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Abstract: The zeros of compositions of Blaschke products with given parame-
ters can be calculated by solving polynomial equations. In this paper we inves-
tigate the inverse problem, namely when we are given zeros of a composition
of Blaschke products, can we find the parameters for the Blaschke products?
The most simple case with forming the composition of two two-factor Blaschke
products is considered. Along the way, reciprocal Blaschke functions are intro-
duced. Interestingly many answers come in the form of Blaschke functions.

1. Introduction

In the recent decades Blaschke functions, Blaschke products and
their applications have gained lots of interest. Both mathematical prop-
erties and practical applications are investigated by many researchers.

Blaschke functions and Blaschke products play an important role
in many recent mathematical constructions related to rational bases, or-
thogonal and biorthogonal systems [2, 5, 6], multiresolution and wavelets
[13, 14, 20], the Voice transform [15, 16, 17], FFT-like transforms [10, 19].
They provide an elegant way to describe and realize non-uniform dis-
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cretization [8]. Recent fields of application are found in system and con-
trol theory for the identification of systems [1, 18], as well as in signal
processing for the analysis of ECG signals [3, 4]. Several publications shed
light on their importance in various research and applied areas [7, 11, 12].

The motivation to this research is twofold. On one hand it is math-
ematical: Blaschke products are used to acquire complete orthogonal
systems, but special constructions with compositions of Blaschke prod-
ucts (resulting again in Blaschke products) also allow to exercise fast
transforms, see [2, 19]. On the other hand, our research for modeling
ECG signals using rational systems with three poles, may benefit from
solving the below problems, see [3, 4].

Let us now define the notions of Blaschke functions, Blaschke prod-
ucts and Blaschke compositions which we will use later on. We will also
enumerate a few important properties of them.

The set of complex numbers will be denoted by C, furthermore we
will use the open unit disk D := { z ∈ C : |z| < 1 } and the unit circle or
torus T := { z ∈ C : |z| = 1 }.
Definition 1 (Blaschke functions). The functions with parameter a ∈ D
defined as

Ba : C \ { 1/a } → C, Ba(z) =
z − a
1− az

are called Blaschke functions.

Sometimes a second parameter ε ∈ T is also introduced as a factor
to the above defined Ba(z) value, but we will not need the acquired
two-parameter Blaschke functions in our current setting.

Blaschke functions have many interesting properties. They are both
D → D and T → T bijections. The function Ba has a zero (of multi-
plicity one) at z = a, and a pole (of order one) at z = 1/a – which one
gets from a by forming its inverse with respect to the unit circle. The
inverse of Ba exists, it is B−a. For the special case with a = 0 we have
B0(z) = z. Furthermore these functions act as isometric transformations
in the Poincaré disk model of hyperbolic geometry. (The two-parameter
Blaschke functions form an even more beautiful set, which is closed with
respect to the composition of functions, thereby forming a group – this is
not true for the one-parameter Blaschke functions – and by the means of
them all of the isometries on the disk can be achieved.)

Definition 2 (Blaschke products). The product of Blaschke functions
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is called a Blaschke product, i.e. with some n ≥ 0 natural number and
a1, . . . , an ∈ D

Aa1,...,an(z) :=
n∏

k=1

Bak(z) (z ∈ C).

An empty product is naturally considered as the constant 1 func-
tion. Henceforth we will only consider two-factor Blaschke products, i.e.
for given a1, a2 ∈ D, the function

Aa1,a2(z) = Ba1(z) ·Ba2(z).

Among the properties of (general n-factor) Blaschke products one could
find that they are n-fold maps on both D and T: thus for all w ∈ D,
there exists n distinct z1, . . . , zn ∈ D such that they are all mapped to
w. (And the same holds for T instead of D.1) Specifically the functions
of the form Aa1,a2 will have two zeros inside D, namely a1 and a2.

Definition 3 (Blaschke compositions). We will call the composition of
some Blaschke products a Blaschke composition.

We omit a more formal definition here, since in our current investi-
gation we will only consider the composition of two two-factor Blaschke
products, i.e. functions of the form Aa3,a4 ◦ Aa1,a2 .

One might want to go deeper with composing more and more
Blaschke compositions, but in general it is unnecessary, since we can find
that the composition of Blaschke products will again result in a Blaschke
product (times a factor in T). Additionally the number of factors in the
result will be the multiple of the factors of the terms of the composition,
and the parameters (the zeros) of the composition can be calculated by
finding the roots of appropriate polynomial equations, see [19].

