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Abstract: A ring R is a strongly f -regular ring if, for every element a of R, a
belongs to the principal ideal generated by a2. The study of strongly f -regular
chain rings and their additive groups is well known. We present characteriza-
tions of strongly f -regular rings, not necessarily satisfying the chain condition,
and determine the additive groups of those which are either torsion or torsion-
free. We also show that strong f -regularity is a hereditary radical property.
Finally, we present characterizations of rings whose proper homomorphic im-
ages are strongly f -regular, and classify the additive groups of those which have
nonzero characteristic or are torsion-free.

1. Introduction

All rings considered are associative and do not necessarily have
identity. Following Blair [2], we say that a ring R is f-regular if a ∈ (a)2R
for each a ∈ R, where (a)R denotes the principal ideal of R generated
by a. It is well known that a ring is f -regular if and only if it is fully
idempotent (that is, every ideal is idempotent) and that the class of all
such rings is a hereditary radical class. We study a subclass of the class
of all f -regular rings, which also turns out to be a hereditary radical
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class. A ring R such that a ∈ (a2)R for each a ∈ R will be called strongly
f-regular. This is equivalent to the requirement that a ∈ (an)R for each
a ∈ R and positive integer n. If every proper homomorphic image of R is
strongly f -regular, then we say that R is a proper strongly f-regular ring.
The main purpose of this note is to give characterizations of strongly f -
regular rings, to classify proper strongly f -regular rings, and to determine
the structure of the additive groups of these rings when they are torsion
or torsion-free. In particular, we show that a necessary and sufficient
condition for a ring R to be strongly f -regular is that every factor ring
of R is reduced (that is, has no nonzero nilpotent elements). Conditions
similar to this one have been studied by several authors. Courter [4]
investigated those rings which have the property that every homomorphic
image is semiprime (f -regular rings), Blair and Tsutsui ([3] , [15]) studied
those rings with the property that every (proper) homomorphic image
is prime and Hirano [9] those whose (proper) homomorphic images are
domains. The latter author showed, in particular, that the class of rings
which have the property that every homomorphic image is a domain,
coincides with the class of strongly f -regular chain rings. The main
results in this paper are analogous to those given by Hirano.

2. Strongly f-regular rings

We begin this section with a characterization of f -regular rings
in terms of their prime factor rings. For this purpose, we consider the
following conditions on a ring R:

(∗) the union of every chain of semiprime ideals of R is semiprime;

(�) (K+I) ∩ (K+J) = K+(I ∩ J) for all ideals K, I and J of R.

We point out that a similar characterization for left weakly regular
rings (that is, rings in which every left ideal is idempotent) has been
given in ([8], Prop. 2.4) and ([12], Th. 2), but we include the proof to
facilitate the reading.

Theorem 1. A ring R is f -regular if and only if R is semiprime, satisfies
conditions (∗) and (�) and each prime factor ring of R is f -regular.

Proof. Suppose that R is f -regular. To show that R satisfies condition
(�), let K, I and J be arbitrary ideals of R. Then (K + I) ∩ (K + J) =
= [(K + I) ∩ (K + J)]2 ⊆ (K + J)(K + I) ⊆ K + JI ⊆ K + (I ∩ J) ⊆
⊆ (K+ I)∩ (K+J). The remaining conditions are immediately verified.
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Conversely, suppose that R is semiprime, satisfies conditions (∗)
and (�) and each prime factor ring of R is f -regular. If there exists an
ideal K of R such that K2 6= K, then, by using (∗) and Zorn’s Lemma,
we can choose a semiprime ideal M of R which is maximal with respect
to the property that K2 + M 6= K + M , that is, K 6⊆ K2 + M . Then
the ring R = R/M is semiprime but not prime and hence there exist
nonzero ideals A and B of R such that AB = 0 = BA. Therefore B ⊆
⊆ ann

