
Mathematica Pannonica
25/1 (2014–2015), 41–69

SEMIPRIMARY TAME NEARRINGS
AND N -GROUPS

Stuart D. Scott

Department of Mathematics, University of Auckland, Auckland,
New Zealand

Received : March 25, 2014

MSC 2010 : Primary 16 Y 30

Keywords: Nearring, N -group, semiprimary, primary.

Abstract: Semiprimary N -groups are those without non-zero submodules
which are ring modules while a primary one is semiprimary and has no non-
trivial disjoint submodules. Sections two to four introduce some useful theory
needed later. Section five decomposes semiprimary N -groups in terms of pri-
mary ones. Six is about primary N -groups where there is no finiteness condi-
tion. Seven is the same except now DCCR in N is assumed. Eight is about
pointed N -groups (defined there). Essentially these are primary. Nine and ten
prove the uniqueness of Fitting factors for certain perfect N -groups. This pro-
vides the uniqueness of certain semiprimary N -groups. The last section shows
that in quite a general situation N being centerless means it is semiprimary.

1. Introduction

Throughout this paper nearrings are left distributive, zero-symmet-
ric and have an identity. As is usual in nearring theory arbitrary groups
are written additively. The set of non-zero elements of a group W is
denoted by W ∗. The additive convention also applies to N -groups. They
will necessarily be taken as unitary. Most of the terminology we shall
use is standard. The older convention of calling N -ideals of N -groups
submodules is used. If V (if N) is an N -group (a nearring) and Γ a
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subset of V (of N) then S(Γ) (then R(Γ)) will denote the submodule
(right ideal) of V (of N) generated by Γ. When Γ = {w} is a singleton
subset S(Γ) (R(Γ)) is denoted by S(w) (by R(w)). A further notational
convention regarding N -groups relates to elements that have been called
distibutors. Here, if V is an N -group, wi, i = 1, 2, in V and α in N , then
(w1, w2 : α) is the element (w1 +w2)α−w1α−w2α of V . Something also
needs to be said about certain special N -groups. A type 2 N -group is
called minimal and the J2 radical of a nearring N denoted by J(N). Also
an N -group which is a direct sum of N -isomorphic minimal N -groups is
called homogeneous.

An N -subgroup (submodule) of an N -group is called a ring N -
subgroup (submodule) if as an N -group it is a ring module. Here what is
meant by a nonring N -subgroup (submodule) is clear. For nearrings we
have ring and nonring right N -subgroups, right ideals and ideals. The
definition of ring submodules allows the introduction of semiprimary N -
groups. This is to a large extent what this paper is about. An N -group
without non-zero ring submodules will be called semiprimary. Such N -
groups are really quite general. A natural way to obtain such an N -
group from any N -group V is to keep factoring out ring submodules
(continued transfinitely if necessary) until a situation is reached where
the N -homomorphic image V/Γ (Γ a submodule of V ) has no non-zero
ring submodules. Here Γ is in fact independent of the exact process used
to factor out submodules. Γ is in its own right an important submodule
of V (a type of radical). In this way we obtain the semiprimary N -
group V/Γ.

What this paper does is study in reasonable depth semiprimary
N -groups (thus nearrings). Much of it relates to certain tame situations
(definitions covered below). Semiprimary N -groups will be seen in Sec. 5
to, in some sense, decompose into primary N -groups. These are defined
in that section and much of this paper relates to such N -groups. The
theory developed in this paper is not superficial. Indeed three sections
that introduce necessary theory are required. This theory (introduced in
Sections 2, 3 and 4) is of interest in its own right.

The definition of tame, n-tame (n ≥ 2 an integer) and compatible
N -groups is taken as well known (see Sec. 5 of [10]). Basic theory laid
down in [10] is, on occasions, made use of here. Tame notions are really
fairly general. Examples of tameness can be found in Sec. 5 of [10].
As is common in tame theory a nearring with a faithful tame (n-tame,
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compatible) N -group V is called tame (n-tame, compatible) or tame (n-
tame, compatible) on V .

Three notions that will be of use to us are worth mentioning. They
occur in [10]. In Sec. 6 of [10] centrality is considered. We shall have
need to make use here of central sums and the fact that a submodule
≤ V1 ⊕ V2 (Vi, i = 1, 2, N -groups) intersecting the Vi trivially is central.
The second notion is that of factors of an N -group. These are defined
in Sec. 5 of [10]. Here we say two N -groups are coprime if no minimal
factor (see [10]) of one is N -isomorphic to such a factor of the other. A
top factor of an N -group V will be one of the form V/H (H a submodule
of V ). The third notion used here is the Fitting submodule of a 3-tame
N -group V (see Sec. 33 of [10]). This is denoted by F (V ). The Fitting
factor V/F (V ) will come into play later.

We finish this section by noting that the proof of 39.2 of [10] un-
derlies that of one of this papers main theorems (see 10.3). In proving
10.3 explanation will be given as to how this is so.

2. Centralizers

There is a notion that has had a fairly immense impact on tame
theory. It has been the subject of a number of investigations. It would
be easy to say nothing more is to be said about this notion. However
there are matters relating to it that are not all that well known. One of
these will be the main theorem of this section. Th. 2.2 will be used again
in Sec. 6.

The notion referred to above is that of a centralizer. Its very basic
definition is available in all N -groups. Because perhaps, the fundamental
nature of this definition has not been appreciated, it is now given. If V
is an N -group and S a subset of V then an N -subgroup U of V will be
said to centralize S if (h + u)α = hα + uα for all h in S, u in U and α
in N . Since V is unitary this definition can be replaced by one of three
others (interchange h and u on the left/right). The centralizer of S in V
is now taken as the union of all N -subgroups of V centralizing S. This
N -subset of V is denoted by CV (S). A well known result is the following:

Theorem 2.1. If V is a 3-tame N-group and S a subset of V then
CV (S) is an N-subgroup of V .

This result is 31.1 of [10]. Indeed in Sec. 31 of [10] we have quite a



44 S. D. Scott

number of results on centralizers. Here it is seen (see 31.4 of [10]) that a
theorem like 2.1 holds with V replaced by a 3-tame nearring (the right
N -subgroup obtained is a right ideal). However although this holds for
3-tame nearrings it is not necessarily true for N -homomorphic images of
them. More information on centralizers can be gleaned from the above
reference.

A result that is known (see 3.3.2 of [5]) but has not in any way
much been circulated is the one that follows. As it would seem to be
important, coverage is desirable.

Theorem 2.2. If V is a 3-tame N-group and S a non-empty subset
of V , then CV (S) =CV (W ) where W is the N-subgroup of V generated
by S.

Proof. Suppose it has been shown that for u in S, uN ≤ CV (CV (S)). If
this holds then by Th. 2.1, W ≤ CV (CV (S)) and W centralizes CV (S).
This means that CV (S) centralizes W and CV (W ) ≥ CV (S). Since
CV (W ) ≤ CV (S), the result will follow.

Let α and β be in N and let γ = (1 + α)β − αβ − β. Now for w
in CV (S), (u + w)γ = uγ + wγ. If vi, i = 1, 2, 3, are any given elements
of V then the 3-tame assumption implies that there exists λ1 in N such
that

(vi + (u+ w)α)β − (u+ w)αβ − viβ = viλ1.

Furthermore suppose λ1 is chosen so that v1 = u+w, v2 = u and v3 = w.
Now from the definition of CV (S) we have (u + w)λ1 = (u + w)γ =
= uλ1 + wλ1. Thus

(u+ w)γ = (u+ (u+ w)α)β − (u+ w)αβ − uβ+

+ (w + (u+ w)α)β − (u+ w)αβ − wβ.
Again with vi, i = 1, 2, 3, in V we can find λ2 in N such that

(u+ viα)β − viαβ − uβ = viλ2.

Furthermore suppose λ2 is chosen so that v1 = u+w, v2 = u and v3 = w.
Since (u+ w)λ2 = uλ2 + wλ2 we have

(u+ (u+ w)α)β − (u+ w)αβ − uβ = (u+ uα)β − uαβ − uβ+

+ (u+ wα)β − wαβ − uβ
and a similar argument shows,

(w + (u+ w)α)β − (u+ w)αβ − wβ = (w + uα)β − uαβ − wβ+

+ (w + wα)β − wαβ − wβ.
We therefore conclude (see the expansion of (u+ w)γ) that
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(u+ w)γ = uγ + (u+ wα)β − wαβ − uβ+

+ (w + uα)β − uαβ − wβ + wγ.