Specifically the functions of the form Aa3,a4 ◦ Aa1,a2 will be four-
factor Blaschke products, thus having 4 zeros in D, and these zeros are
the roots of the quadratic equations

Ba3(z) ·Ba4(z) = ai (i = 1, 2).

We get two roots from both equations. We will call the 4 zeros of this
simple composition b1, b2, b3 and b4.

In Fig. 1 we present a Blaschke function Ba with parameter a =
= 0.4 + 0.3i and a Blaschke composition of the form Aa3,a4 ◦ Aa1,a2 with
a1 = 0.1, a2 = 0.2 + 0.2i, a3 = −0.1 − 0.3i, a4 = 0.3 − 0.1i. Contour

1If w = 0 then we might have zeros of higher multiplicity if some parameters of
the product are equal.
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Figure 1. Left: Example of a Blaschke function. Right: Example of a

Blaschke composition of the form Aa3,a4 ◦Aa1,a2 . The locations of the zeros

are also marked (on both images).

lines are used to display the change in both magnitude and phase of the
complex function values on the D, see description of the plotd command
in [10].

2. Formulating the problem

From the previous section we can conclude that for distinct a1, a2,
a3, a4 ∈ D values, the map z 7→ Aa3,a4(Aa1,a2(z)) has four zeros inside the
unit disk, these can be simply found, let us call them b1, b2, b3, b4.

We will investigate the inverse problem. Given four values b1, b2,
b3, b4 ∈ D can we find the values a1, a2, a3, a4 ∈ D, for those the zeros of
Aa3,a4 ◦ Aa1,a2 will be exactly the given numbers? Naturally, additional
questions arise. Can we find a solution for any arbitrary set of bi values?
If not, then how can be a good set of zeros characterised? Is a solution
unique or are there many solutions?

It turns out that we can fix only three of the desired zeros, and we
have three valid choices for the fourth. But for each good setting we have
infinitely many solutions, one for each complex number in the unit disk.

Let us now rewrite the problem in terms of formulae. Consider the
set {b1, b2, b3, b4}⊂D prescribed. We are to find the values {a1, a2, a3, a4}⊂
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⊂ D such as
Aa3,a4(Aa1,a2(z)) = 0, z ∈ { b1, b2, b3, b4 }

will hold. By the definition of Aa3,a4 this is equivalent to the expression

Ba3(Aa1,a2(z)) ·Ba4(Aa1,a2(z)) = 0

at the four prescribed points. On one hand (because Ba(z) = 0 being
equivalent to z = a) a3 and a4 should be set as

a3 := Aa1,a2(z), z ∈ { b1, b2 } ,(1)

a4 := Aa1,a2(z), z ∈ { b3, b4 } ,(2)

with the grouping of the bi values now being arbitrary, let us set it this
way. On the other hand – so that a3 and a4 will be well-defined – the A
values should be equal, i.e.

Aa1,a2(b1) = Aa1,a2(b2) and(3)

Aa1,a2(b3) = Aa1,a2(b4)(4)

are required. Therefore we must find a two-factor Blaschke product which
maps two pairs of points to the same values. E.g. (3) is satisfied with the
choice a1 := b1, a2 := b2 and (4) with a1 := b3, a2 := b4. Is there a choice
of a1, a2 such that both are satisfied?

3. Solutions and experiments

In this section we will present our results with appropriate proofs
and examples through numerical investigations to the problems at hand.

3.1. Reciprocal Blaschke functions

Let us start the analysis of the problem with examining only one
of the equations in (3) and (4). Can we find the pair (a1, a2) such that
(3) holds for given b1 and b2 inside D? (After this is solved we should
continue with comparing the solutions for the analogous problem in (4).)

Equation (3) is equivalent to

Ba1(b1) ·Ba2(b1) = Ba1(b2) ·Ba2(b2).
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Without loss of generality we can assume that a1 6= b1 and a2 6= b2, since
(4) would not be satisfied in general. So we can order the same functions
on one side of the equation:

(5)
Ba2(b1)

Ba2(b2)
=
Ba1(b2)

Ba1(b1)
=

(
Ba1(b1)

Ba1(b2)

)−1
.

