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Abstract: CNS polynomials which lose the CNS property under addition of
1 are studied.

1. Introduction

Canonical number systems (usually abbreviated by CNS) can be
regarded as generalizations of the classical decimal or binary numeration
systems. They have first been introduced by the Hungarian school some
decades ago (see [23, 21, 22, 25]); special cases had already been studied
in [19, 24, 18]. The works [8, 9] are recommended as profound surveys
on this subject in a broader context.

The concept of CNS polynomials1 (see Sec. 2 for the definition) was
introduced by A. Pethő [29] and generalized in the sequel (see for example
[2, 7, 32]). Some characterization results on these polynomials are known
(see e.g., [21, 18] for quadratic polynomials, [4, 12, 6, 14] for some other
classes of polynomials and [26, 20] for more general results). However,
until now the complete description of these polynomials remains an open
problem even for small degrees.

K. Scheicher and J. Thuswaldner [30, Sec. 7] published the first
example of a CNS polynomial P such that P+1 is not a CNS polynomial.

E-mail address: brunoth@web.de
1CNS polynomials are named complete base polynomials in [17].
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For convenience we call such polynomials unusual CNS polynomials here
(see Def. 5). Three more examples of unusual CNS polynomials have
subsequently become known (see Sec. 2 for details), and A. Pethő [28]
put forward the following problem: Find an infinite sequence of unusual
CNS polynomials and then prove that for any given positive integer k
there exists a member P of this sequence such that P − k is a CNS
polynomial.

In this note we collect some results on addition of constants to CNS
polynomials and state sufficient conditions for unusual CNS polynomials.
Some examples of unusual CNS polynomials of higher degrees and an in-
finite sequence of unusual cubic CNS polynomials are exhibited. Thereby
we provide a solution to the aforementioned problem of A. Pethő and set-
tle a conjecture of S. Akiyama and A. Pethő [5] on addition of constants
to CNS polynomials (see Conj. 11 below).

2. Addition of constants to CNS polynomials

Let us first recall the definition of a CNS polynomial. Let P ∈ Z[X]
be a monic integer polynomial of positive degree with P (0) 6= 0. We call
P a CNS polynomial if for every A ∈ Z[X] there exists a polynomial
B ∈ {0, . . . , |P (0)| − 1}[X] such that A ≡ B (mod P ). Throughout
we denote by Z (N, respectively) the set of rational integers (the set of
nonnegative rational integers, respectively).

Theorems 1 to 4 gather immediate consequences of well-known re-
sults and show that in numerous cases the CNS property is preserved if
the constant term of a CNS polynomial is enlarged.

Theorem 1. Let P = Xd + pd−1X
d−1 + · · · + p1X + p0 ∈ N[X] be a

non-constant polynomial. If
p1 + · · ·+ pd−1 ≤ p0 or 1 ≤ pd−1 ≤ · · · ≤ p1 ≤ p0,

then P + k is CNS polynomial for every positive integer k.

Proof. By [4, Lemma 1] the first condition implies that P + k is ex-
panding, thus we can apply [6, Th. 3.2]. For the second condition a
generalization of a theorem of B. Kovács and A. Pethő [27] can be used
(see also [15, Cor. 6]). ♦

Theorem 2. Let P = Xd + pd−1X
d−1 + · · · + p1X + p0 ∈ Z[X] be a

monic polynomial which fulfills the following properties:
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(i) p1 < 0,

(ii) p2, . . . , pd−1 ≥ 0,

(iii) p0 ≥
∑d

i=1 |pi|.
Then P + k is a CNS polynomial for every positive integer k.

Proof. Observe that P + k is expanding, therefore the result follows by
using [6, Th. 3.2]. ♦

Theorem 3. Let P = pdX
d + pd−1X

d−1 + · · · + p1X + p0 ∈ Z[X] be
a monic expanding polynomial with all coefficients nonnegative except
pj < 0 for a single index 0 < j < d. If

p0 ≥
d∑

i=1

|pi| and
∑

1≤ij≤d

pij ≥ 0,

then P + k is a CNS polynomial for every k ∈ N.

Proof. This statement immediately stems from [6, Th. 3.5]. ♦

Theorem 4. Let 0 < m < d and b ∈ Z. If one of the two conditions
(i) m = 1 and b ≥ −1

or
(ii) m does not divide d and b ≥ 0

holds, then Xd+bXm+k is a CNS polynomial for every integer k ≥ b+2.