(
A
)
, where ann

(
A
)

denotes the annihilator of A in R. Moreover,

A ⊆ ann
(
ann

(
A
))

, the annihilator of ann
(
A
)

in R. It is easily seen that

ann
(
A
)

and ann
(
ann

(
A
))

are nonzero semiprime ideals of R, where

ann
(
A
)

= I/M and ann
(
ann

(
A
))

= J/M for certain ideals I and J of

R and ann
(
A
)
∩ ann

(
ann

(
A
))

= 0. Hence I ∩ J ⊆ M , where I and J
are semiprime ideals of R. By the choice of M , K ⊆ K2 + I. Similarly,
K ⊆ K2 +J . Thus K ⊆ (K2 + I)∩ (K2 + J) = K2 +(I ∩ J) ⊆ K2 +M ;
a contradiction. ♦

The next theorem gives several characterizations of strongly f -
regular rings.

Theorem 2 (see [9], Th. 1). The following statements are equivalent:

(i) R is strongly f -regular;

(ii) a ∈ Ra2R for every a ∈ R;

(iii) a ∈ RanR for every a ∈ R and positive integer n;

(iv) each nonzero factor ring of R is reduced;

(v) R cannot be homomorphically mapped onto a subdirectly irreducible
ring having a nonzero nilpotent element in the heart;

(vi) every nonzero factor ring of R is a subdirect product of subdirectly
irreducible domains;

(vii) R is f -regular and every prime factor ring of R is strongly f-regular;

(viii) R is f -regular and every prime factor ring of R is a domain;

(ix) R is semiprime, satisfies (∗) and (�) and each prime factor ring
of R is strongly f -regular.

Proof. Clearly, statements (i), (ii) and (iii) are equivalent.

By a straightforward argument, we can show that (i) is equivalent
to (iv).

It is obvious that (iv) implies (v).
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Taking ([5], Prop. 1.1) into account and the fact that prime reduced
rings are domains, we have that (v) implies (vi).

(vi) implies (iv). This implication follows from ([7] , Th. 3.20.5).

It is clear that (i) implies (vii).

(vii) implies (viii). If a prime factor ring R of R is strongly f -
regular, then it follows from above that R is reduced and, since a prime
reduced ring is a domain, the result follows.

(viii) implies (iv). If R is f -regular and every prime factor ring of
R is a domain, then N

(
R
)

= β
(
R
)

= 0 for every factor ring R of R

([14] , Prop. 1.13), where N
(
R
)

and β
(
R
)

denote the set of all nilpotent

elements of R and the prime radical of R, respectively.

It follows from Th. 1 that (ix) is equivalent to (vii). ♦

Let us recall that a ring R is called von Neumann regular if a ∈ aRa
for each a ∈ R and strongly regular if a ∈ Ra2 for each a ∈ R. As is
well known, a ring R is strongly regular if and only if R is von Neumann
regular and reduced. It is easily deduced from the above theorem that
simple domains and strongly regular rings are strongly f -regular. More-
over, every strongly f -regular ring is f -regular but the converse does not
hold in general. Indeed, any non-reduced von Neumann regular ring is
f -regular but not strongly f -regular. In fact, if R is von Neumann reg-
ular, then from the equivalence of statements (i) and (iv) in Th. 2, R is
strongly f -regular if and only if R is strongly regular. A ring is called
weakly right duo if for each a ∈ R there exists a positive integer n such
that anR is an ideal of R. In weakly right duo rings with identity, the
concepts of strong f -regularity and strong regularity are equivalent, by
([11] , Prop. 2.5). The existence of further classes of strongly f -regular
rings may be deduced from the fact that direct sums and products of
strongly f -regular rings are strongly f -regular.

