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Li Yin

Department of Mathematics and Information Science, Binzhou
University, Binzhou City, Shandong Province, 256603, China

Received : December 2013

MSC 2010 : 33 B 10

Keywords: Generalized trigonometric functions, generalized hyperbolic func-
tions, eigenfunctions of p-Laplacian.

Abstract: In this paper we prove the conjecture posed by Klén et al. in
[13], and give optimal inequalities for generalized trigonometric and hyperbolic
functions.

1. Introduction

In 1995, P. Lindqvist [15] studied the generalized trigonometric and
hyperbolic functions with parameter p > 1. Thereafter several authors
became interested to work on the equalities and inequalities of these gen-
eralized functions, e.g., see [4, 5, 6, 3, 7, 10, 11, 18] and the references
therein. Recently, Klén et al. [13] were motivated by many results on
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these generalized trigonometric and hyperbolic functions, and they gen-
eralized some classical inequalities in terms of generalized trigonometric
and hyperbolic functions, such as Mitrinović–Adamović inequality, Huy-
gens’ inequality, and Wilker’s inequality. In this paper we prove the
conjecture posed by Klén et al. in [13], and in Th. 1.4 we generalize the
inequality

1

cosh(x)a
<

sin(x)

x
<

1

cosh(x)b
,

where a = log(π/2)/ log(cosh(π/2)) ≈ 0.4909 and b = 1/3, due to Neu-
man and Sándor [17, Th. 2.1].

For the formulation of our main results we give the definitions of
the generalized trigonometric and hyperbolic functions as below.

The increasing homeomorphism function Fp : [0, 1] → [0, πp/2] is
defined by

Fp(x) = arcsinp(x) =

∫ x

0

(1− tp)−1/p dt,

and its inverse sinp,q is called generalized sine function, which is defined
on the interval [0, πp/2], where

arcsinp(1) = πp/2.

The function sinp is strictly increasing and concave on [0, πp/2], and it
is also called the eigenfunction of the Dirichlet eigenvalue problem for
the one-dimensional p-Laplacian [9]. In the same way, we can define
the generalized cosine function, the generalized tangent, and also the
corresponding hyperbolic functions.

The generalized cosine function is defined by

d

dx
sinp(x) = cosp(x), x ∈ [0, πp/2] .

It follows from the definition that

cosp(x) = (1− (sinp(x))p)1/p ,

and

(1.1) | cosp(x)|p + | sinp(x)|p = 1, x ∈ R.
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Clearly we get

d

dx
cosp(x) = − cosp(x)2−p sinp(x)p−1.

The generalized tangent function tanp is defined by

tanp(x) =
sinp(x)

cosp(x)
.

For x ∈ (0,∞), the inverse of generalized hyperbolic sine function
sinhp(x) is defined by

arsinhp(x) =

∫ x

0

(1 + tp)−1/pdt,

and generalized hyperbolic cosine and tangent functions are defined by

coshp(x) =
d

dx
sinhp(x), tanhp(x) =

sinhp(x)

coshp(x)
,

respectively. It follows from the definitions that

(1.2) | coshp(x)|p − | sinhp(x)|p = 1.

From above definition and (1.2) we get the following derivative formulas,

d

dx
coshp(x) = cosp(x)2−p sinp(x)p−1,

d

dx
tanhp(x) = 1− | tanhp(x)|p.

Note that these generalized trigonometric and hyperbolic functions coin-
cide with usual functions for p = 2.

Our main result reads as follows:

Theorem 1.3 ([13, Conj. 3.12]). For p ∈ [2,∞), the function

f(x) =
log(x/ sinp(x))

log(sinhp(x)/x)

is strictly increasing from (0, πp/2) onto (1, p). In particular,(
x

sinhp(x)

)p
<

sinp(x)

x
<

x

sinhp(x)
.
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Theorem 1.4. For p ∈ [2,∞), the function

g(x) =
log(x/ sinp(x))

log(coshp(x))

is strictly increasing in x ∈ (0, πp/2). In particular, we have

1

coshp(x)β
<

sinp(x)

x
<

1

coshp(x)α
,

where α = 1/(1 + p) and β = log(πp/2)/ log(coshp(πp/2)) are the best
possible constants.

2. Preliminaries and proofs

The following lemmas will be used in the proof of the main result.

Lemma 2.1 ([2, Th. 2]). For −∞ < a < b < ∞, let f, g : [a, b] → R
be continuous on [a, b], and be differentiable on (a, b). Let g

′
(x) 6= 0 on

(a, b). If f
′
(x)/g

′
(x) is increasing (decreasing) on (a, b), then so are
f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f
′
(x)/g

′
(x) is strictly monotone, then the monotonicity in the conclu-

sion is also strict.

