covering problem. We choose the universal set
U to be G. The family of given subsets of U is chosen to be the subsets
gB, g ∈ G. If A is a subset of G such that the sets aB, a ∈ A form a
k-fold cover of U = G, then the product AB is a k-fold factorization of
G.
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5. Theory of combinatorial designs

The main purpose of this note is to illustrate that the theory of fac-
torization of finite abelian groups has an application in connection with
constructing complex Hadamard matrices. However a reader working on
the field of combinatorial designs might be interested in the material.
The terminology and notations are not identical on the two fields and so
it maybe demanding for design theorists. In this section is an attempt
to make their life easier.

Let G be a finite abelian group. The notation Z(G) stands for the
group ring over G. The elements of Z(G) are linear combinations of
elements of G with integer coefficients. Let ∆ be a (v, k, λ)-symmetric
design admitting a regular group action by G. Under there circumstances
the group contains a difference set D. In other words D ⊆ G for which
the equation

DD(−1) = (k − λ)1G + λG

holds. Here the subset D of G is identified with the set of its elements to
get an element of the group ring Z(G). The subset D(−1) consists of the
inverses of the elements of D. There are projects to extend correspon-
dence between group ring identities and subsets of groups to matrices
with entries from a set larger than {0, 1}. The interested reader can
consult with [1], [5], [7].

By the complexity theory of algorithms the multiple cover prob-
lem, described in section 4, is an NP-hard problem. Thus discarding the
algebraic structures we can construct k-fold factorization only in limited
trivial sizes. This again reinforces the intuition that exploring the the-
ory of Fourier analysis on finite abelian groups and design theory is the
promising avenue.
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