By the order of an element of a ring R, we mean the order of this
element in the additive group R+ of R. If p is a prime number, the
subset Rp = {a ∈ R : the order of a is a power of p} is an ideal of R,
called the p-component of R. It is well known that every torsion ring
is the (ring-theoretic) direct sum of its p-components. Hence, if R is
a subdirectly irreducible torsion ring, then R = Rp for some prime p.
In what follows, char (R) denotes the characteristic of R, Q+ denotes
the additive group of the field of rational numbers and, for any positive
integer n, Z (n) denotes the cyclic group of order n. We now determine
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the additive groups of strongly f -regular rings which are either torsion
or torsion-free.

Corollary 3 (see [9], Cor. 1). Let G be an abelian group. Then the
following statements are equivalent:

(i) G is the additive group of a strongly f-regular ring which is either
torsion or torsion-free;

(ii) G ∼=
⊕

αQ+ or G ∼= ⊕p
⊕

αp
Z (p), where p is prime and α, αp are

cardinals.

Proof. (i) implies (ii). Assume first that G is the additive group of a
strongly f -regular torsion-free ring R. Then it can be shown, as in [9],
that G ∼=

⊕
αQ+ for some cardinal α. Assume next that G is the additive

group of a strongly f -regular torsion ring R. Then R = ⊕pRp, where p
runs over all primes dividing the order of some element of R+. Since R
is reduced, each R+

p is an elementary p-group. Hence R+
p
∼=
⊕

αp
Z (p)

for some cardinal αp.

(ii) implies (i). If G ∼=
⊕

αQ+, then it is known that G is the
additive group of a field and a field is obviously a strongly f -regular ring.
On the other hand, it is also known that

⊕
α Z (p) is the additive group

of a field. Hence, if G ∼= ⊕p
⊕

αp
Z (p), then G is the additive group of a

direct sum of fields and so the result follows. ♦

A ring is said to be classical if it coincides with its classical ring of
quotients. In what follows, let Z (R) denote the centre of the ring R.

Proposition 4 (see [9], Cor. 2). Let R be a strongly f-regular ring. If
Z (R) contains a regular element (that is, a nonzero element that is not
a zero divisor), then R has identity and Z (R) is a classical ring.

Proof. By ([10] , Prop. 1.5), Z (R) is strongly regular. Hence, for each
0 6= a ∈ Z (R), there exists b ∈ Z (R) such that a = a2b. If a is a regular
element, then, as in ([3] , Th. 1.3), it follows that ab is an identity element
of R and so b is the inverse of a. ♦

Following Blair and Tsutsui [3], a ring R is said to be integral over
Z (R) if, for each element a ∈ R, there exists a monic polynomial f (x)
with coefficients in Z (R) such that f (a) = 0.

Theorem 5. If R is a right Goldie strongly f -regular ring with identity
which is integral over Z (R), then R is a finite direct sum of division
rings.
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Proof. Let R be a right Goldie strongly f -regular ring with identity
which is integral over Z (R). Then, by Goldie’s Theorem and the fact
that R is reduced, the classical ring of quotients Q of R is a finite direct
sum of division rings. As in ([3] , Th. 3.1), it follows that every regular
element in R is invertible and hence R = Q. Indeed, let c be a regular
element in R and let f (x) = xn + an−1x

n−1 + · · ·+ a1x + a0 ∈ Z (R) [x]
be the minimal polynomial of c over Z (R). Then, as shown in [3],
a0 6= 0. Moreover, a0 is a regular element in Z(R). In fact, assum-
ing the contrary, there exists 0 6= d ∈ Z(R) such that da0 = 0. Now
0 = d (cn + an−1c

n−1 + · · ·+ a1c+ a0) = d (cn−1 + an−1c
n−2 + · · ·+ a1) c

and, since c is regular, d (cn−1 + an−1c
n−2 + · · ·+ a1) = 0. Thus c is a

root of the nonzero polynomial dxn−1 +dan−1x
n−2 + · · ·+da1 ∈ Z(R) [x];

a contradiction. Therefore a0 is invertible, by Prop. 4. Consequently, c
is invertible. ♦

As usual, we say that a ring is a P.I.-ring if it satisfies a polynomial
identity with coefficients in the centroid and at least one coefficient is
invertible.