However, wα is in CV (S) and therefore (u+wα)β−wαβ−uβ = 0. Thus
(w + uα)β = wβ + uαβ for all w in CV (S) and α and β in N . It follows
that uN ≤ CV (CV (S)) and the theorem is completely proved. ♦

3. Internal N -homomorphisms

Let N be a nearring. The category of N -groups is specified in
the normal way. In this category the morphisms are N -homomorphisms
between N -groups. In general it is not possible to say much about such
maps. Even when the N -homomorphisms are N -endomorphisms this is
the case. However it is a very pleasing fact that much more can be said
when we are dealing with 2-tame N -groups. Here N -endomorphisms
behave particularly well. But more is true. This desirable behavior
extends to a wide range of maps. It is these maps this section is about.

From what is outlined above it might be expected that in tame
theory N -endomorphisms play an important role. That this is the case
is fairly well known. It stems from the fact that if on the 2-tame N -group
V , µ is such a map then 1− µ is also and V is a central sum of V µ and
V (1 − µ) (see [7] or [10]). What is not so well known is that a valuable
generalization of the notion of an N -endomorphism exists that allows us
to deduce this result and considerably more. This is the notion of an
internal N -homomorphism.

An internal N -homomorphism is a triple (V,W, µ) where V is an
N -group, W is an N -subgroup of V and µ is an N -homomorphism of
W into V . The internal N -homomorphism (V,W, µ) is called n-tame
(compatible) if V is n-tame (compatible). In this section it is 2-tame
internal N -homomorphisms that will interest us.

Proposition 3.1. If (V,W, µ) is a 2-tame internal N-homomorphism,
then

(w1 + w2µ)α− w1α = (w1µ+ w2µ)α− w1µα

for all wi, i = 1, 2, in W and α in N .

The proof of this follows easily from the fact that there exists β in N
such that (w1 +w2µ)α−w1α = w2µβ and (w1 +w2)α−w1α = w2β. Also
3.1 has certain elementary consequences. One is that w1(1−µ) additively
centralizes w2µ as may be seen on taking α = 1. This implies (we further
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take w2 = −w1) that w1µ additively centralizes w1. The first deduction
is readily seen to imply (w1 +w2)(1− µ) = w1−w1µ+w2−w2µ so that
1−µ is a group homomorphism of W into V . However taking w2 = −w1

in 3.1 gives w1(1−µ)α−w1α = −w1αµ so that w1(1−µ)α = w1α(1−µ).

Proposition 3.2. If (V,W, µ) is a 2-tame internal N-homomorphism
then so is (V,W, 1− µ).

If in Prop. 3.1, w2 is taken as −w1 + w2 we obtain the fact that
(w1(1 − µ) + w2µ)α − w1α = w2µα − w1µα which in conjunction with
explanation above supplies the fact that the sumW (1−µ)+Wµ is central.
Any w in W can be written as w(1−µ)+wµ so that W ≤ W (1−µ)+Wµ
and W + Wµ ≤ W (1 − µ) + Wµ. However as W (1 − µ) is ≤ W + Wµ
we have equality. It follows that:

Proposition 3.3. If (V,W, µ) is a 2-tame internal N-homomorphism
then W +Wµ is a central sum of Wµ and W (1− µ).

Propositions 3.1 to 3.3 cover known theory on N -endomorphisms of
2-tame N -groups. Here if V is such an N -group with N -endomorphism
µ then 3.2 and 3.3 show 1 − µ is an N -endomorphism on V and V is a
central sum of V µ and V (1− µ). This is just 1.2 of [7] or 6.6 of [10].

We finish this section with an application of internal N -homomor-
phisms (see 3.5). In order to do this a preliminary result (see 3.4) is
needed. The application that is made is now motivated.

When V is a 2-tame N -group and µ an N -endomorphism of V onto
V it is clear that V (1 − µ) is ≤ Z(V ). So much for onto maps but one
can ask how are things where µ is an N -isomorphism into V . It will turn
out that V (1 − µ) is again ≤ Z(V ). The proof of this stems from how
central sums behave under internal N -homomorphisms. The proposition
covering this states:

Proposition 3.4. If in the 2-tame N-group V the sum W1 + W2 (Wi,
i = 1, 2, submodules of V ) is central and (V,Wi, µi) are internal N-
homomorphisms, then the sum W1µ1 +W2µ2 is central.

Proof. If it is shown W1µ1+W2 is a central sum then the same argument
will give Wµ1 +Wµ2 as such a sum.

We have (w1 +w2)α−w2α−w1α = 0 for all wi, i = 1, 2, in Wi and
α in N . w1α and (w1 +w2)α−w2α are in W1 so [(w1 +w2)α−w2α]µ1−
−w1µ1α = 0. However, there exists β in N such that (w1+w2)α−w2α =
= w1β and (w1µ1 + w2)α− w2α = w1µ1β so that it becomes possible to
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show (w1µ1+w2)α−w2α−w1µ1α = 0 thereby implying the sum W1µ1+W2

is central. The proof of 3.4 is complete. ♦

It should be noted that if V is an N -group and W an N -subgroup
of V then (V,W, 1) (1 the identity map of W into V ) is an internal N -
homomorphism. In applications of 3.4 (only one made here) it tends to
be the case that (V,W2, µ2) is (V,W2, 1).

Coming back to the question raised at the outset we have:

Corollary 3.5. If V is a 2-tame N-group and µ an N-isomorphism of
V into V then V (1− µ) ≤ Z(V ).

Proof. Because the sum V µ + V (1 − µ) is central, (V, V µ, µ−1) and
(V, V (1 − µ), 1) are 2-tame internal N -homomorphisms and by 3.4 the
sum V + V (1− µ) is central, the corollary is proved. ♦

4. A 3-tame identity

In the last section it was seen that the 2-tame condition has conse-
quences. Results that hold for 2-tame certainly hold for 3-tame. However
the 3-tame assumption yields more. The simple step from 2 to 3-tame
appears to be significant. This step would seem to supply us with greater
freedom. Certain manipulation of algebraic expressions can take place.
These manipulations supply valuable information. An example of this is
the proof of 2.1 (found in [10]) that centralizers are N -subgroups. How-
ever, there is another important example. Quite straightforward manip-
ulation of the 3-tame assumption supplies us with a useful identity.

Theorem 4.1. If V is a 3-tame N-group then

(v + u+ w)α = (v + u)α− vα + (v + w)α

for all v in V , u in V , w in CV (u) and α in N .

Proof. For any given vi, i = 1, 2, 3, in V we may find a γ of N such that
(v + vi)α − vα = viγ, i = 1, 2, 3. Let γ be chosen such that v1 = u + w,
v2 = u and v3 = w. Since w ∈ CV (u) it follows that (u+w)γ = uγ+wγ.
From the above definition of γ this means

(v + u+ w)α− vα = (v + u)α− vα + (v + w)α− vα.
The theorem follows. ♦

An immediate corollary of 4.1 is the following:

Corollary 4.2. If V is a 3-tame N-group and U a ring submodule of V
then
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(v + u1 + u2)α = (v + u1)α− vα + (v + u2)α

for all v in V , ui, i = 1, 2, in U and α in N .

The identity of 4.2 is rather useful. It will come into play in the
proof of the main result of Sec. 8. There is however at least one other
application of 4.1 that is needed. To motivate this consequence it is
helpful to look at groups. In group theory it can be very important
to decide when a subgroup is normal. There is one situation where a
subgroup normal in a subgroup is in fact normal in the group. This
occurs when V = H + A (V a group, H a subgroup and A a normal
abelian subgroup). Here H ∩A is certainly normal in H. It is a valuable
fact that it is also normal in V . The fact that something like this holds
for 3-tame nearrings is also valuable. In the 3-tame result centralizers of
subsets of such a nearring appear and the fact that they are right ideals
is used (see Sec. 31 of [10]). The result is:

Theorem 4.3. Suppose Mi, i = 1, 2, are right N-subgroups of the 3-
tame nearring N and H is a submodule of M1. If CN(H) ≥ M2 then H
is a submodule of M1 +R(M2).

Proof. Suppose V is a faithful 3-tame N -group. By 31.4 of [10] we have
CN(H) is a right ideal of N . Thus CN(H) ≥ R(M2). It is clear from this
that vH centralizers vR(M2) for all v in V . Thus by 4.1

(vβ + vη1 + vη)α = (vβ + vη1)α− vβα + (vβ + vη)α

for all α in N , β in M1, η in R(M2) and η1 in H. As this is true for all
v in V it follows that

(β + η1 + η)α = (β + η1)α− βα + (β + η)α

and because η1 + η = η + η1
(β + η + η1)α− (β + η)α = (β + η1)α− βα.