So we shall find two Blaschke functions with reciprocal function value
quotients at the given points.

Definition 4 (Reciprocal Blaschke function). For fixed b1, b2, a2 ∈ D we
will call the Blaschke function with parameter a1 a reciprocal Blaschke
function to Ba2 with respect to points b1 and b2, if the above (5) is
satisfied.

Remark. We may consider the extended set of complex numbers, i.e.
we may allow 0 or∞ in the denominator as long as we agree on 1/∞ = 0
and 1/0 = ∞. This way Bb1 and Bb2 are reciprocal Blaschke functions
with respect to points b1 and b2.

In the spirit of the above definition we shall find a pair of recipro-
cal Blaschke functions. It is easy to see that the quotient of a Blaschke
functions values at two arbitrary points of D can be any c ∈ C complex
number. (Because the function values can be arbitrary complex num-
bers in D.) So for fixed b1, b2, a2 ∈ D the left-hand side of (5) can be
considered as a fixed number c ∈ C. Now our search for a reciprocal
Blaschke function (a good a1) can be equivalently formulated as the task
of characterizing the set

(6)

{
a ∈ D :

Ba(b1)

Ba(b2)
= c; b1, b2 ∈ D, c ∈ C

}
with the simplified notation a used instead of a1, and c being set as

c :=

(
Ba2(b1)

Ba2(b2)

)−1
.

3.1.1. Numerical experiments

For the computer aided analysis of this problem we rewrite the
condition in (6) as
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b1 − a
1− ab1

· 1− ab2
b2 − a

= c,

(b1 − a)(1− ab2) = c(b2 − a)(1− ab1),
b1 − a− ab1b2 + aab2 = cb2 − ca− cab1b2 + caab1,

and finally order the terms of a as

(7) (b2 − cb1)aa− (1− c)a− (b1b2 − cb1b2)a+ (b1 − cb2) = 0.

Equation (7) needs to be solved for a.

Defining the function T : C→ C according to (7) as

T (z) := (b2 − cb1)zz − (1− c)z − (b1b2 − cb1b2)z + (b1 − cb2),
we have plotted |T (z)| for many z ∈ C values. E.g. Fig. 2 shows |T (z)|
with parameters b1 = −0.4 + 0.3i, b2 = 0.2 + 0.2i and c = 0.5, the zero in
D is also marked. These experiments suggest that there are always two
solutions for (7), i.e. zeros of T , with one of them inside the unit circle,
and one of them outside.2

With numerical optimization techniques we determined the approx-
imate value of the zeros in D for fixed b1, b2 ∈ D and for each (sufficiently
many) a2 ∈ D values. (Recall that the choice of b1, b2 and a2 determine
the value c ∈ C.) This D → D map (a2 7→ a1) is visualized as seen in
Fig. 2 for the same b1, b2 values as above. Notice the strong similarity
of this map to an ordinary Blaschke function. But if it is a Blaschke
function, what is its parameter?

3.1.2. Analytical solution

Our next theorem summarizes the results related to finding recip-
rocal Blaschke functions.

Theorem 1 (Existence and uniqueness of reciprocal Blaschke functions).
For arbitrary fixed b1, b2, a2 ∈ D values there exists a unique a1 ∈ D so
that Ba1 is a reciprocal Blaschke function to Ba2 with respect to points b1
and b2. Furthermore

a1 = −Bp(b1,b2)(a2)

with

p : D× D→ D, p(b1, b2) =
(b1 + b2)− (b1 + b2)b1b2

1− |b1b2|2
.

2We have chosen the symbol T for this function, because of the strong resemblance
of its contour plot to a Turtle facing towards the Reader.
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Figure 2. Left: The function |T (z)|. Right: The map a2 7→ a1.

Proof. We have three things to prove. (I.) p really maps to D, so it
is a valid parameter of a Blaschke function, (II.) the function Ba1 has
the desired property of being a reciprocal Blaschke function to Ba2 , and
finally (III.) discuss the uniqueness of the solution.

(I.) We shall prove that for any choice of b1, b2 ∈ D, it follows that
p(b1, b2) is also in D, i.e. |p(b1, b2)| < 1. The key to this proof lies in the
exponential form of these values. Set b1 = r1e

iϕ1 and b2 = r2e
iϕ2 with

0 ≤ r1, r2 < 1 and ϕ1, ϕ2 ∈ R. This way p(b1, b2) is

(r1e
iϕ1 + r2e

iϕ2)− (r1e
−iϕ1 + r2e

−iϕ2)r1r2e
i(ϕ1+ϕ2)

1− |r1r2ei(ϕ1+ϕ2)|2
=:

N

D
.