Proposition 6. If R is a P.I.-ring, then the following conditions are
equivalent:

(i) R is strongly f -regular;

(ii) R is strongly regular;

(iii) R is reduced and f -regular.

Proof. (i) implies (ii). Let R be a strongly f -regular ring and R a prime
factor ring of R. Then R is a domain and, by Prop. 4, R has identity.
As in the proof of ([9] , Prop. 1), it follows that R is a division ring. By
([13] , Th. 2), R is strongly regular.

(ii) is equivalent to (iii). This equivalence follows from ([1] , Th. 1).

It is clear that (ii) implies (i). ♦

Recall that a (Kurosh–Amitsur) radical γ is a class of rings which

(i) is closed under homomorphic images;

(ii) is closed under extensions (if I is an ideal of a ring R and I and
R/I are in γ, then R is in γ);

(iii) has the inductive property (if I1 ⊆ I2 ⊆ · · · ⊆ Iα ⊆ . . . is a chain
of ideals of the ring R and each Iα is in γ, then ∪Iα is in γ).
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For further details concerning radical theory of rings, we refer the
reader to [7].

As is known [7], the class of all f -regular rings is a hereditary radical
class, the largest subidempotent radical class. We shall now show that
the class of all strongly f -regular rings is also a hereditary radical class.
First, however, we show that the relation of being an ideal is transitive
in the class of strongly f -regular rings.

Lemma 7. Let R be a strongly f-regular ring. If I is an ideal of R and
J is an ideal of I, then J is an ideal of R.

Proof. By Andrunakievich’s Lemma, J3
R ⊆ J , where JR denotes the

ideal of R generated by J . Since R is f -regular, J3
R = JR and the result

follows. ♦

Theorem 8. The class Fs of all strongly f-regular rings is a hereditary
radical class.

Proof. It is obvious that Fs is closed under homomorphic images.

To show that Fs has the inductive property, let I1 ⊆ I2 ⊆ · · · ⊆
⊆ Iα ⊆ . . . be a chain of ideals of the ring R such that each Iα is in Fs.
If a ∈ ∪Iα then a ∈ Iα for some α and so, by Th. 2(ii), a ∈ Iαa

2Iα ⊆
⊆ (∪Iα) a2 (∪Iα).

To prove that Fs is closed under extensions, let I be an ideal of R
and suppose that both I and R = R/I are in Fs. Take any 0 6= a ∈ R. If
a ∈ I, then a ∈ Ia2I ⊆ Ra2R. On the other hand, if a /∈ I, then we have
0 6= a = a + I ∈ R and a ∈ Ra2R. Hence a =

∑n
i=1 uia

2vi for a certain

positive integer n and ui, vi ∈ R. This implies that b = a−
n∑
i=1

uia
2vi ∈ I

and so b ∈ Ib2I ⊆ Ra2R. Consequently, a ∈ Ra2R.

Finally, Fs is hereditary. Indeed, if R ∈ Fs, I is a nonzero ideal of
R and a is a nonzero element of I, then a ∈ (a2)R, where, by the previous
lemma, (a2)I = (a2)R and the theorem is proved. ♦

LetR denote the class of all subdirectly irreducible rings with heart
having a nonzero nilpotent element and let U be the upper radical oper-
ator. Taking into account Th. 2, the following corollary is clear.

Corollary 9. Fs = UR.

The supplementing radical of Fs is UR′, where R′ denotes the class
of all subdirectly irreducible rings with reduced hearts ([7], Th. 3.9.5).
We notice that R′ coincides with the class of all subdirectly irreducible
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domains.