However β+η is an arbitrary element of M1 +R(M2) and (β+η1)α−βα
is in H. Thus the above expression yields the fact that H is a submodule
of M1 +R(M2). The theorem is proved. ♦

With N a nearring, M a right N -subgroup of N and R a right
ideal of N , it is certainly true that M ∩ R is a submodule of M . Thus
an elementary corollary of 4.3 is:

Corollary 4.4. Suppose N is a 3-tame nearring and R a ring right ideal
of N . If M +R = N then M ∩R is a right ideal of N .
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5. Semiprimary subdirect decomposition

If N is a nearring then what it means for the N -group V to be
semiprimary may be found in the introduction. Even in this generality
a substantial theorem about such N -groups can be given. In order to
provide this result primary N -groups (defined shortly) are introduced.
First however a characterization of semiprimary is given. This depends
on the notion of an sp-system.

An sp-system for the N -group V , is a subset P of V such that, for
any w in P there exists wi, i = 1, 2, in S(w) and α in N with (w1, w2 : α)
in P .

Proposition 5.1. The N-group V is semiprimary if and only if V ∗ is
an sp-system of V .

Proof. Clearly for any w 6= 0 in V , no S(w) is such that (w1, w2 : α) = 0
for all wi, i = 1, 2, in S(w) and α in N . Thus if V is semiprimary V ∗ is
an sp-system.

On the other hand if V ∗ is an sp-systen but U 6= {0} a ring sub-
module of V then for any w in U∗ we obtain the contradiction that
(w1, w2 : α) = 0 for all wi, i = 1, 2, in S(w) and α in N . The proposition
holds. ♦

The goal of this section is to obtain a subdirect decomposition of
semiprimary N -groups into simpler N -groups (viz. primary ones). These
are now defined but in order to do this the notion of uniformity is first
introduced. A submodule U of an N -group V will be called uniform in V
if no two non-zero submodules of V contained in U have zero intersection.
When V is uniform in V we call V uniform. A primary N -group is now
taken as one which is both semiprimary and uniform.

A notion similar to sp-systems exists in the case of primary N -
groups. These p-systems (primary systems) are of very real use in proving
this section’s theorem. In a sense, the definition follows that which is
used in prime nearring and ring situations (e.g. look at page 65 of [4]).
Indeed in a number of respects our decomposing semiprimary N -groups
into primary ones is similar to what is presented in [4] for semiprime
nearrings.

A subset P of an N -group V will be called a p-system if for all
ui, i = 1, 2, in P there exists wi, i = 1, 2, in S(ui) and α in N with
(w1, w2 : α) in P . A manner in which p-systems impinge on present
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developments is given in the next lemma.

Lemma 5.2. If V is an N-group and P ⊆ V ∗ a p-system, then there
exists a submodule U of V such that U ∩ P = ∅ and V/U is primary.

Proof. It follows from Zorn’s lemma that there exists a submodule U of
V maximal for avoiding P entirely. We shall show V/U is primary. Let
H > U be a submodule of V . For hi, i = 1, 2, in H ∩ P there will exist
vi, i = 1, 2, in S(hi) and α in N such that (v1, v2 : α) is in P . But this
element of P is also in H and cannot be in U . Thus H/U is nonring and
V is semiprimary.

Now if Hi, i = 1, 2, are submodules of V properly containing U
then for ui, i = 1, 2, in Hi ∩ P there must exist wi, i = 1, 2, in S(ui) and
β in N such that (w1, w2 : β) is in P . Because this element of P is in
H1∩H2 it cannot be the case that H1∩H2 = U . Thus H1∩H2 > U and
V/U is uniform. The lemma is completely proved. ♦

The next lemma, which shows sp-systems give rise to p-systems, is
a key step in verifying the main result of this section (see Th. 5.4).

Lemma 5.3. Let P1 be an sp-system of the N-group V and u be in P1.
There exists a p-system P ⊆ P1 of V with u in P .

Proof. Since u is in P1 there exists u1i, i = 1, 2, in S(u) and α1 in N
such that (u11, u12 : α1) is in P1. Similarly there exists u2i, i = 1, 2, in
S(h1) (here h1 = (u11, u12 : α1)) and α2 in N such that (u21, u22 : α2) is
in P1. Continuing in this way we construct a sequence

u, (u11, u12 : α1)(= h1), (u21, u22 : α2), . . .

of elements of P1. Furthermore S(u) ≥ S(h1) ≥ S(h2) ≥ . . . , where
h2 = (u21, u22 : α2), etc. Take P = {u, h1, h2, . . . }. If bi, i = 1, 2, are
in P then from above S(b1) and S(b2) contain S(hm) for some integer
m ≥ 1. Thus S(b1) and S(b2) contain um+1,1 and um+1,2 and hm+1 is in
P . This means P is a p-system and the proof is complete. ♦

The main result of this section is now easily established.

Theorem 5.4. A semiprimary N-group is a subdirect product of primary
N-groups.

Proof. Let V be a semiprimary N -group. By 5.1, V ∗ is an sp-system.
Lemma 5.3 implies that for each v in V ∗ there exists a p-system Pv ⊆ V ∗

containing v. Thus by 5.2 there exists a submodule Uv of V such that
V/Uv is primary and v is not in Uv. Because the intersection over all v
in V ∗ of the Uv is {0} the theorem holds. ♦
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The goal of this section has been achieved. Semiprimary N -groups
are very general and consequently subdirect components deserve atten-
tion. In the next two sections considerations focus on these primary
N -groups. It is certain tame primary N -groups that are considered.

6. Primary N-groups

This section is concerned with tame primary N -groups. In it situ-
ations not encompassed by chain conditions are considered. In a fairly
distinct way it divides into two parts. The first is where the primary
N -group is compatible. Here theory developed in [5] and [9] is available.
Indeed the compatible case will draw from these sources and consist of
discussion. It will cover the topological insights compatibility supplies us
with. As far as this paper is concerned it is the only time we move away
from an algebraic approach.

The second part of this section consists of developing certain al-
gebraic features 2 and 3-tame primary N -groups have. The two results
here are of a general nature. It is in the next section that we move into
what assuming DCCR will mean. Here, as indicated above, no chain
conditions of any kind are used.

Associated with a primary compatible N -group is the Zt topology
(see [9]). This arises naturally from zero sets of subsets of N . Indeed the
closed subsets of Zt are taken as all left translations of such zero subsets.
There is nothing skewed in this definition as all right translations give
the same topology.

The sort of questions that can arise for compatible primary N -
groups are along the lines of what happens when conditions are imposed
on Zt? A question that can be asked here is how rudimentary can Zt

be? If V is a compatible primary N -group, {0} is the zero set of 1. This
means every v in V gives rise to the closed subset {v}. V is also closed
(it is the zero set of 0). So what can be said about V when the only
proper closed subsets are singletons? Here if vi, i = 1, 2, are distinct
non-zero elements of V , (0 : v1) = (0 : V ) = (0 : v2) and results from
Sec. 3 and the fact that (V,+) is not a C2, supply a contradiction. This
is not spelled out here but the interested reader may investigate how 3.3
means the non-trivial N -isomorphism of v1N onto v2N implies V cannot
be primary. What has been shown is that the only V without non-zero
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proper closed subsets other than singletons has to be {0}.
The above example is perhaps not of all that much interest. How-

ever if we suppose that rather than no authentic closed subsets we have
no proper non-zero closed N -subgroups, something very real unfolds. In-
deed in this case if V is faithful then N is a prime nonring (prime means
there are no non-zero ideals A and B with A.B = {0}). Furthermore
a feature of compatible prime nonrings is that they have faithful pri-
mary N -groups. Here these N -groups have no proper non-zero closed
N -subgroups. These facts are fully covered in 3.8.3 of [5].

Let V be a compatible primary N -group. In a situation above the
case of V having no authentic closed subsets was looked at. The opposite
extreme is where every subset of V is closed. This is equivalent to V being
discrete. Here by 4.3 of [9] we have a rather nice characterization when V
is faithful. What 4.3 of [9] supplies us with is the fact that V is discrete
if and only if N has a minimal right ideal. Discreteness is a property
that has been looked into further in the case of N being primitive on
V . Indeed (see 6.3.1 of [5]) the primitive compatible nonring N has a
minimal right ideal and is simple if and only if every finitely generated
right ideal is a direct summand.