Lemma 2.2. For p ∈ [2,∞), the function

f(x) =
p sinp(x) log (x/ sinp(x))

sinp(x)− x cosp(x)

is strictly decreasing from (0, πp/2) onto (1, p log(πp/2)). In particular,

exp

(
1

p

(
x

tanp(x)
− 1

))
<

sinp(x)

x
< exp

((
log

πp
2

)( x

tanp(x)
− 1

))
.

Proof. Write

f1(x) = p sinp(x) log (x/ sinp(x)) , f2(x) = sinp(x)− x cosp(x),

and clearly f1(0) = f2(0) = 0. Differentiation with respect to x gives

f ′1(x)

f ′2(x)
=

(sinp(x))/x+ cosp(x)(log(x/ sinp(x))− 1)

x cosp(x)2−p sinp(x)p−1
=

=
1

x tanp(x)p−1

(
tanp(x)

x
+ log

(
x

sinp(x)

)
− 1

)
,
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which is the product of two decreasing functions, this implies that f ′1/f
′
2

is decreasing. Hence the function f is decreasing by Lemma 2.1. The
limiting values follows from the l’Hôspital rule. ♦

Lemma 2.3. For p ∈ [2,∞) the function

g(x) =
p sinhp(x) log (sinhp(x)/x)

x coshp(x)− sinhp(x)

is strictly increasing from (0,∞) onto (1, p). In particular, we have

exp

(
1

p

(
x

tanhp(x)
− 1

))
<

sinhp(x)

x
< exp

((
x

tanhp(x)
− 1

))
.

Proof. Write

g1(x) = sinhp(x) log

(
sinhp(x)

x

)
, g2(x) = x coshp(x)− sinhp(x),

clearly g1(0) = g2(0) = 0. Differentiation with respect to x gives

g′1(x)

g′2(x)
=

coshp(x)(1 + log(sinhp(x)/x)− sinhp(x)/x

x coshp(x)2−p sinhp(x)p−1
=

=
sinhp(x)

x

coshp(x)(1 + log(1 + sinhp(x)/x)− sinhp(x)/x

coshp(x) tanhp(x)p
,

which is increasing, this implies that g is increasing. The limiting values
follows from the l’Hôspital rule. ♦

Lemma 2.4. For all x > 0 and p > 1, we have

log(coshp(x)) >
x

p
tanhp(x)p−1x.

Proof. Let
f(x) = log(coshp(x))− x

p
tanhp(x)p−1.

A simple computation yields

f ′(x) = tanhp(x)p−1 −
(

tanhp(x)p−1

p
+

(p− 1)

p

x tanhp(x)p−2

coshp(x)p

)
=

=
p− 1

p
tanhp(x)p−2

(
tanhp(x)− x

coshp(x)p

)
,
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which is positive because sinhp(x) > x and coshp(x) > 1 for all x > 0.
Thus f(x) is strictly increasing and f(x) > f(0) = 0, this implies the
proof. ♦

Proof of Theorem 1.3. Write f(x) = f1(x)/f2(x) for x ∈ (0, πp/2),
where

f1(x) = log

(
x

sinp(x)

)
, f2(x) = log

(
sinhp(x)

x

)
.

For the proof of the monotonicity of the function f , it is enough to prove
that

f ′(x) =
f ′1(x)f2(x)− f1(x)f ′2(x)

f2(x)2

is positive. After simple computation, this is equivalent to write

x (f2(x))2 f ′(x) =
sinp(x)− x cosp(x)

sinp(x)
f2(x)− x coshp(x)− sinhp(x)

sinhp(x)
f1(x),

which is positive by Lemmas 2.2 and 2.3. Hence, f is strictly increasing,
and limiting values follows by applying the l’Hôpital rule. This completes
the proof. ♦

Proof of Theorem 1.4. Write g(x) = g1(x)/g2(x) for x ∈ (0, πp/2),
where g1(x) = log(x/ sinp(x)), g2(x) = log(coshp(x)). Here we give the
same argument as in the proof of Th. 1.3, and compute similarly

(log (coshp(x)))2 g′(x) =

=
sinp(x)− x cosp(x)

x sinp(x)
log coshp(x)− tanhp(x)p−1 log

(
x

sinp(x)

)
>

>
sinp(x)− x cosp(x)

x sinp(x) tanhp(x)1−p
x

p
− sinp(x)− x cosp(x)

p sinp(x) tanhp(x)1−p

= 0,

by Lemmas 2.2 and 2.4. The limiting values follow from the l’Hôspital
rule easily, hence the proof is obvious. ♦

The following corollary follows from [13, Lemma 3.3] and Th. 1.4.

Corollary 2.5. For p ∈ [2,∞) and x ∈ (0, πp/2), we have

cosp(x)β <
1

coshp(x)β
<

sinp(x)

x
<

1

coshp(x)α
< 1,

where α and β are as in Th. 1.4.
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