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Abstract: In this article we establish four reduction formulae for four mem-
bers of the Srivastava—Daoust 8 function class in some special cases of their
parameter array using the Beta-transform of certain Preece’s, that is Bailey’s
identities treated previously by Kummer’s I type transformation theorem.

1. Introduction

In the focus of our investigations are higher transcendental func-
tions of hypergeometric type which building blocks are the generalized
Pochhammer symbol or shifted factorial defined in terms of the Euler’s
Gamma function
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using by convention that (0)g = 1. The below considered specific func-
tions we define in the form of (multiple) power series, since all derivations
include manipulations of coefficients in their power series representations.

The Srivastava—Daoust generalization of the Lauricella hypergeo-
metric function Fp in n variables defined by [7, p. 454]

(1.1)
[(a) 0, ’9(”)] . [(b/) : 90/]? e [(b(")) . SO(")] ljl

[(e) 05 s [(d) 2 8] 5 [(d™)) 2 0] xn

SA:B/;W ;B(M)
C:D’;--- ;D(n)

A B’ B (n)
a; / n b,’ LA b n
B jl;[l< 7)m19]-+--~+mn9; )jl;ll( J)ml‘pa jl;[l( J >mn<,0§- ) :C?lﬂl e
- e D’ pe my! m,!’
n U
e = H (Cj)mlwl--f-"'-&-mnw(-") H (dj)m15§-' ’ H (dj )mn(S(.")
j=1 J 7 =1 j=1 J
where the parameters satisfy
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For convenience, we write (a) to denote the sequence of A parameters
ay,--- ,au, with similar interpretations for (¥),--- , (d"™). Empty prod-

ucts should be interpreted as unity. Srivastava and Daoust [9, pp. 157—
158] reported that the series in (1.1) converges absolutely
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:B’:....B(n) . S
When all A, < 0, SQQg,i...if;<n) (x1,---,x,) diverges except at the origin,
that is, this series is formal.

In turn, specifying the parameter-array

N ’5§n)7... 7(55;‘()71)):(1,... 1),

we call the resulting 8§ function a Kampé de Fériet generalized hyperge-
ometric function, signifying it as F'. The related convergence conditions
follow from (i) and (ii).

o . A:B’:....B(n)
The further set of conditions for convergence of the series 87,

C.D' ;e ;D)
is given in [9]. We remark at this point that the Srivastava—Daoust
S generalized Lauricella hypergeometric function for n = 2 reduces to
Séigég,, the Srivastava—Daoust generalized Kampé de Fériet hypergeo-
metric function of two variables initially introduced in [7, 8]. A detailed
account of the above function can be found in the article [9] and in the
monograph [10].
Next,
(1.2)
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stands for the wunified variant of the Fox—Wright generalized hypergeo-
metric function with p upper and ¢ lower parameters; (a,A), denotes
the parameter p-tuple (a1, 4;), -+, (ap, 4,) and a; € C, b, € C\ Z;,
A;,B; >0 for all j =1,p,i = 1,q, while the series converges for suitably
bounded values of |z| when

q p
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In the case Ag = 0, the convergence holds in the open disk

q p
<Bs=11B" T[4
j=1 j=1

Let us point out that the original definition of the Fox—Wright function
V2] (consult monographs [3, 4]) contains Gamma functions instead
of the here used generalized Pochhammer symbols. However, these two
functions differ only up to constant multiplying factor, that is
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The unification’s motivation is clear — for A; = --- = A, = By =--- =
= B, =1, ,V;[2] one reduces exactly to the generalized hypergeometric
function ,F,[z].

The main goal of our investigation is to express Sg:%;%(x, y) in terms
of Fox~Wright W-function (Th. 2.1), then to present F}H(:p,x) via
811%23@ 22?) (Th. 2.2 and Th 2.3) and in the form of a linear com-
bination of two contiguous 849 o 2 (o, 12%) expressions (Th. 2.4).

2. The results

Denote D = {z: |z| < 1} the open unit disk.
Theorem 2.1. For all0 < a <1 and all (x,y) € C x D we have

(1,0) L}:lJrang%;;%([a;(j;l]:—;—‘:ﬂ).

(2.3) 1‘1’0[ B ‘(1_1/)& y

I

Proof. Let @ > 0 be given and let D,, denotes the set of all (z,y) € C?
for which the double series

converges absolutely. The power series Y - T'(m + a)%7 have conver-
gence radius equal to 1, so D, C C x D. Having in mlnd that

(1
(2.4) +ﬁ ﬁz m+6 y",  B>0,ycD
( m>0
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Concluding D, = C x D, the rest is obvious. ¢

Let us recall now a Bailey’s result on the product of two confluent
hypergeometric functions [1], also see for similar fashion results and ex-
tensions [1, 6] and the further references therein. For all 2a, 26 ¢ Z; =
{0,—1,—2,---} there holds

72
7l

Applying this Bailey’s result we derive our first master reduction formula.
Theorem 2.2. For all 20,20 ¢ Zy , R(e) > R(d) > 0 and for all x € C

Ha+p), s(a+p+1)
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Proof. We start with the Bailey’s identity (2.5); using Kummer’s first
transformation theorem, (2.5) becomes
22
1)
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Replace = by zt above and then multiply both sides of the last relation by
t4=1(1 — )47 (supposing that R(e) > R(d) > 0) and integrating with
respect to ¢t between the limits 0 and 1 (that is, applying the so-called
Beta-transform method) and simplyfing, we arrive at the stated master
transformation formula (2.6).

Because Ay = 1, Ay = 2, according to convergence condition (i),
the double series 811::%% converges for all z € C. ¢

Theorem 2.3. For all p > a >0, R(e) > R(d) > 0and for all x € C we
have

(27) Fi%&[ z a; p—Q ’ T } P(e) ) F(P) F()%
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Proof. Observe the following identity due to Ramanujan [2]
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Replacing x — zt, then applying the Beta-transform to (2.8) with respect
tot € (0,1), we arrive at the stated relation (2.7).

Since the convergence factors A; = 1, Ay = 2 are the same as in
the previous proof, we conclude that the series in (2.7) converge in the
whole complex plane.

Theorem 2.4. For all p € (—1,3),a > 0 such that |p — 2a| < 1 and
R(e) > R(d) > 0 we have for any finite x € C that
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Proof. Now, employing the identity by Preece [5], which holds for all
p & Z\{1}:
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it becomes by the Kummer’s first transformation
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Again, following the lines of previous two proofs with = +— xt, then
using the Beta-transform of both sides in the last display with respect to
t € (0,1), we deduce the asserted identity. ¢

Remark 1. Since our master formulae (2.6), (2.7) and (2.9) are valid
for all finite complex = € C, and it represent a scaled family of reduc-
tion formulae, specific values of arguments give as many new reduction
expressions as desired.
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