Let V be a faithful compatible primary N -group. Disconnections
of V are often associated with direct decomposition of N . A direct de-
composition of N is an expression R1 ⊕ R2 of N as a direct sum of two
non-zero right ideals Ri, i = 1, 2. When Ri, i = 1, 2, are the only two
such non-zero right ideals, N is said to have singular direct decomposi-
tion. The fact that disconnections in V are often associated with direct
decomposition in N is evidenced by Th. 11.1 of [9]. This tells us that
if V is connected and N has direct decomposition, then V is a minimal
N -group and the direct decomposition is singular. Furthermore in this
case there is an isomorphism of V onto the additive group of the reals.
It has been seen that connectedness together with direct decomposition
can only arise in quite special cases. Indeed if V were also to be locally
compact, then it could be topologically viewed as the reals and N as a
subnearring of the nearring of all continuous functions on the reals (see
11.1 of [9]).

So far in this section compatible primary N -groups have occupied
our attention. The important feature in this has been the Zt topology.
By placing conditions on Zt a number of interesting consequences have
been seen to come about. Things now take a change. When the primary
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N -group is 2 or 3-tame we must fall back on algebra. Two theorems are
proved. The first is of a completely general nature. It is a characterization
of 3-tame primary N -groups. The second supplies us with information
about annihilators of elements of a 2-tame primary N -group.

Theorem 6.1. The 3-tame N-group V is primary if and only if CV (u) =
= {0} for each non-zero element u of V .

Proof. Suppose CV (u) = {0} for all u 6= 0 in V . A non-zero ring
module W of V cannot exist since for u 6= 0 in W , CV (u) 6= {0}. Thus
V is semiprimary. Also if Wi, i = 1, 2, are non-zero submodules of V
with W1 ∩ W2 = {0}, then with u 6= 0 in W1 the contradiction that
CV (u) ≥ W2 is obtained. Thus V is uniform and therefore primary.

If V is primary and u 6= 0 in V , then by 2.2, CV (u) = CV (uN) and
CV (uN) ∩ uN is clearly a ring module. Since uN 6= {0} this can only
mean CV (uN) = {0}. The theorem therefore holds. ♦

Now for the theorem that supplies information about annihilators.

Theorem 6.2. Let V be a 2-tame primary N-group. If vi, i = 1, 2, are
non-zero elements of V such that (0 : v1) ≤ (0 : v2) then v1 = v2.

Proof. Suppose vi, i = 1, 2, are distinct. It is clear that there exists an
internal N -homomorphism (V, v1N,µ) of V mapping v1N onto v2N and
having v1µ = v2. From results of Sec. 3 (V, v1N, 1− µ) is an internal N -
homomorphism of V and v1N + v1Nµ (= v1N + v2N) is a central sum of
v1Nµ and v1N(1−µ). Because V is semiprimary the intersection of these
two submodules is zero. However because V is uniform v1N(1−µ) = {0}
(v1Nµ = v2N which is non-zero). It follows that v1(1 − µ) = 0 and
because v1µ = v2 the contradiction that v1 = v2 is arrived at. The
theorem is proved. ♦

A question can be asked about 6.2. It makes sense to inquire
whether the condition of that theorem implies V is primary. This is
not the case but with a slight restriction a converse holds. Indeed this
holds without the 2-tame assumption. The restriction is that our N -
group V has no ring submodules of exponent two. Thus it is not difficult
to show such an N -group V is primary if no inclusions (0 : v1) ≤ (0 : v2)
(vi, i = 1, 2, distinct non-zero elements of V ) occur.
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7. Primary N -groups (N with DCCR)

In this section faithful 2-tame primary N -groups (N with DCCR)
are studied. Three results will be given. The first is substantial. It supplies
a one-one correspondence between non-zero elements of the N -group and
minimal right ideals of N . The second is a corollary of this. It states that
the N -group is finite. The third relates together any two such N -groups.
They are proved to be N -bijective (defined later).

Before stating and proving the results just mentioned some notation
and definitions are given. They are of a general nature but are very useful
in the situation outlined above. First if N is a nearring, then mr(N) will
denote the set of all minimal right ideals of N . Furthermore, in situations
where V is an N -group and R is in mr(N), s(R) will denote the set of
all v in V ∗ such that vR 6= {0}. This subset of V ∗ is called the support
of R. With V any given N -group a relationship between V ∗ and mr(N)
(i.e. a subset of (V ∗,mr(N))) that will be important to us is the support
relationship. It is defined as all (v,R) in (V ∗,mr(N)) where vR 6= {0}
and denoted by Ψ(V ∗,mr(N)). In applications where V and N are given,
this is abbreviated to Ψ.

We are about to supply a fundamental theorem on Ψ in the case
of V being primary and N (with DCCR) 2-tame on V . However before
doing so a situation where centralizers arise differently is very briefly
looked at. If N is a nearring and R in mr(N) is nonring then right ideals
Ri, i = 1, 2, of N such that R ∩ Ri = {0} centralize R and are such
that R ∩ (R1 + R2) = {0}. This means the unique right ideal KN(R) of
N maximal for the property that R ∩KN(R) = {0} centralizers R and
is the sum of all right ideals that do so. In quite a number of settings
maximal complements of this type (unique or otherwise) have proved to
be important (see [2] and [3]). As far as the next theorem goes KN(R)
will be viewed as a centralizer. In fact if N is 3-tame KN(R) = CN(R) by
31.4 of [10]. Indeed even if N is only tame this is the case. Here a right N -
subgroup M of N centralizing R is such that (vρ+vβ)α−vβα−vρα = 0,
for all v in a faithful tame N -group V , ρ in R, β in R(M) (remember
vR(M) = vM) and α in N . Consequently R(M) centralizers R and is
≤ KN(R). However this is also true for KN(R) so that the union of all M
as above must be KN(R). Thus even when N is tame CN(R) = KN(R).

Theorem 7.1. Suppose V is a primary N-group where N has DCCR
and is 2-tame on V . If R is in mr(N) and v in s(R), then R is nonring
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and CN(R) = (0 : v). Also the relationship Ψ is a one-one map of V ∗

onto mr(N).

Proof. It is an elementary matter to show V has a unique minimal
submodule H, H is nonring and every element of mr(N) is N -isomorphic
to H. Thus the element R of mr(N) is nonring and CN(R) exists. The
faithfulness of V ensures there is a v in V ∗ such that vR 6= {0}. As
the sum R + CN(R) is direct v[R + CN(R)] is a central sum of vR and
vCN(R). The uniqueness and nature of H implies vCN(R) = {0} and
CN(R) ≤ (0 : v). However it is clear (0 : v)∩R = {0} so the maximality
of CN(R) ensures (0 : v) = CN(R). The first part of 7.1 is proved.

In proving Ψ is a one-one correspondence the first step is to show
Ψ is a function of V ∗ into mr(N). Thus it must be shown that for
each w in V ∗ there is a unique R1 in mr(N) such that wR1 6= {0}. To
show R1 exists suppose that for all R2 in mr(N), wR2 = {0}. This has
the consequence that wN.(H : V ) = w soc(N) = {0}, wN is a tame
N/soc(N)-group and wN has minimal factors N -isomorphic to those of
V/H (V/H is a faithful tame N/soc(N)-group). As wN 6= {0} it contains
H and V/H has a minimal factor N -isomorphic to H contrary to 14.2
of [10]. Thus there is an R1 in mr(N) with wR1 6= {0}. For Ψ to be
the function indicated it must be true that for given w, R1 is unique. If
R3 6= R1 in mr(N) were such that wR3 6= {0}, then the sum R1 + R3 is
direct and w[R1 +R3] is a central sum of wR1 and wR3. The uniqueness
and nature of H makes this impossible. R1 has been shown to be unique.

In the above it was seen Ψ is a function of V ∗ into mr(N). We may
therefore write wΨ (w ∈ V ∗) for the unique K in mr(N) with wK 6= {0}.
It must be shown V ∗Ψ = mr(N) and if w1Ψ = w2Ψ (wi, i = 1, 2, in V ∗)
then w1 = w2. The fact that V ∗Ψ = mr(N) follows from the fact that
V is faithful (for given K1 in mr(N) there certainly exists u in V ∗ with
uK1 6= {0}). If u1 and u2 are in V ∗ and u1K2 = u2K2 6= {0} (K2 in
mr(N)), then by the first part of the theorem (0 : u1) = (0 : u2) and
there is an N -isomorphism µ of u1N onto u2N with u1µ = u2. By 3.3
this means u1N +u2N is a central sum of u2N and u1(1−µ)N . Because
V is primary and u2N 6= {0} the only possibility is that u1(1 − µ) = 0
and u1 = u2. The theorem is proved. ♦

We now move towards obtaining our second result. It is a corollary
of 7.1. Clearly soc(N) = ⊕Ri (a finite direct sum over i = 1, . . . , n, of
elements Ri of mr(N)). If {R1, R2, . . . , Rn} ⊂ mr(N) then there is an R
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in mr(N) contained in H1⊕H2 (Hi, i = 1, 2, right ideals of N contained
in soc(N)) with R 6≤ Hi, i = 1, 2. As this would imply R is a ring module
(see 6.4 of [10]) it follows that {R1, . . . , Rn} = mr(N) and mr(N) is
finite. By 7.1 it must follow that V is finite. In this argument if N were
not faithful it would be possible to work within N/(0 : V ).

