ERRATUM TO “A NEW CONCEPT OF CONVERGENCE SPACE”
[Mathematica Pannonica 19/2 (2008), 291–303]

Karsten Evers
University of Rostock, Dept. of Math., Ulmenstraße 69, 18057 Rostock, Germany

Dieter Leseberg
Freie Universität Berlin, Dept. of Math., Arnimallee 3, 14195 Berlin, Germany

Received: April 2013

MSC 2010: 54 A 20, 54 B 30, 54 E 05, 54 E 15, 54 E 17

Keywords: Supertopological space, set-convergence, supernear operator, b-convergence, convenient topology.

[1], Th. 4.19 and Cor. 4.20 states that the category of pointed b-convergence spaces is cartesian closed. Unfortunately there is a little mistake in the theorem. Therefore Th. 4.19 should be read as follows (the proof is nearly the same as in [1] and therefore left to the reader):

Theorem 4.19. For two pb-convergence spaces \((\mathcal{B}_X, \tau_X)\) and \((\mathcal{B}_Y, \tau_Y)\) consider the set \([\mathcal{B}_X, \mathcal{B}_Y]_{pb}\) of b-continuous functions \(f : X \to Y\) from \((\mathcal{B}_X, \tau_X)\) to \((\mathcal{B}_Y, \tau_Y)\). We define a b-convergence on the corresponding \(B\)-set \(\mathcal{B}^{Y_X} := \{B^* \subseteq Y^{Y_X} \mid \forall B \in \mathcal{B}_X: B^*(B) \in \mathcal{B}_Y\}\) by setting for each \(B^* \in \mathcal{B}^{Y_X} \setminus \{\emptyset\}\):

E-mail addresses: karsten.evers@uni-rostock.de, email.leseberg@zedat.fu-berlin.de
\[\tau(B^*) := \{ U^* \in \text{FIL}([B^X, B^Y]_{pb} \times [B^X, B^Y]_{pb}) \mid \exists f \in B^* \forall B \in B^X \forall U \in \tau_X(B) : U^*(U) \in \tau_Y(f(B)) \}, \]

where \(U^*(U) \) denotes the filter generated by the set \(\{ U^*(U) \mid U^* \in U^* \wedge \wedge U \in U \} \), with \(U^*(U) := \{(f_1(x_1), f_2(x_2)) \mid (f_1, f_2) \in U^* \wedge (x_1, x_2) \in U \} \) and \(B^*(B) := \{ f(b) \mid f \in B^* \wedge b \in B \} \).

Further we set \(\tau(\emptyset) := \{ P([B^X, B^Y]_{pb} \times [B^X, B^Y]_{pb}) \} \).

Then \(\tau \) is the natural function space structure on \([B^X, B^Y]_{pb} \) in \(\text{pb-CONV} \).

References