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Abstract: A special dynamic system is analyzed which describes Goodwin’s
business cycle model (Goodwin, 1951). In realistic economies there are time
delays in both investment and consumption. The two time delays have a sig-
nificant effect on the asymptotic behavior of the system. Without delay the
system is locally asymptotically stable with reasonable parameter selection,
however in the presence of delays stability might be lost. This paper gives a
complete stability analysis of the delayed system by determining the stability
switch curves and characterizing the directions of the stability switches based
on the monotonic properties of the curves.

1. Introduction

Physical and economic systems often deal with delayed data, so
the dynamic equations describing the motion or development of such
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systems are usually delay differential equations. The asymptotical be-
havior of these systems became a central research topic recently. There
are two different ways to model time delays (Cooke and Grossman, 1982).
In applying the concept of continuously distributed delays, it is assumed
that the length of the delay is uncertain following a particular distribu-
tion. Cushing (1977) provided a comprehensive summary of the relevant
methodology with applications to population dynamics. If the length
of the delay is known, then fixed delays are considered. Bellman and
Cooke (1956) introduced the relevant methodology. The methods and
stability conditions are model dependent, so researchers have examined
particular model types and investigated their asymptotical behavior. The
approach becomes much more complicated if multiple delays are present.
The pioneering works of Hale (1979) and Hale and Huang (1993) can be
considered as basic breakthrough in this area. The paper of Piotrowska
(2007) examined some properties of the stability switch curves for impor-
tant special models. A large number of works deal with delay differential
equations in control engineering applications. Loiseau et al. (2009) pre-
sented a good collection of a wide variety of works in this area. For exam-
ple Ochoa et al. (2009) used Lyapunov matrices and developed methods
for their computation. Peet et al. (2009) uses SOS (Sum of Square) and
a generalized Zhang’s method for stability analysis. Breda et al. (2009)
used TRACE-DDE, a contour plot method to construct the stability
switch curve without analytic result. More recently Matsumoto and Szi-
darovszky (2013) gave a complete description of the stability switches
and asymptotical properties of a certain class of dynamic systems arising
in the study of dynamic oligopolies. However the same approach cannot
be used in the case of different dynamic models such as Goodwin’s busi-
ness cycle model (Goodwin, 1951). In this paper we will examine the
local asymptotical behavior of the corresponding two-delay model. The
paper is organized as follows. The classical Goodwin model is introduced
in Sec. 2, and its single-delay extension is discussed in Sec. 3, and then
the general case is investigated, where stability switches are determined,
and conditions for the local asymptotical stability of the delay system
are derived. The last section concludes the paper and further research
directions are outlined.
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2. The model

Goodwin’s classical model can be described by the following two-
dimensional system:

(1)
εẏ(t) = k̇(t)− (1− α)y(t),

k̇(t) = ϕ(ẏ(t))

where y is the national income, k is the capital stock, ϕ(ẏ) denotes the
induced investment with ϕ(0) = 0 and α, ε are positive constants. By
combining these equations a single-dimensional nonlinear equation is ob-
tained:

(2) εẏ(t)− ϕ(ẏ(t)) + (1− α)y(t) = 0.

The local asymptotical stability of this system can be examined by lin-
earization around the steady state ȳ = 0:

(3) εẏ(t)− νẏ(t) + (1− α)y(t) = 0

where ν = ϕ
′
(0). From economic consideration we discuss the case when

ν < ε. By assuming delays in both investment and consumption this
equation becomes a delay differential equation with two delays:

(4) εẏ(t)− νẏ(t− θ) + (1− α)y(t− σ) = 0.

By introducing the notation

a =
ν

ε
and b =

1− α
ε

this equation simplifies as

(5) ẏ(t)− aẏ(t− θ) + by(t− σ) = 0

with characteristic equation

(6) λ− aλe−θλ + be−σλ = 0.

The stability of system (5) can be examined by finding the locations of
the characteristic roots.
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3. The single-delay case

Assume first that θ = 0, so equation (6) becomes

(7) λ(1− a) + be−σλ = 0.