Corollary 7.2. A primary 2-tame N-group (N with DCCR) is finite.

This section is about primary N -groups but 7.2 also holds for
semiprimary ones. This follows readily enough from that result. Such
an N -group (V say) has a finite collection of minimal submodules (all
nonring) each with a unique submodule maximal for avoiding it. The
intersection of these avoiding submodules is {0} so that V is embedded
into a finite direct sum of N -groups of the form V/H (H such a maximal
avoider). As the V/H are primary 7.2 gives the result.

Th. 7.1 and its corollary are substantial advances into the study
of primary 2-tame N -groups (N with DCCR). Because there is such a
definite relationship (viz. Ψ) between V and N (see 7.1) one might ask
whether V is determined by N? This may not be the case but it is very
near to being so. The proximity of V ’s to each other is expressed by
N -bijectivity. This is now defined.

If Vi, i = 1, 2, are N -groups then a one-one map γ of V1 onto V2 is
called an N -bijection if (v1α)γ = (v1γ)α for all v1 in V1 and α in N . The
inverse of such a γ is an N -bijection of V2 onto V1. If such a γ exists,
then V1 and V2 are said to be N -bijective. Clearly if V1 (N -bijective to
V2) is cyclic then V1 and V2 are N -isomorphic.

With the above definition behind us we have:

Theorem 7.3. If Vi, i = 1, 2, are faithful primary 2-tame N-groups (N
with DCCR), then the map taking the zero of V1 to that of V2 and being
Ψ1Ψ

−1
2 on V ∗1 , is the unique N-bijection of V1 onto V2 (here Ψi, i = 1, 2,

is the map Ψ of 7.1 with V replaced by Vi).

Proof. Let γ be the map of V1 onto V2 specified in the statement of
the theorem. 0γ = 0 and γ maps V ∗1 bijectively onto mr(N) and then
bijectively onto V ∗2 . Thus γ is a one-one map of V1 onto V2.

Given any R in mr(N) there exists v in V ∗1 such that vΨ1 = R and v
is the unique element of V ∗1 such that (0 : v) = CN(R) (see 7.1). It is clear
that in this any v of V ∗1 can occur. Now RΨ−12 = vΨ1Ψ

−1
2 = vγ so that

vγΨ2 = R and vγ is the unique element of V ∗2 such that (0 : vγ) = (0 : v)
(see 7.1). Thus vN is N -isomorphic by µ to vγN and vµ = vγ. Non-zero
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vα (α in N) is mapped by µ to vγα. Thus (0 : vα) = (0 : vγα) and from
what has just been proved vαγ = vγα. When v = 0 or vα = 0 this is
also true (for v 6= 0 but vα = 0 0 = vαµ = vγα). It has been shown γ is
an N -bijection.

If γ′ is an N -bijection of V1 onto V2 distinct from γ then γ′γ−1 is
a non-identity N -bijection of V1 onto V1. Thus γ′γ−1 restricted to some
cyclic N -subgroup v1N (v1 ∈ V1) of V1 is a non-identity N -isomorphism
µ of v1N into V1. By 3.3, v1N + v1µN is the central sum of v1µN and
v1(1−µ)N . Certainly v1µN 6= {0} but v1(1−µ)N 6= {0} since v1µ 6= v1.
By the semiprimary nature of V1 the sum v1µN + v1(1 − µ)N is direct.
Because V1 is uniform we have a contradiction. Thus γ′ cannot exist and
the theorem is proved. ♦

8. Pointed 3-tame N -groups

The motivation for this section comes partly from Th. 7.1. That
theorem amongst other things showed that for a faithful primary 2-tame
N -group V (N with DCCR) the support of an element of mr(N) con-
sisted of a single element of V ∗. It therefore would seem natural to ask
what it means when V is an N -group, for the support of each element
of mr(N) to consist of a single element of V ∗? A definition along these
lines helps terminology. Indeed such an N -group will be called pointed.
In this section we shall show that a pointed 3-tame N -group (N with
DCCR) is faithful and nearly always primary. Before stating the theo-
rem involved we note that V being pointed is equivalent to Ψ−1 (Ψ the
relationship of the last section) being a function.

The theorem that this section is all about is now stated.

Theorem 8.1. Suppose V is a 3-tame N-group where N has DCCR.
V is pointed if and only if it is faithful and is either primary or a cyclic
group C2 of order two.

Establishing 8.1 is not that easy. The body of the proof will be
carried out in a series of propositions and lemmas.

Proposition 8.2. If V is a pointed N-group and N has DCCR then V
is faithful.

Proof. If (0 : V ) were 6= {0} then it would contain a minimal right ideal
R. Since V is pointed the contradiction that vR 6= {0} for some v in V
is obtained. 8.2 holds. ♦
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The next result plays quite a substantial part in the verification of
8.1.

Lemma 8.3. Suppose V is a 3-tame N-group. If there is an R in mr(N)
with s(R) consisting of a single element, then a ring submodule U of V
must have order ≤ 2.

Proof. Suppose U has order > 2 and v is the unique element of V ∗ such
that vR 6= {0}. Consider the elements of v + U . Here v is the unique
element of v + U such that vR 6= {0}. Thus for some v′ 6= v in v + U ,
v′R = {0}. Consider those elements u of U for which (v′ + u)R = {0}.
Call this subset of U , H. We shall show H is a subgroup of U . First 0 is
in H as v′R = {0}. Also if h1 and h2 are in H then by 4.2

(v′ + h1 + h2)ρ = (v′ + h1)ρ− v′ρ+ (v′ + h2)ρ

for all ρ in R and because v′ρ = (v′+h1)ρ = (v′+h2)ρ = 0 it must follow
that (v′ + h1 + h2)ρ = 0. This means h1 + h2 is in H. Also

(v′ + h1 − h1)ρ = (v′ + h1)ρ− v′ρ+ (v′ − h1)ρ
and since v′ρ = (v′ + h1)ρ = 0 we see −h1 is in H. It has been shown H
is a subgroup of U . It is a proper subgroup of U since v′ + U = v + U
contains v and vR 6= {0}. Now (v′ + U)\(v′ + H) = v′ + (U\H) and
every v1 of this set is such that v1R 6= {0}. Thus |U\H| = 1 and there
is a unique u in U not in H. As u + h (h 6= 0 in H) is in U\H we see
H = {0} and |U | = 2 contrary to the choice of U . The lemma has been
proved. ♦

The above result is rather nice. It tells us that if for at least one
R in mr(N), s(R) is a singleton, then it is very like V is semiprimary.
What is required however is a method of reducing minimal submodule
types of V . A lemma is of help in doing this.

Lemma 8.4. Suppose V is a faithful 2-tame N-group where N has
DCCR. If U is a nonring minimal submodule of V , then there exists R
in mr(N) with s(R) ∩ U 6= ∅.
Proof. By 14.2 of [10], V/U and U are coprime. It follows from 13.3
of [10] that (U : V ) + (0 : U) = N . Thus 1 = e1 + e2 where e1 is in
(U : V ) and e2 in (0 : U). Now er1 = e1 mod(0 : U) for r = 1, 2, . . . , and
(U : V ) (not contained in (0 : U)) cannot be nil and is non-nilpotent.
However (U : V ) ≤ (soc(V ) : V ) = soc(N) and is a sum of minimal right
ideals of N . Let R be a non-nilpotent minimal right ideal of N contained
in (U : V ). It follows that eR = R where e is in R. As V is faithful
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there exists v in V ∗ such that vR 6= {0}. Thus veR 6= {0} and since
e ∈ (U : V ), ve is in U . As required it has been shown s(R) ∩ U 6= ∅. ♦

A corollary of 8.3 and 8.4 is that a pointed 3-tame N -group (N
with DCCR) is either primary or has a unique minimal N -subgroup and
this is of order two. To verify this note that by 8.3 the result will follow
if it is shown that when V has a nonring minimal submodule then it is
unique (amongst minimal submodules). This is because it is easy enough
to see such an N -group is primary while if V were to have more than one
minimal submodule it would mean they are C2’s and a sum of two such
minimal submodules cannot occur. But now 8.4 supplies us with the
fact that when V has a minimal submodule which is nonring it is unique.
Indeed suppose H1 and H2 were two minimal submodules with H1 being
nonring. Clearly they are not of the same N -isomorphism type and by
8.4 there is an h1 in H1 such that h1R 6= {0} for some R in mr(N). This
means R is N -isomorphic to H1 and (h1 +h2)R = h1R (h2 6= 0 in H2) as
h2R cannot be N -isomorphic to R. This contradicts the fact that s(R) is
a singleton (both h1 and h1+h2 would be in it). Our corollary is verified.