It is sufficient to show that∣∣∣∣ND
∣∣∣∣2 =

NN

DD
< 1.

We have

N = r1e
iϕ1 + r2e

iϕ2 − r21r2eiϕ2 − r1r22eiϕ1 =

= r1(1− r22)eiϕ1 + r2(1− r21)eiϕ2 ;

NN = [r1(1− r22)]2ei(ϕ1−ϕ1) + [r2(1− r21)]2ei(ϕ2−ϕ2)+

+ [r1r2(1− r21)(1− r22)]
(
ei(ϕ1−ϕ2) + ei(ϕ2−ϕ1)

)
;

D = 1− (r1r2)
2.

Noticing that e0 = 1 and eiϕ + e−iϕ = 2 cosϕ with ϕ := ϕ1 − ϕ2 we get

NN

DD
=

[r1(1− r22)]2 + [r2(1− r21)]2 + [r1r2(1− r21)(1− r22)] cosϕ

[1− (r1r2)2]2
.
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Set F 2(ϕ) to the above value and note that cosϕ ≤ 1 and equality holds
for e.g. ϕ = 0. Thus ∣∣∣∣ND

∣∣∣∣2 =: F 2(ϕ) ≤ F 2(0).

Now we only need to show that

F (0) =
r1(1− r22) + r2(1− r21)

1− (r1r2)2
< 1,

which is now easily achieved through

F (0) =
r1 − r1r22 + r2 − r21r2

1− (r1r2)2
=

(r1 + r2)(1− r1r2)
(1 + r1r2)(1− r1r2)

=

=
r1 + r2
1 + r1r2

< 1 ⇐⇒ 0 < (1− r1)(1− r2),

since we defined r1, r2 < 1.

So we can conclude that p(b1, b2) ∈ D for any b1, b2 ∈ D, thus it can
serve as a parameter for a Blaschke function.

(II.) We shall prove that Ba1 is a reciprocal Blaschke function to Ba2

with respect to points b1, b2, i.e.

Ba1(b1)

Ba1(b2)
=

(
Ba2(b1)

Ba2(b2)

)−1
,

is satisfied, which is equivalent to

(8) Ba1(b1) ·Ba2(b1) = Ba1(b2) ·Ba2(b2).

Notice that a1 is itself given as a Blaschke function’s value with the pa-
rameter being quite complicated. So instead of evaluating both sides, or
showing their quotient being one, we will conclude this proof by show-
ing that Ba1(b1) · Ba2(b1) is symmetric with respect to b1 and b2: so by
evaluating either side of (8) we would get the same result.

To simplify the notation, we will use a instead of a2 and p instead
of p(b1, b2).

Ba(b1) ·Ba1(b1) = Ba(b1) ·B−Bp(a)(b1) =

= Ba(b1) ·
b1 +Bp(a)

1 +Bp(a)b1
= Ba(b1) ·

b1 + a−p
1−pa

1 + a−p
1−pa

=

= Ba(b1) ·
1− pa
1− pa

· b1 − pab1 + a− p
1− pa+ ab1 − pb1

.
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We shall denote 1−pa
1−pa by τ(a, b1, b2) and notice that τ ∈ T and it is a

symmetric function of b1 and b2, since the same is true for p = p(b1, b2).

The calculation would go on with substituting the value of p(b1, b2).
The detailed presentation of the next steps shall be skipped, we would
only give the following hints:

• It is advantageous to use the form b1b2b1b2 in the denominator of
p(b1, b2) instead of |b1b2|2.
• Later on one may notice that simplification is possible with the

expression (b21b1b2 + 1− b1b1 − b1b2).

Finally we arrive at

Ba2(b1) ·Ba1(b1) = −1 · τ(a2, b1, b2) ·Ba2(b1) ·Ba2(b2),

which is indeed a symmetric expression with respect to b1 and b2.

(III.) The uniqueness of the reciprocal Blaschke function Ba1 to Ba2 with
respect to fixed points b1, b2 ∈ D follows from the fact that a1 is given as
−Bp(b1,b2)(a2), and this map (a Blaschke function) is invertible on D.