At σ = 0 the characteristic root is −b/(1− a), so the system is stable if
a < 1, which is the case, since ν < ε. At any stability switch λ = iω,
where we can assume that ω > 0, since the conjugate of any characteristic
root is also a characteristic root. By substitution into equation (7), we
have

(8) iω(1− a) + b(cosσω − i sinσω) = 0

and separating the real and imaginary parts gives two equations for un-
knowns ω and σ as

(9)
b cosσω = 0,

ω(1− a)− b sinσω = 0,

from which we conclude that cosσω = 0 and sin σω = 1. So

ω =
b

1− a
,

σ =
1− a
b

(π
2

+ 2kπ
)

for k = 0, 1, 2, ...,

that is, we have infinitely many potential stability switches. In order
to see if there are actual stability switches we select σ as the bifurcation
parameter and consider the characteristic root as function of σ, λ = λ(σ).
By implicitly differentiating equation (7) with respect to σ, we have

(10)
dλ

dσ
(1− a) + be−σλ

(
−λ− σdλ

dσ

)
= 0

implying that

(11)

dλ

dσ
=

λbe−σλ

1− a− bσe−σλ
=

= − λ2(1− a)

1− a+ σλ(1− a)
=

= − λ2

1 + σλ
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where we used equation (7). If λ = iω, then

(12)
dλ

dσ
=

ω2

1 + iσω

with real part

(13) Re

[
dλ

dσ

]
=

ω2

1 + (σω)2
> 0.

Therefore by gradually increasing the value of σ from zero, at each po-
tential stability switch a pair of characteristic roots changes its real part
from negative to positive. So the system becomes unstable at the smallest
such value,

(14) σ0 =
1− a
b

π

2
,

and the stability cannot be regained later. Hence we have the following
result:

Proposition 1. System (5) with θ = 0 and a < 1 is locally asymptotically
stable if σ < σ0 and unstable for σ > σ0. At σ = σ0, Hopf bifurcation
occurs giving the possibility of the birth of limit cycles.

4. The general case

The characteristic equation of system (5) is considered now. We
know that its characteristic roots have negative real parts if θ = 0 and
σ < σ0. At any stability switch λ = iω (with ω > 0) and by substituting
it into equation (6) we get

(15) iω − iaω(cos θω − i sin θω) + b(cosσω − i sinσω) = 0.

By separating the real and imaginary parts we have two equations for
three unknowns:

(16)
−aω sin θω + b cosσω = 0,

aω cos θω + b sinσω = ω.

By introducing the notation
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x = cos θω and y = sinσω

and using the first equation of (16) we get

(17) aω
√

1− x2 = b
√

1− y2

so

(18) a2ω2 − b2 = a2ω2x2 − b2y2.

From the second equation of (16) we have

(19) y =
ω − aωx

b
,

and by substituting it into (18),

(20) a2ω2 − b2 = a2ω2x2 − (ω − aωx)2

implying that

(21) cos θω = x =
(1 + a2)ω2 − b2

2aω2

and from (19),

(22) sinσω = y =
(1− a2)ω2 + b2

2bω
.

Feasible solutions exist only if both x and y are in interval [−1, 1] which
can be reduced to

(23)
b

1 + a
≤ ω ≤ b

1− a
.

From (16) it is clear that sin θω and cosσω have the same sign, therefore
we have two parametric curves describing the set of potential stability
switches:

(24) C1(k, n) =


σ =

1

ω

[
sin−1

(
(1− a2)ω2 + b2

2bω

)
+ 2kπ

]

θ =
1

ω

[
cos−1

(
(1 + a2)ω2 − b2

2aω2

)
+ 2nπ

]
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and

(25) C2(k, n) =


σ =

1

ω

[
π − sin−1

(
(1− a2)ω2 + b2

2bω

)
+ 2kπ

]

θ =
1

ω

[
2π − cos−1

(
(1 + a2)ω2 − b2

2aω2

)
+ 2nπ

]
with k, n = 0, 1, 2, ... and

ω ∈
[

b

1 + a
,

b

1− a

]
.

Notice first that at ω = b/(1 + a),

(1 + a2)ω2 − b2

2aω2
= −1,

(1− a2)ω2 + b2

2bω
= 1

and at ω = b/(1− a),

(1 + a2)ω2 − b2

2aω2
=

(1− a2)ω2 + b2

2bω
= 1.