Corollary 8.5. Suppose V is a 3-tame N-group where N has DCCR.
If V is pointed then it is either primary or has a unique minimal N-
subgroup and this is C2.

By 8.5 the proof of 8.1 is essentially reduced to showing V of 8.5
having a unique minimal submodule which is a C2, is in fact this minimal
submodule.

Lemma 8.6. Suppose V is a 3-tame N-group where N has DCCR. If
V is pointed and has a unique minimal submodule which is a C2 then this
submodule is V .

Proof. For such a V all elements of mr(N) have order two and are ring
modules. Let M be a right N -subgroup of N minimal for the property
that M + soc(N) = N . If it is shown M = {0}, then N is semisimple
and V is completely reducible so that V = soc(V ) and V has order two.
Thus in order to prove 8.6 it is sufficient to show M = {0}.

It is not that difficult to see that M ∩ soc(N) = soc(M) so that if
M 6= {0}, M ∩ soc(N) 6= {0}. However by 4.4, M ∩ soc(N) is a right
ideal of N and M contains an element R of mr(N). We note also M
contains a left identity e. This follows because 1 = α+ β (α in M and β
in soc(N)) so that M ≤ αM + soc(N) and αM = M . Thus by [6] and
5.7 of [8], M being self-monogenic necessarily contains e.
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If it is shown M = M1 + R where M1 is a right N -subgroup of N
such that M1 ∩R = {0} then because, N = M1 + soc(N) the minimality
of M will conclude our proof of 8.6. Clearly eρ = ρ for all ρ in R and there
exists v in V such that veρ 6= 0 for some ρ in R. This means ve is the
unique element of s(R) and (ve+veρ)R = {0}. From this we see (e+ρ)R
cannot be = R as otherwise vR = {0}. Thus (e + ρ)R = {0}. From [6]
and [8] this clearly means (e+ρ)M < M (otherwise (0 : e+ρ)∩M = {0}).
It follows that M = (e+ ρ)M +R (e is in (e+ ρ)e+R). A contradiction
to M being minimal has been obtained and the lemma is fully proved. ♦

This section concludes by showing how 8.2 to 8.6 establish 8.1.

Proof of 8.1. Suppose the V of 8.1 is pointed. 8.2 implies it is faithful.
8.5 and 8.6 imply that either V is primary or a C2.

Now suppose V is faithful and either primary or a C2. In the
primary case 7.1 yields the fact that the relationship Ψ is a one-one
correspondence. Clearly this implies V is pointed. If V is a C2 the only
possibility for a faithful N is that it is the field of order two and the a 6= 0
in V is the unique element of V with aN 6= {0}. 8.1 has been completely
proved. ♦

9. When perfect implies conformed

It is of real enough value to know that up to N -bijectivity faithful
primary 3-tame N -groups are unique (see 7.3). An obvious question here
is whether something like this holds for faithful semiprimary 3-tame N -
groups? Indications are that this is not the case. However by imposing
a further condition on such N -groups uniqueness is obtained.

This and the next section is about N -groups dual to semiprimary
ones. It is by considering perfect N -groups that the result indicated
above is obtained. The general result on perfect 3-tame N -groups is
noteworthy. In itself it answers a question stemming from G. Peterson’s
work in [1]. There it was proved that, with a finiteness condition, two
faithful d.g. compatible perfect N -groups have N -isomorphic Fitting
factors. It will be shown here that in this statement, d.g. can be removed
and compatibility replaced by 3-tame.

The dual notion to semiprimary is that of being perfect. Perfect
N -groups have already received considerable attention. Quite a bit of
[10] centers on such N -groups. The well known definition here is that an
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N -group V is perfect if there is no proper submodule H with V/H a ring
module. However this section is also about conformed N -groups. An
N -group V is conformed if there do not exist distinct proper submodules
Hi, i = 1, 2, of V with V/H1, N -isomorphic to V/H2.

Although non-conformed 2-tame N -groups are easy to obtain there
is an important situation where 2-tame N -groups are necessarily con-
formed. As is seen in this section this will be the case when N has
DCCR and V is perfect. Thus the theorem to be proved is as follows:

Theorem 9.1. If V is a perfect 2-tame N-group (N with DCCR) then
it is conformed.

Two preliminary results will make the proof of 9.1 relatively easy.

If V is an N -group of the form V1 ⊕ V2 (V2 a copy of V1 – under
the N -isomorphism µ say), then diag(V ) will denote all N -subgroups
(of V ) with elements of the form v1 + v1λ, v1 in V1 and λ any given N -
isomorphism of V1 onto V2. Such subsets are certainly N -subgroups of V .
Moreover, there always exists such N -subgroups (the set of all v1 + v1µ
is an example). In certain interesting situations diag(V ) contains only
one element.

Proposition 9.2. If V is an N-group of the form V1 ⊕ V2 (V2 a copy of
V1) then, when V1 is perfect and 2-tame, diag(V ) has only one element.

Proof. Suppose there were to exist two distinct N -isomorphisms µi,
i = 1, 2, of V1 onto V2. In this case µ1µ

−1
2 is a non-trivial N -automorhism

of V1. Now 1−µ1µ
−1
2 is non-zero and an N -endomorphism of V1. Because

V1 is a central sum of V1µ1µ
−1
2 and V1(1 − µ1µ

−1
2 ) with V1µ1µ

−1
2 (= V1)

containing V1(1−µ1µ
−1
2 ) we see V1(1−µ1µ

−1
2 ) is a non-zero ring module.

This means V1/ker(1− µ1µ
−1
2 ) is a non-zero ring module contrary to V1

being perfect. 9.2 is proved. ♦

The result just proved was very straightforward. What is really
required is information as to when a subdirect sum of the V of 9.2 is
2-tame. Here conformity is enough to imply the only such N -subgroup
is the unique element of diag(V ).

Lemma 9.3. Suppose V is an N-group of the form V1 ⊕ V2 where V1
is both perfect and conformed and V2 a copy of V1. A perfect 2-tame
subdirect sum W of V (an N-subgroup with projections into the Vi being
Vi) must be D (D the unique element of diag(V ) – see 9.2).

Proof. Let πi, i = 1, 2, be the projections of V onto Vi and µ the unique
(see 9.2) N -isomorphism of V1 onto V2. We have Wπi = Vi, kerπ1 = V2
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and kerπ2 = V1. Now W/(W ∩ kerπ1) is N -isomorphic to Wπ1 (= V1
which is also N -isomorphic to V2). This of course means the Vi are 2-
tame and D exists. Set K as the direct sum (W ∩ kerπ1)⊕ (W ∩ kerπ2).
It will be shown W ≤ D +K.

First note that π1 induces an N -isomorphism of W/K onto V1/(W∩
∩kerπ2) (here w+K in W/K with w in W is mapped to wπ1+(W∩kerπ2))
and π2 induces a similar map of W/K onto V2/(W∩kerπ1) (here w+K
is mapped to wπ2 + (W ∩ kerπ1)).

Now applying the N -isomorphism induced by µ to V1/(W ∩ kerπ2)
we map wπ1+(W∩kerπ2) to wπ1µ+(W∩kerπ2)µ and see V2/(W∩kerπ1)
is N -isomorphic to V2/(W ∩ kerπ2)µ (remember V1/(W ∩ kerπ2) was N -
isomorphic to V2/(W ∩ kerπ1) – both N -isomorphic to W/K). Now
V2 is conformed (follows readily enough from the fact that V1 is) and
W ∩ kerπ1 therefore coincides with (W ∩ kerπ2)µ so that a map δ can
be given that takes wπ2 + (W ∩ kerπ1) (w in W ) of V2/(W ∩ kerπ1) to
wπ1µ+(W∩kerπ2)µ. The well defined nature of this map follows because,
if w in W is such that wπ2 is in W ∩kerπ1, then w−wπ2 is in W ∩kerπ1
and wπ1µ is in (W ∩kerπ2)µ. There is no real difficulty checking that δ is
an N -isomorphism. In fact it is an N -automorphism on V2/(W ∩ kerπ1)
(remember wπ1µ is in V2 and (W ∩kerπ2)µ is W ∩kerπ1). However from
9.2, δ is the identity. This must therefore mean that wπ1µ+(W ∩kerπ2)µ
is (for all w in W ) equal to wπ2 + (W ∩ kerπ1). It now follows that

wπ1 + wπ2 +K = wπ1 + (W ∩ kerπ2) + wπ1µ+ (W ∩ kerπ2)µ
which in turn equals

wπ1 + (W ∩ kerπ2) + wπ2 + (W ∩ kerπ1)
or simply w + K. But because wπ1 + wπ1µ is a typical element of D it
follows that D +K = W +K and W ≤ D +K.

