Mathematica Pannonica
25/2 (2014-2015), 105-114

PERFORMANCE OF A GCD ALGO-
RITHM FOR GAUSSIAN INTEGERS

Laszlo Gimesi

University of Pécs, Faculty of Natural Sciences, Department of In-
formatics
Ifpisdg titja 6. Pécs H-7624

Received: April 27, 2017
MSC 2000:
Keywords: Gaussian integer, GCD algorithm, analysis of algorithms.

Abstract: In addition to the 2300-year-old Euclidean algorithm there is a
younger sibling from 1961, the so-called binary algorithm, for computing the
greatest common divisor of two integers. The binary algorithm can be extended
to the Gaussian integers in more than one way. The aim of this paper is to
carry out large scale numerical experiments in connection with a particular
version of the binary algorithm for Gaussian integers.

1. Introduction

Euclids method was described around the year 300 B.C.E. This
algorithm is a simple iterative method for finding the greatest common
divisor (GCD) of two integers. This algorithm has a disadvantage: the
division. This is eliminated in Stein’s algorithm. Stein devised a binary
greatest common divisor algorithm in 1961 [6]. Let gcd(m,n) denote the
greatest common divisor of the integer m and n. This algorithm is based
on the following three simple facts [3]:

1. if m and n are even, then gcd(m,n) = 2ged(m/2,n/2),

E-mail address: gimesi@ttk.pte.hu

106 Ldszlo Gimesi

2. if m is even and n is odd, then ged(m,n) = ged(m/2,n); if m is
odd and n is even, then ged(m,n) = ged(m,n/2),

3. if m and n are both odd, then ged(m,n) = ged(m —n,n).

This algorithm relies solely on subtraction, parity testing, and right shift-
ing of even numbers, and requires no division. This is more suited for
binary arithmetic [5].

Several papers mention new algorithms for the greatest common
divisor. Weilert [9] is devoted entirely to the complexity analysis of the
(141i)-ary algorithm in Gaussian integers. A fast Euclidean algorithm for
Gaussian integers was presented by Collins [2]. Agarwal and Frandsen [1]
present extensions of Stein’s algorithm to four complex quadratic rings.

Stein’s algorithm was developed by Szabé [7] for complex num-
bers, that is, for Gaussian integers. Szabd suggests a "paper and pen-
cil” solution. The disadvantage of this algorithm is that it contains the
comparison of numbers and in case of necessity their exchange. As the
computational requirements of this operation (in case of computer im-
plementation) is major, it is an expensive operation; therefore Szabo |7]
suggests an algorithm without comparison and exchange. Szab6 proves
in this article that the algorithm gives a result certainly. The unfolded
algorithm is the forthcoming:

Elements in the form a; + asi, where a;, ay are integers, form a
subring of the complex numbers. Let w = 1+ ¢ and let a = a1 + aot,
ﬁ = bl + b27/ .

The algorithm for computing a greatest common divisor of two
Gaussian integers o and [3:

Step 1. Initial step: set ay = a, $; = b, 0; = 1 where a and b are
the initial values of the computation, the index is the loop counter.

Step 2. Iteration: if g, Ok, 0, have already been computed, then
distinguish 4 cases:

(1) If o = £, then ay is a greatest common divisor of oy and
Or. Set 0ry1 = a0 and the algorithm terminates.

(2) If ay or f is a unit, then dx1 = 0 and the algorithm termi-
nates.

(3) If ap = 0, then 5k+1 = ﬁkék or if 6k = 0, then 5k+1 = akék and
the algorithm terminates.

Performance of a GCD Algorithm for Gaussian Integers

Table 1: 16 different cases of oy and S

(0,0) (0,1) (1,0) (1,1)
(0,0) | agy1 = ;2& U1 = % Q1 =% | Qpy1 = ;7’“
Bry1 =5 | Brs1 = B Ber1 =0 | Bey1 ="
Op41 = 20 | Opq1 = O Op41 = Ok | Op1 = wly,
(0,1) | apy1 = g | Qg1 = ak;ﬁk Qg1 = Q| Qg1 = O
Ber1=2 | Bop1 =252 | Bopr=0ki | By =2
041 = Oy 041 = O Op+1 = O Op41 = O
(LO) | a1 =g | g1 =ap | g1 = O”“ka Oyl = Q,
Brr1 =2 | B =Bt | Brpr = 852 | By =2
Op41 = Oy 041 = O Op+1 = O Ok41 = O
L1) | aper =% | apyr = 2F Qpp1 =2 | gy =
Bui=2 | Bu=F | Bn=0F | =2
5k+1 = WOy, 5k+1 = Oy, 5k+1 = 0j, 5k+1 = WOy,

Table 2: The types of the Gaussian integers (o = a1 + aqi)

ay as Type of a
even even (0,0)
even odd (0,1)
odd even (1,0)
odd odd (1,1)

107

(4) Neither of the preceding cases holds. Then compute the type
of o and [and distinguish 16 case that are summarized in
Table 1. (The rows are labelled by the type of ay and the
columns by the type of . The types are defined in Table 2.)
Then go back to Step 2.