Therefore the initial and end points of C1(k, n) are

I1(k, n) =
1 + a

b

(π
2

+ 2kπ, π + 2nπ
)
,

E1(k, n) =
1− a
b

(π
2

+ 2kπ, 2nπ
)

and these for C2(k, n) are

I2(k, n) =
1 + a

b

(π
2

+ 2kπ, π + 2nπ
)
,

E2(k, n) =
1− a
b

(π
2

+ 2kπ, 2π + 2nπ
)
.

Clearly C1(k, n) and C2(k, n) have the same initial point and C1(k, n+1)
and C2(k, n) have identical endpoints. Fig. 1 shows these connecting
curves for k = 0 and n = 0, 1, 2, ... with the parameter specification of
α = 17/20, ε = 3/4, δ = 6/5 and ν = 9/80. The continuous curves show
C1(0, n) and the dotted curves give C2(0, n). These curves are shifted to
the right by increasing the value of k.

Notice that with fixed value of k, all initial points with different
values of n have the same abscissas, and the same holds for the endpoints
as well. The common abscissa values are

σI =
1 + a

b

(π
2

+ 2kπ
)

and σE =
1− a
b

(π
2

+ 2kπ
)
,
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Figure 1. Shapes of curves C1(0, n) and C2(0, n) for n = 0, 1, 2

respectively. Notice that

E1(0, 0) =

(
1− a
b

π

2
, 0

)
so from the previous section we know that the system is stable for

θ = 0 and σ <
1− a
b

π

2
which is the linear segment connecting the origin with E1(0, 0). At the
points of the horizontal axis being to the right of E1(0, 0) the system is
unstable. Select and fix a value of θ > 0 and gradually increase the value
of σ from zero. The resulting horizontal line will have infinitely many
intersections with the curves C1(k, n) and C2(k, n). The directions of
stability switches at the intersections can be determined by considering
σ as the bifurcation parameter, and considering the characteristic roots
as functions of σ, λ = λ(σ). By implicitly differentiating equation (6)
with respect to σ we get a simple equation for dλ/dσ:

(26)
dλ

dσ
− adλ

dσ
e−θλ − aλe−θλ

(
−θdλ

dσ

)
+ be−σλ

(
−λ− σdλ

dσ

)
= 0

implying that

(27)
dλ

dσ
=

bλe−σλ

1− ae−θλ + aλθe−θλ − bσe−σλ
.
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From (6) we see that

(28) ae−θλ =
1

λ

(
λ+ be−σλ

)
,

so

(29)
dλ

dσ
=

bλ2

λ2θeσλ + (−b+ bλθ − bλσ)
.

At λ = iω we have

(30)
dλ

dσ
=

−bω2

−ω2θ(cosσω + i sinσω) + (−b+ iωθb− iωbσ)

with real part having the same sign as
bω2(ω2θ cosσω + b).

So at any point of the curve C1(k, n) or C2(k, n), instability is retained
or stability is lost if ω2θ cosσω + b > 0 and stability may be regained if
ω2θ cosσω + b < 0. Notice first that on C1(k, n),

σω ∈
[
2kπ,

π

2
+ 2kπ

]
,

so cosσω > 0 implying that on all intersections with C1(k, n) at least one
pair of characteristic roots changes the sign of its real part from negative
to positive. Consider next a curve C2(k, n). On this curve

(31)

∂θ

∂ω
= − 1

ω2

[
2π − cos−1

(
(1+a2)ω2−b2

2aω2

)
+ 2nπ

]
+

+
1

ω

1√
1−

(
(1+a2)ω2−b2

2aω2

)2 2b2

2aω3
=

= − 1

ω2
ωθ +

1

ω

1

− sin θω

b2

aω3
.

From the first equation of (16), we have

(32) sin θω =
b

aω
cosσθ

so

(33)

∂θ

∂ω
= − 1

ω

θ +
1

b

aω
cosσθ

b2

aω3

 =

= − 1

ω3 cosσω

(
θω2 cosσω + b

)
.
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Since cosσω < 0 on C2(k, n), we conclude that stability is lost or insta-
bility is retained when ∂θ/∂ω > 0 and the stability might be regained
if ∂θ/∂ω < 0. The first case occurs when the curve C2(k, n) is increas-
ing in θ from right to left and the second case occurs when the curve is
decreasing in θ from right to left.