The proof of 9.3 is now easily finished. First observe that K
(contained in W ) is the direct sum of the submodules W ∩ kerπ2 and
(W ∩kerπ2)µ (this being just W ∩kerπ1) and being N -isomorphic under
µ we conclude K is a ring module. From what is proved above (remember
K ≤ W ) it follows that W = (D ∩W ) + K. Now factoring out D ∩W
(a submodule of W ) would give a ring factor unless K ≤ D ∩W and
W = D∩W . It is now easily seen that because the N -subgroup W of the
diagonal N -subgroup D has projections to Vi being Vi it is not proper.
The lemma is proved. ♦

We are now ready to prove 9.1.
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Proof. In order to obtain a contradiction suppose there exist perfect 2-
tame N -groups (N with DCCR), having factors of the form V/H which
are N -isomorphic but not the same. Out of all such N -groups suppose V
is chosen with a composition series of minimal length (a perfect 2-tame
N -group is cyclic and has a composition series because it is N -isomorphic
to a factor of N – see 10.5 of [10]). Let V/Hi, i = 1, 2, be two distinct
N -isomorphic factors of V . Clearly in V/(H1 ∩ H2) the N -isomorphic
factors [V/(H1∩H2)]/[H1/(H1∩H2)] and [V/(H1∩H2)]/[H2/(H1∩H2)]
are not the same since the V/Hi are distinct. The minimality of V forces
H1 ∩ H2 to be {0}. Now V is embedded in a natural way subdirectly
into the direct sum V/H1 ⊕ V/H2 (= X say). Let the image of this
embedding be W . Also V/H1 and V/H2 are N -isomorphic and V/H1 is,
by the minimality of V , conformed. Indeed both Hi cannot be zero so
one of the V/Hi is conformed and the other, being N -isomorphic to it
must also be (it is not hard to establish an N -group N -isomorphic to a
conformed one is conformed). By 9.3 we have that W = D where D is the
unique element of diag(X). It is not difficult to see D is N -isomorphic
to the conformed N -group V/H1 and V being N -isomorphic to it is also
conformed contrary to our choice of V . The theorem of this section has
been proved. ♦

10. A substantial result

In this section we prove a theorem outlined in the previous. It was
shown in [1] that, in the d.g. case, Fitting factors of faithful perfect com-
patible N -groups are N -isomorphic (a finiteness condition was assumed).
The theorem proved here not only removes the d.g. requirement but re-
places compatibility with something which, superficially at least, looks to
be much weaker. This is the 3-tame assumption. As outlined previously
this has consequences for semiprimary N -groups.

The Fitting factor result is substantial. Its corollary adds to semipri-
mary understanding. The perfect nature of such N -groups appears nec-
essary for the result. However these matters are not all this section is
about. Of considerable interest is how perfect 2-tame N -groups embed
subdirectly into direct sums. In this direction a result rather satisfying
in its own right, facilitates the proof about Fitting factors. A lemma
providing the main step of the proof is now given.
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Lemma 10.1. There is at most one perfect 2-tame N-subgroup (N with
DCCR) of a direct sum of N-groups Vi, i = 1, 2, with projections into
each Vi being Vi.

Proof. Suppose Wj, j = 1, 2 are perfect 2-tame N -subgroups of V1⊕ V2
with projections into each Vi, i = 1, 2, being Vi. As the Vi, i = 1, 2, are
N -homomorphic images of W1 they are perfect and 2-tame. Considering
the faithful action of N on the Vi we have by 10.5 of [10] that Vi and
V1 ⊕ V2 have composition series. The proof that W1 = W2 will be by
induction on the composition length of V1 ⊕ V2.

Clearly if V1 or V2 is {0} then there is nothing to prove. Taking
a minimal submodule H of V1 we have (Wj + H)/H, j = 1, 2, satisfy
the conditions of the lemma with V1⊕ V2 replaced by (V1/H)⊕ V2. This
means (W1+H)/H = (W2+H)/H. If H were ≤ Wj for j = 1 and 2 then
W1 = W2. If H were ≤ W1 but H ∩W2 = {0} we have W1 = W2 ⊕H.
However (0 : V1 ⊕ V2) = (0 : W1) = (0 : W2) so that W1 and W2 are
faithful tame N/(0 : W1)-groups and H is N -isomorphic to a factor of
W2. This readily implies H is a ring module and W1/W2 a non-zero ring
module N -homomorphic image of W1, contrary to W1 being perfect. By
symmetry it can be assumed that no minimal submodule of either V1 or
V2 is contained in either W1 or W2. Thus the Vi, i = 1, 2, intersect the
Wj, j = 1, 2 in {0} and it is not really difficult to see both Wj are in
diag(V1 ⊕ V2) (Vi, i = 1, 2, are N -isomorphic to W1 and W2). By 9.2,
W1 = W2 and the lemma holds. ♦

The proof of the theorem that was discussed above follows easily.

Theorem 10.2. There is at most one perfect 2-tame N-subgroup (N
with DCCR) of a direct sum of N-groups Vi, i = 1, . . . , k, (k ≥ 1 an
integer) with projections into each Vi being Vi.

Proof. The theorem will be proved by induction on k. Clearly if k = 1
the result holds. In fact there are either no N -subgroups of the type
specified or V1 is perfect and 2-tame and V1 is the only such N -subgroup.
Suppose k ≥ 2. Let V = V1 ⊕ · · · ⊕ Vk and W1 and W2 be perfect
2-tame N -subgroups of V with projections into Vi being Vi. Let U =
= V1 ⊕ · · · ⊕ Vk−1, and δ the projection of V onto U . We have the
restriction of the projections πi of U onto Vi to the Wj, j = 1, 2, i =
1, . . . , k − 1, are such that Wjδπi = Vi and the 2-tame perfect nature of
the Wjδ, j = 1, 2, (N -homomorphic images of Wj) supplies the fact that
they are, by induction, equal. Thus Wj, j = 1, 2, are both contained in
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Wjδ⊕Vk (here the first components are the same) and are contained there
in such a way that their projections (δ and πk) onto the first and second
components are respectively Wjδ (i.e. W1δ) and Vk. By 10.1, W1 = W2.
10.2 is proved. ♦

This paper covers a number of quite meaningful results. Two might
be regarded as the more significant. This is 11.2 of the next section and
the result that follows.

Theorem 10.3. If N is a nearring with DCCR then all Fitting fac-
tors of faithful perfect 3-tame N-groups (if such faithfuls exist) are N-
isomorphic.

Proof. This will follow like part of the proof of 39.2 of [10].

Let Vj, j = 1, 2, be two faithful perfect 3-tame N -groups and
∆1, . . . ,∆n, be the set of all N -isomorphism types of minimal N -groups
(n ≥ 1 is finite by 8.2 of [10]). Take Ui/Wi, i = 1, . . . , n, as minimal
factors of V1 of type ∆i (they exist by 8.10 of [10]). Also take Hi/Ki,
i = 1, . . . , n, as minimal factors of V2 of type ∆i. Now F (V1) and F (V2)
are specified as in the proof of 39.2 of [10] (see the paragraph following
on from Step 2). Let Li and Pi, i = 1, . . . , n, be the N -groups defined
there and δi be the same N -isomorphisms (between Li and Pi – see 32.3
of [10]). V1/F (V1) and V2/F (V2) are respectively embedded as subdirect
sums into L1 ⊕ · · · ⊕ Ln and P1 ⊕ · · · ⊕ Pn. Thus Qj, j = 1, 2, (see
39.2 of [10]) are defined N -isomorphic to Vj/F (Vj). δ provides an N -
subgroup Q1δ of P1⊕· · ·⊕Pn with projections into each Pi being Pi (see
39.2’s proof). Q1 is N -isomorphic to Q1δ (δ is an N -isomorphism) and
Q1δ = Q2 (this follows by 10.2 since Q2 is perfect and 2-tame). But Qj

is, for j = 1, 2, a copy of Vj/F (Vj). 10.3 is proved. ♦

As noted in the last section indications are that faithful 3-tame
semiprimary N -groups (N with DCCR) may not necessarily be N -
isomorphic. However, as their Fitting submodules are zero it follows
that when perfect all is well.