108 Ldszlo Gimesi

2. Application

The program was elaborated in C+—+ language. Our choice was
justified by the relatively easy programming and the excellent pointer
arithmetic.

Binary arithmetic was used for the implementation of the program.
Accordingly binary summation and subtraction. The division and multi-
plication with two can be solved with the help of SHIFT. For increasing
efficiency (avoiding bit movements) an index was used, that is a pointer
that points to the lowest digit of the number. In case of division (SHIFT
right) the value of the pointer is increased by one, while in case of mul-
tiplication (SHIFT left) the value of the pointer is decreased by one.

The algorithm contains one multiplication (dx+1 = Ordg Or dpy1 =
axdx), which was also accomplished in binary way. The work of Korn
and Korn [4] was used for the implementation of operation with com-
plex numbers. For programming technical reasons the formula in the
((0,1),(0,1)) and ((1,0),(1,0)) cells of Table 1 were modified as follows:

ar—0
Opt1 = k2 k)
ﬁ _ otk
k+1 — 2 9
(5k+l = 6]6

The functionality of the algorithm is not influenced by the modification.

3. Results

The values of the following parameters were examined during the
run of the program: runtime, the number of completed loops and bit
operations.

It was observed during testing that the examined parameters did
not only depend on the size of the number (number of bit), but also on its
value. Therefore our program was run with 1000 random numbers with
the same length. Figure 1 shows the frequency of count of bit operations.
In this example we calculated with 2 pieces of 2x10000 bit length values.

Because of the dependence on the value, the subsequent runs were
always carried out with 1000 random numbers of the same length and
the averages of the results were examined. The results are summarized
in Table 3. In this table the columns Re(«) and Re(f5) contain the real,

Performance of a GCD Algorithm for Gaussian Integers 109

7126408
7,14E408
7 16E+08
7186408
7,206 408
7 226408
7,246 408
7 26E 408
7,286 408
7,30E 408
7 306408
7,34E 408
7 36E 408

Figure 1: Distribution of frequency of operation count.
The number of bitwise operations is plotted on the horizontal axis. The
values are in normal forms. For instance 7,30E + 08 means 7.3 x 108,
Y axis plots the frequency.

while columns Im(«) and Im() contain the imaginary bit number of the
two numbers.

Parameters are depicted in a 3-dimensional coordinate system, where
axis x is the bit length of one of the numbers, axis y is the bit length of
the other number, value z is the examined parameter. For the sake of
descriptiveness the figure were made with shading for which the Kriging
interpolation method of the ArcGIS program was used.

In Figure 2 the running time, in Figure 3 the cycle number, in
Figure 4 the numbers of bitwise operations are showed.

20 000
18 000
16 000
14 000

12 000

10 000

8000

6000

4000

2000

2000 6000 10 000 14000 18 000

Figure 2: 3D figure of running time.
X axis plots the number of digits of a, Y axis plots the number of digits
of (8, Z axis (shading) plots the running time (ms).

110

Ldszlo Gimesi

Table 3: The parts of running parameters

Re(a) Im(a) Re(f) Im(S) Time Cycle Bitwise op.
1000 1000 1000 1000 48 3368 7246658
1000 1000 2000 2000 205 6737 28935905
1000 1000 3000 3000 433 10104 65108075
1000 1000 4000 4000 757 13473 115735477
1000 1000 5000 5000 1187 16842 180868699
1000 1000 6000 6000 1719 20212 260415934
1000 1000 7000 7000 2308 23574 354314039
1000 1000 8000 8000 3008 26947 462896606
1000 1000 9000 9000 3809 30327 586251065
1000 1000 10000 10000 4701 33688 723378116
2000 2000 10000 10000 4702 33695 723590626
3000 3000 10000 10000 4703 33688 723547718
8000 8000 10000 10000 4701 33684 723564106
9000 9000 10000 10000 4701 33694 723368205

10000 10000 1000 1000 4701 33688 723378116

10000 10000 2000 2000 4702 33695 723590626

10000 10000 3000 3000 4703 33688 723547718

10000 10000 4000 4000 4701 33688 723468338

10000 10000 5000 5000 4700 33685 723439662

10000 10000 6000 6000 4701 33697 723516842

10000 10000 7000 7000 4704 33691 723460698

10000 10000 8000 8000 4701 33684 723564106

10000 10000 9000 9000 4701 33694 723368205

10000 10000 10000 10000 4703 33695 723799321

Performance of a GCD Algorithm for Gaussian Integers 111

20 000
18 000
16 000
14 000
12 000
10 000
8000

6000 I

4000

2000

2000 6000 10 000 14000 18 000

Figure 3: 3D figure of number of cycles.
X axis plots the number of digits of «, Y axis plots the number of digits
of (8, Z axis (shading) plots the number of cycles.