Next we show that at each intersection the characteristic roots are
single. In contrary, assume that λ is a multiple characteristic root. Then
it solves the characteristic equation and its derivative:

(34) λ− aλe−θλ + be−σλ = 0

and

(35) 1− ae−θλ + aλθe−θλ − bσe−σλ = 0.

If λ = iω, then

(36) iω − iaω(cos θω − i sin θω) + b(cosσω − i sinσω) = 0

and
(37)
1−a(cos θω− i sin θω)+ iaθω(cos θω− i sin θω)−bσ(cosσω− i sinσω)=0.

By separating the real and imaginary parts, four equations are obtained
for the four unknowns, sin θω, cos θω, sinσω and cosσω:

−aω sin θω + b cosσω = 0,(38)

ω − aω cos θω − b sinσω = 0,(39)

1− a cos θω + aθω sin θω − bσ cosσω = 0,(40)

a sin θω + aθω cos θω + bσ sinσω = 0.(41)

Simple calculation shows that the solution is the following:

(42) sin θω = − θω

a (1 + ω2(σ − θ)2)
, cos θω =

1 + ω2σ(σ − θ)
a (1 + ω2(σ − θ)2)

,

(43) sin σω =
ω3θ(θ − σ)

b (1 + ω2(σ − θ)2)
, cosσω = − θω2

b (1 + ω2(σ − θ)2)
,
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and now from (33) at these values,

(44)
∂θ

∂ω
=

θ2ω4 − b2 (1 + ω2(σ − θ)2)
ω3(cosσω)b (1 + ω2(σ − θ)2)

= 0,

since from (43),

(45)

1 = sin2 σω + cos2 σω =

=
θ2ω4[1 + ω2(σ − θ)2]
b2[1 + ω2(σ − θ)2]2

=

=
θ2ω4

b2 (1 + ω2(σ − θ)2)
.

Consequently multiple characteristic roots are possible only at the ex-
treme values of θ with respect to ω on C2(k, n). This is not an intersection
since the horizontal line is tangent to the curve at the extreme points.

Let SG(k, n) denote that part of C2(k, n) which decreases in θ from
right to left and let SL(k, n) denote the union of the rest of C2(k, n) and
the entire curve C1(k, n). We can now summarize our results as follows:

Proposition 2. The stability switch curves str the connecting segments,
C1(k, 0), C2(k, 0), C1(k, 1), C2(k, 2), ... for all values of k ≥ 0. With
fixed θ > 0 gradually increasing the value of σ from zero, at the inter-
secions with SG(k, n) one pair of characteristic roots changes the sign
of the real part from positive to negative, and at the intersections with
SL(k, n) one pair changes the sign of its real part from negative to posi-
tive. At the intersections Hopf bifurcation occurs giving the possibility of
the birth of limit cycles.

At any intersection with SG(k, n) stability is regained if only one
pair of characteristic roots had positive real part before. At the inter-
sections with SL(k, n), stability is lost if all pairs of characteristic roots
had negative real parts before. Otherwise the system remains unstable
after the intersection.

Fig. 2 with σm ' 6.48 and σM ' 9.28 shows again the continuous
curves, C1(0, n) and C2(0, n) (n = 0, 1, 2, 3, ...) under the same specifica-
tion of the parameters as before. The horizontal line shows the stability
losses and gains. When we increase the value of σ along the horizontal
line at θ̄(= 82), stability is lost at point A, regained at point B and lost
again at point C. However system is unstable after point C. The stability
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Figure 2. Stability switches

region is the gray region. If (σ, θ) is any point, then we have to consider
the linear segment connecting points (0, θ) and (σ, θ) and count the num-
ber of intersections with stability loss (L) and number of intersections
with stability gain (G). The point (θ, σ) is a stability point if G ≥ L.

5. Conclusions

In this paper a special dynamic system with two delays was ex-
amined. The stability switch curves were determined and the directions
of the stability switches were characterized by the monotonicity of the
different segments of the curves. Small values of σ are harmless, since sys-
tem is stable with any values θ>0. With large values of σ, the stability
region is an irregular domain depending on both values of θ and σ.

This study discovered only local asymptotic stability. The global
asymptotic behavior of the system in case of local instability is an in-
teresting research issue which can be examined by computer simulation.
This is our next project.
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