Corollary 10.4. Two faithful 3-tame semiprimary N-groups (N with
DCCR) that are perfect must necessarily be N-isomorphic.

This section finishes with a simple note. Although the faithful 3-
tame perfect N -groups of 10.3 may not be finite it is certainly true that
those of 10.4 will be (see the comment that follows 7.2).
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11. Semiprimary nearrings

In a natural way the nearring N is an N -group. It makes complete
sense therefore, when thisN -group is semiprimary, to callN semiprimary.
This is the definition that is adopted. There is however a notion that
might at first give the impression of being an alternative. It is that the
nearring N has a faithful semiprimary N -group. However this possibility
does not really make much sense. Here N may be very far removed from
having no ring right ideals. It may even be a ring. One just has to take
V as a finite simple non-abelian group and N (acting on V in the natural
way) as the ring of integers mod n where n is the exponent of V .

In the above discussion the definition of N being semiprimary was
given. Also a very doubtful alternative definition was presented. It was
seen how as a possibility this does not stack up. This however is not
the case for tame nearrings with DCCR. There N being semiprimary is
equivalent to N having a faithful tame semiprimary N -group.

Proposition 11.1. Suppose N is a tame nearring with DCCR. N is
semiprimary if and only if it has a faithful tame semiprimary N-group.

Proof. Suppose N has a faithful tame semiprimary N -group V but N
is not semiprimary. In this case there is a non-zero ring right ideal R of
N . As a v in V with vR 6= {0} supplies a non-zero ring submodule (i.e.
vR) of V we have a contradiction. Thus the existence of V implies N is
semiprimary.

Now suppose N is semiprimary. Being tame it has a faithful tame
N -group and having DCCR there is such an N -group W with a compo-
sition series. Take H as a submodule of W maximal such that (H :W ) =
= {0}. Clearly W/H is a faithful tame N -group. It will be shown it
is semiprimary. Suppose H1 > H is a submodule of W such that H1/H
is a ring module. It is clear (H1/H : W/H) (= (H1 : W )/(H : W )) is
a non-zero ideal of N (i.e. of N/{0}). Since this ideal of N must be a
ring submodule of N (follows readily from H1/H being a ring submodule
of the faithful N -group W/H) we obtain a contradiction completing the
proof. ♦

Prop. 11.1 was elementary. It gave us an ‘if and only if’ condition
that N is semiprimary. It turns out there is also quite a deep result about
tame N along these lines. It again gives ‘if and only if’ conditions that
certain N are semiprimary. However for this to hold it appears N (with
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DCCR) must not only be 3-tame but soc(N) must be homogeneous. The
surprising thing about this result is that it tells us that many 3-tame N
(N with DCCR and soc(N) homogeneous) have non-zero centre.

Theorem 11.2. If N is a 3-tame nearring with DCCR and soc(N)
homogeneous then the following are equivalent

(a) the centre Z(N) of N is {0},
(b) N is semiprimary and

(c) N has a faithful 3-tame primary N-group.

Theorem 11.2 is easy to prove once a substantial lemma is in place.
The lemma follows:

Lemma 11.3. Suppose N with DCCR is 3-tame on V and soc(V ) is
a sum of copies of a minimal submodule U . If U is a ring module then
Z(N) 6= {0}.
Proof. The proof of this will be accomplished in four steps.

Step 1. Here it is shown that there exists a self-monogenic right N -
subgroup M of N with a unique maximal submodule H and that M can
be found so that M/H is N -isomorphic to U .

As N/J(N) is a direct sum of minimal right ideals of N/J(N) N -
isomorphic to minimal factors of V (each N -isomorphism type occurs) a
right ideal R1 > J(N) of N can be found with R1/J(N), N -isomorphic
to U . Take M ≤ R1 as a right N -subgroup of N minimal for not being
≤ J(N) (see 5.7 of [8]). M is minimal for being non-nilpotent (J(N) is
nilpotent but (M + J(N))/J(N) = R1/J(N) is not) and M ∩ J(N) con-
tains all right N -subgroups of N that are < M . Also (M + J(N))/J(N)
(N -isomorphic to M/(M ∩ J(N))) is N -isomorphic to U . Because M is
self-monogenic (a non-nil element α of M is such that αM = M) Step 1
is complete (here H = M ∩ J(N)).

Step 2. Here it is shown that if R is the right ideal of N generated by
M , then R ∩ soc(N) is ≤ Z(R).

To prove this we first show that for each v in V with vM 6= {0}
all minimal submodules of vM are central in vM . A minimal submodule
U1 of vM is N -isomorphic to U and, if vM > vH, N -isomorphic to the
minimal factor vM/vH of vM . By 14.2 of [10] we see that if U1 ≤ vH,
then U1 ≤ Z(vM). If vH∩U1 = {0} then as vM has the unique maximal
submodule vH, U1 = vM and the result holds. However vM cannot be
= vH as this would imply M = H+M∩(0 : v) contrary to the uniqueness
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of H. It has been shown any minimal submodule of vM is central in vM
or vM = {0}.

Now R (the right ideal of N generated by M) is such that it can
be embedded into a finite direct sum D of N -groups of the form vR (v
coming from V ) in such a way that soc(N) ∩ R embeds into the socle
of D. However each vR component is a vM (vR = vM) and from above
has socle central in D. The fact that R ∩ soc(N) centralizes R follows
from the embedding.

Step 3. In this step it is shown that with e a left identity of M (exists
by Step 1, [6] and [8]), (0 : e) + R = N (R as in Step 2) and for some
minimal right idea X of N contained in R, X ∩ (0 : e) = {0}.

As e is a left identity of M it is certainly true N = M + (0 : e),
where M ∩ (0 : e) = {0}. Since R ≥ M , (0 : e) + R is necessarily
= N . It is not that difficult to see soc(M) = M ∩ soc(N). This implies
R∩soc(N) (it contains soc(M) which is 6= {0}) is not contained in (0 : e).
As R ∩ soc(N) is a direct sum of minimal right ideals of N contained in
R the right ideal X exists.

Step 4. In this step the proof is finally completed. It is shown the X of
Step 3 must be ≤ Z(N).

As the sum (0 : e) +X is direct it follows CV (vX) ≥ v(0 : e) for all
v in V . However by Step 2, CV (vX) is ≥ vR for all v in V . Thus for all
v in V , CV (vX) ≥ v(0 : e) + vR = vN (see Step 3). This readily implies
X ≤ Z(N). Indeed, if α and β are in N and η in X, it is an elementary
matter to show that v[(α + η)β − ηβ − αβ] = 0 for all v in V so that
(α + η)β − ηβ − αβ = 0. The lemma is proved. ♦

Proof of 11.2. A primary N -group is certainly semiprimary and there-
fore, by 11.1, (c) implies (b). That (b) implies (a) follows straight from
the definition of N being semiprimary.

Suppose (a) holds. N being 3-tame has a faithful 3-tame N -group
V1 with minimal submodules N -isomorphic to a minimal right ideal R1

of N (there may be others). If the sum of all such minimal submodules is
W1 and W2 is a submodule of V1 maximal for avoiding W1 (i.e. a maximal
complement – see [2] or [3]), then V1/W2 is a faithful 3-tame N -group.
This is because no minimal right ideal R2 of N is ≤ (W2 : V1) as R2 is
necessarily N -isomorphic to R1 while if v1R2 (v1 ∈ V1) were 6= {0} it
would be ≤ W2. As any minimal submodule U of V1/W2 (= V say) is,
from the maximality of W2, contained in (W1 + W2)/W2 it must follow
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that soc(V/W2) = (W1 +W2)/W2 and soc(V/W2) is homogeneous. If U
is not a ring module then it is easy enough to see it is the unique minimal
submodule of soc(V ) (thus of V ) and V is primary. On the other hand
if U is a ring module 11.3 supplies us with a contradiction. Thus (a)
implies (c) and 11.2 is proved. ♦

Acknowledgement. In conclusion I would like to thank the referee for
helpful comments. As things were originally the proof of 10.2 was flawed.
Providing 10.1 overcame this. The referee’s pointing out my error meant
that what might possibly be regarded as the most substantial result of
this paper (viz. 10.3) stood firm.
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