This concludes the proof of Th. 1. ♦

3.2. Appropriate compositions and parameters

After solving the problem of reciprocal Blaschke functions, we now
have infinitely many solutions for (3) and also for (4). Namely for any
a2 ∈ D the value a′1 = −Bp(b1,b2)(a2) satisfies (3) and the value a′′1 =
= −Bp(b3,b4)(a2) satisfies (4).

But unfortunately the attempts to find such an a2 that the above
a′1 ∈ D and a′′1 ∈ D are equal, are generally doomed to fail. This problem
stems from the following assertion.

The equation Bp1(z) = Bp2(z) with p1, p2 ∈ D, p1 6= p2 has exactly
two solutions z1, z2∈C, furthermore z1, z2∈T, and therefore Bpi(zj)∈T
(i, j = 1, 2).

So in general (for arbitrary b1, b2, b3, b4 ∈ D), the suitable a2 and a1
would both lie on T, there is no solution in D.

3.2.1. Analytical solution

So we must lower our expectations, and we will find that we may
fix only three desired zeros on the unit disk, and we have three choices
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for the fourth. But we will find infinitely many sets of good parameters
for the composed functions.

Definition 5 (Admissible sets of zeros). We shall call the set
{b1, b2, b3, b4}⊂D an admissible set of zeros, if there exists a1, a2, a3, a4∈D
parameters, such that

Aa3,a4(Aa1,a2(z)) = 0 ⇐⇒ z ∈ { b1, b2, b3, b4 } .
Our related observations are stated in the following theorem.

Theorem 2 (Parameters of a solution and admissible sets). For any
fixed b1, b2, b3 ∈ D values, the parameters

• a1 ∈ D arbitrarily selected,

• a2 = −Bp(b1,b2)(a1) ∈ D,

• a3 = Aa1,a2(b1) ∈ D, and

• a4 = Aa1,a2(b3)

satisfy

(9) Aa3,a4(Aa1,a2(z)) = 0 (z ∈ { b1, b2, b3 }).

Furthermore the equation

(10) Aa1,a2(z) = a4

is independent (up to constant multiple) of the choice of a1, it has two
well-defined solutions in D, namely b3 and the fourth solution of (9) that
we may call b4. Then { b1, b2, b3, b4 } is an admissible set.

Proof. Again we divide the proof into three parts. (I.) the given pa-
rameters actually satisfy (9), (II.) the equation (10) does not essentially
depend on the initial choice of a1, so b4 is also well-defined and also
satisfies (9), and finally (III.) the solutions of (10) lie in D.

(I.) First we shall see that the values assigned to a1, a2, a3, a4 are well-
defined parameters in D and with them (9) is satisfied. Actually this is
a direct consequence of the analysis in Sec. 2 and Th. 1. Indeed:

• a1 ∈ D, because of its definition,

• a2 is set according to Th. 1, such that a2 ∈ D and Ba2 is a reciprocal
Blaschke function to Ba1 with respect to points b1 and b2, and thus
(5) and (3) are satisfied.



152 L. Lócsi

• This way a3 is also well-defined, a3 ∈ D since it is a product of two
Blaschke functions values on the unit disk, furthermore by (1) it
follows that b1 and b2 are roots of Ba3(Aa1,a2(z)), thus also of (9).

• Also a4 ∈ D holds, the argument is analogous to the case of a3.
The definition of a4 also ensures that Ba4(Aa1,a2(b3)) = 0, thus b3
also satisfies (9).

(II.) Let us now examine (10). By the definition of Blaschke products
and Blaschke functions, (10) can be written as

z − a1
1− a1z

· z − a2
1− a2z

= a4,

which is equivalent to the quadratic equation

z2 +
a4(a1 + a2)− (a1 + a2)

1− a4a1a2︸ ︷︷ ︸
C1

z +
a1a2 − a4
1− a4a1a2︸ ︷︷ ︸

C0

= 0.

It turns out that both coefficients, C0 and C1 are independent of the
initial choice of a1. We will skip the calculation, which consists of the
substitution of the definition of a2 and a4 in the formulas of C0 and C1.
Recall that a2 = −Bp(b1,b2)(a1), and a4 = Aa1,a2(b3). In the end, one finds
that

C0 = −b ·Bp(b), and C1 = b · p ·Bp(b)− p,
with b = b3 and p = p(b1, b2); so both are independent of a1.