Denoting the f -regular radical of a ring R by F (R) and the full
matrix ring of order n over a ring R by Rn, we notice that while F (Rn) =
= (F (R))n for n > 1, as is well known, this does not hold for the strongly
f -regular radical. Indeed, while Fs (Rn) is reduced, (Fs (R))n contains
nonzero nilpotent elements such as e21, the respective matrix unit.

3. Proper strongly f-regular rings

In this section, we classify proper strongly f -regular rings and de-
termine the structure of the additive groups of a subclass of these rings.

Theorem 10 (see [9], Th. 4). Let R be a ring. Then R is a proper
strongly f-regular ring if and only if one the following holds:

(i) R is a strongly f-regular ring;

(ii) R is a simple ring with zero-divisors;

(iii) R is not a reduced ring and R is subdirectly irreducible with heart
P such that R/P is strongly f-regular.

Proof. Let R be a proper strongly f -regular ring and suppose that R is
not reduced. If R is simple, then R satisfies (ii). Now assume that R is
not simple. If R is subdirectly irreducible, then R satisfies (iii). If R is not
subdirectly irreducible, then R is reduced and we have a contradiction.
Indeed, let a ∈ R such that a2 = 0. Then, for any nonzero proper ideal I
of R, R/I is reduced and so (a+ I)2 = I implies that a ∈ I. Thus a = 0.
The converse is clear. ♦

Arguing in a similar way to ([9] , Cor. 3), we have the following
corollary. For ease of reading, we include the proof.

Corollary 11. Let R be a proper strongly f-regular ring and let R+

denote the additive group of R. If char (R) 6= 0 or if R is torsion-free,
then one of the following holds:

(a) R+ ∼=
⊕

αQ+ for some cardinal α;

(b) R+ ∼=
⊕

α1
Z (p1)⊕

⊕
α2

Z (p2)⊕· · ·⊕
⊕

αk
Z (pk) where k is a positive

integer, the pi are primes and the αi are cardinals;

(c) R+ ∼=
⊕

α Z (p2) where p is a prime and α is a cardinal;

(d) R+ ∼=
⊕

α Z (p) ⊕
⊕

β Z (p2) where p is a prime and α and β are
cardinals.
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Proof. If R satisfies condition (i) of Th. 10, then either (a) or (b) holds,
by Cor. 3. Next, suppose that R satisfies condition (ii) of Th. 10. Then
R+ ∼=

⊕
α Z (p) and hence (b) holds if char (R) = p and (a) holds if

R is torsion-free. Suppose now that R satisfies (iii) of Th. 10. Then
R is subdirectly irreducible with heart P . Moreover, every ideal of R
properly containing P is idempotent. Assume that char (R) 6= 0. Then
char (R) = pn, where p is prime and n is a positive integer. If pR = 0,
then R+ ∼=

⊕
α Z (p). If, on the other hand, pR 6= 0, then P = pR and

p2R = 0. Therefore, by ([6] , Th. 17.2), R+ satisfies (c) or (d). Next as-
sume that R is torsion-free. If P 2 = P then, since R is f -regular, nR =
= n2R for each positive integer n. Thus R+ is a torsion-free divisi-
ble group and so R+ satisfies (a), by ([6], Th. 23.1). If P 2 = 0, then
char(R/P )=0. In fact, if char (R/P ) = n 6= 0, then 0 6= nR ⊆ P .
Thus n2R = 0; a contradiction. So R/P is a vector space over Q, by
Cor. 3, and hence the right R/P -module P is also a vector space over Q.
Then R+ ∼= P+ ⊕ (R/P )+ and thus (a) holds. ♦

Example 12 (see [9], Example 2). Let R be a strongly f -regular subdi-
rectly irreducible ring with heart P . For example, R could be a simple
domain. Then

S =

{[
a p
0 a

]
: a ∈ R, p ∈ P

}
with usual addition and multiplication of matrices is a proper f -regular
subdirectly irreducible ring with heart

H =

{[
0 p
0 0

]
: p ∈ P

}
,

and H2 = 0.
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