2000 6000 10 000 14000 18 000

Figure 4: 3D figure of number of bitwise operations.

X axis plots the number of digits of «, Y axis plots the number of digits
of B, Z axis (shading) plots the number of bitwise operations.

It can be seen in the tables and figures that the value of the pa-
rameters is defined by the number with longer bit length. During further
examinations it was also concluded (see Table 3 and Table 4) that pa-
rameters are influenced by the longest member of the numbers.

Later it was examined with the method of least squares which func-
tion fits the best to the results.

Accordingly, the function that approximates the running time (see
Figure 5) the best is: y = 0.0000472% + 0.000734z, the function that

112 Ldszlo Gimesi

Table 4: The runtime parameters, depending on the number of bits of
the longest member

Bit number Time Cycle number Bitwise op.

1000 48 3368 7246658
2000 202 6737 28953907
3000 435 10105 65145613
4000 769 13477 115775907
5000 1176 16846 180948712
6000 1710 20214 260489307
7000 2304 23592 354604463
8000 3008 26948 462967634
9000 3807 30330 586300778
10000 4703 33695 723799321

approximates the cycle number (see Figure 6) the best is: y = 3.36943z,
and the function that approximates the number of bitwise operations (see
Figure 7) the best is: y = 7.237312% — 1.255z.

SE+03

sE-03
4E-03

4E+03 ~
3E+03

3E-03
2E+03

2E+03

1E+03
5E+02

0E+00
o

1000
2000
3000
4000
5000
f000 4
7000
8000
9000
10000

Figure 5: Graph of running time.

X axis plots the number of digits of the longest number, Y axis plots
the running time (ms) in normal form.

The fit can be concluded that the running time depends on the
longest member quadratic, the cycle number linearly, while the bitwise
operations also quadratic.

Performance of a GCD Algorithm for Gaussian Integers 113

4E+04

4E+04

3E+04

3E+04

ZE+04

ZE+04

1E+04

SE+03

0E+00
o

1000
2000
3000
4000
5000
6000
7000
8000
2000
10000

Figure 6: The number of cycles.

X axis plots the number of digits of the longest number, Y axis plots
the number of cycles in normal form.

8E+08
7E+08 /
6E+08

SE+08

4E+08

3E+08

2E+08

1E+08

0E+00
o

1000
2000
3000
4000
5000
5000
7000
8000
8000
10000

Figure 7: The number of bitwise operations.

X axis plots the number of digits of the longest number, Y axis plots
the number of bitwise operations in normal form.

4. Conclusion

It was found that the parameters (running time, cycle number and
bitwise operations) depend not only on that the running parameters, but
also on Gaussian integers values (see Figure 1). Also the value of the
parameters depends on the bit number of the longest member. In Szab6
[8] the quadratic character of the dependence of the running time was
established, but only in asymptotic terms.

Namely, the running time is O(z?), where z is the total number
of bits of the two given numbers. Our numerical experiments suggest

114

L. Gimesi: Performance of a GCD Algorithm for Gaussian Integers

a more accurate form of this function. The relatively small coefficient
(7.23) of 22 clearly indicates that the binary algorithm is a practicable
alternative to compute GCD in Gaussian integers.

References

1

2]
3]
14]
5]
16]
7]
18]

19]

AGARWAL, S. and FRANDSEN, G. S., Binary GCD Like Algorithms for Some
Complex Quadratic Rings, Algorithmic Number Theory: 6th International Sym-
posium, ANTS-VI, Burlington, VT, USA, June 13-18, 2004, Proceedings (Lec-
ture Notes in Computer Science), Springer-Verlag Berlin Heidelberg. 2004, 57—
71.

COLLINS, G.E., A Fast Euclidean Algorithm for Gaussian Integers, Journal of
Symbolic Computation, 33 (2002), 385-392.

KNUTH, D.E., The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison- Wesley 2001.

KORN, G.A. and KORN, T.M., Mathematical Handbook for Scientists and
Engineers, McGraw-Hill Book Company, 1975. 2004, 57-T71.

SHEUELING, C.S., From Euclid’s GCD to Montgomery Multiplication to the
Great Divide, Sun Microsystems, Inc., 2001.

STEIN, J., Computational problems associated with Racah algebra, Journal of
Computational Physics, 1 (1967), 397-405.

SZABO, S., A Paper-and-Pencil ged Algorithm for Gaussian Integers, The Col-
lege Mathematics Journal, 5 (2005), 374-380.

SZABO, S., Variants of an algorithm of J. Stein, Journal of International Math-
ematical Virtual Institute, 1 (2011), 1-16.

WEILERT, A., (1 + i)-ary GCD Computation in Z[i] as an Analogue to the
Binary GCD Algorithm, Journal of Symbolic Computation, 30 (2011), 605-617.