However one might easily verify these formulas by a special case,
say a1 = 0. In this case we have

C0 =
−a1 ·Bp(a1)−Ba1(b3) ·B−Bp(a1)(b3)

1 +Ba1(b3) ·B−Bp(a1)(b3) · a1 ·Bp(a1)
,

and applying the identities B0(z) = z and Ba(0) = −a,

C0 =
0 · p− b3 ·Bp(b3)

1 + (−b3) ·Bp(b3) · 0 · (−p)
= −b3 ·Bp(b3).

C1 can be verified in a similar manner.

Thus the two solutions of (10), b3 and b4, are independent of a1,
so b4 is also well-defined, so a4 = Aa1,a2(z) also holds for b4, and b4 also
satisfies (9).

(III.) It needs a few words to clarify that also b4 ∈ D. Assume indirectly
that a solution z0 to (10) has |z0| ≥ 1. But according to the properties of
Blaschke functions, for the left-hand side |Ba1(z0) ·Ba2(z0)| = |Ba1(z0)| ·
|Ba2(z0)| ≥ 1·1 = 1, while for the right-hand side |a4| < 1. Contradiction!

This concludes the proof of Th. 2. ♦
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Figure 3. Admissible sets and solutions. Left: given b1, b2, b3 values (marked

with circles), and possible b4 values (exes) to form an admissible set of four

zeros. Right: 3 solutions for the same given b1, b2, b3 values. The first solution

is marked with exes, the second with dots and the third with plus signs.

3.2.2. Numerical experiments

Numerical calculations also confirm the independence of b4 from
the choice of a1. For given b1, b2, b3 values, b4 is uniquely determined.
It is also clear that if we switch b1 and b2, the resulting b4 would be
the same. However for further permutations of these three values we
gain two more choices for b4. Fig. 3 presents the three choices of b4 for
b1 = −0.5 + 0.3i, b2 = 0.1 + 0.5i, b3 = −0.2− 0.2i.

Furthermore we give three solutions for a1, a2, a3, a4 for the same
values of b1, b2, b3 as above with initial choices for a1 being: 0, then
0.7 + 0.3i and 0.1 + 0.9i. (See Fig. 3.)

4. Conclusions

In this paper we have investigated an inverse problem related to the
most simple non-trivial Blaschke composition, namely the composition
of two two-factor Blaschke products.

We found that not every set of four zeros can be achieved with this
composition, but for any three points we have a choice of three for the
fourth point to form an admissible set of zeros. And furthermore, to each
admissible set we proved that there are infinitely many solutions for the
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parameters of the Blaschke products.

Along the way we introduced reciprocal Blaschke functions and
proved their existence and uniqueness. Interestingly, again Blaschke func-
tions play an important role in expressing the appropriate solutions.

The Matlab programs used in this research are available to down-
load at http://numanal.inf.elte.hu/~locsi/invblacomp/.

5. Open questions

We mentioned that the equation Bp1(z) = Bp2(z) with p1, p2 ∈ D,
p1 6= p2 has exactly two solutions z1, z2 ∈ T. The more detailed analysis
and investigation of this assertion may lead to interesting results, e.g.
with the argument functions (see [9]) of Blaschke functions: do they
always have two intersections?

Furthermore when given three parameters b1, b2, b3 ∈ D, a choice
for b4, the fourth zero of our simple compositions at hand, looks like as
if it has strong relation to hyperbolic transforms on the Poincaré disk
model. It might coincide with the reflection of the hyperbolic triangle
given by b1, b2, b3 through the middle-point of one of its edges.

Of course also more complicated Blaschke compositions may be
worth studying. E.g. how can one assure that prescribed zeros will arise
for instance in an FFT-like construction? (See [10, 19].)

Similar compositions may be analyzed in the case of ordinary com-
plex quadratic polynomials. The construction and results may be quite
similar to the ones presented here.

Noticing that the condition in (6) can be also written as Ba(b1) =
= c·Ba(b2) and that |Ba(b)| corresponds to the hyperbolic distance of the
points a and b, by considering absolute values, we may find an analogue
to the Apollonian circles in the Poincaré disk model. (The distance from
b1 is constant times the distance from b2.)
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