Proof. This is clear by [12, Th. 3]. ♦

Having in mind these results and the definition of a CNS polynomial
one might tend to expect that the addition of a positive constant to a
CNS polynomial yields a CNS polynomial. However, K. Scheicher and
J. Thuswaldner [30, Sec. 7] observed that this is not always true. For
convenience, we therefore introduce the following terminology.

Definition 5. The CNS polynomial P is called unusual if P + 1 is not
a CNS polynomial.

In view of the well known characterization of CNS polynomials of
degree at most two, unusual CNS polynomials must have degree at least
three as is shown in the following lemma.

Lemma 6. Let P be CNS polynomial.

(i) If deg(P ) ≤ 2, then P + 1 is a CNS polynomial.

(ii) If deg(P ) = 3, then P + 1 satisfies Gilbert’s conditions (see [3,
Th. 3.1]).

(iii) If r ∈ R is a real root of P + 1, then r < −1.
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Proof. (i) Recall that P (0) ≥ 2 (see [18, 27]), thus for deg(P ) = 1 our
statement follows trivially from Th. 1. For deg(P ) = 2 our assertion fol-
lows from the well-known characterization of quadratic CNS polynomials
(see [21, 22, 18, 12, 34, 6]).

(ii) P satisfies Gilbert’s conditions by [3, Th. 3.1], thus the assertion
can easily be verified.

(iii) We have P (r) = −1, hence r < −1 because, by the so-called
analytic conditions (e.g., see [1]), we have P (t) > 0 for all t ≥ −1. ♦

Remark 7. It was conjectured in [13] that every monic cubic polynomial
with integer coefficients and all roots real and less than −1 is a CNS
polynomial. If this conjecture is true then by Lemma 6 (iii) every cubic
unusual CNS polynomial must have non-real roots.

Since Gilbert’s conditions do not characterize cubic CNS polyno-
mials [3, Sec. 3], we may search for cubic unusual CNS polynomials.
In Table 1 below the known examples of unusual CNS polynomials are
listed; there ∆ denotes the discriminant of the cubic CNS polynomial
X3 + p2X

2 + p1X + p0. Furthermore, in all cases (3,−1,−1) ∈ Z3 gener-
ates a periodic element of period length 8 of the map2

(a1, a2, a3) 7→
(
a2, a3,−

⌊
a1 + p2a2 + p1a3

p0 + 1

⌋)
((a1, a2, a3) ∈ Z3).

For the background and details the reader is referred to [2, Sec. 3].

p0 p1 p2 ∆ roots (approximately) refer-
ence

89 117 80 −86, 287, 999 −78.524, −0.73777± 0.76752 i [28]

109 143 97 −190, 323, 500 −95.514, −0.74260± 0.76793 i [28]

198 257 173 −2, 034, 469, 219 −171.50, −0.74586± 0.77339 i [30]

473 611 410 −66, 428, 866, 967−408.50, −0.74642± 0.77506 i [28]

Table 1: Some unusual CNS polynomials

We now give a criterion for a CNS polynomial to be unusual. We
fix a monic non-constant polynomial P =

∑d
i=0 piX

i ∈ Z[X] with p0 6= 0
and set

TP (A) =
d−1∑
i=1

(ai − sign (p0)cpi)X
i−1 − sign (p0)cX

d−1

2b. . . c denotes the floor function.
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for A =
∑d−1

i=0 aiX
i ∈ Z[X] and c = ba0/|p0|c. Thus TP is a mapping

from the set of integer polynomials of degree less than d into itself (see
[15, Sec. 3] for more details).

Theorem 8. Let P be a CNS polynomial of degree at least 3. Then P
is unusual if one of the following conditions is satisfied.

(i) There exists a polynomial A ∈ Z[X]\{0} of degree less than deg(P )
and a positive integer n such that3

T n
P+1(A) = A.

(ii) There are polynomials h ∈ Z[X], g ∈ {0, 1, . . . , P (0)}[X] \ {0} and
a positive integer n such that deg(g) < n and h · (P + 1) ≡ g
(mod Xn − 1).

Proof. (i) Clear by [2, Sec. 3].
(ii) Clear by (i) and the proof of [20, Th. 4]. ♦

Given an unusual CNS polynomial we can easily construct unusual
CNS polynomials of higher degrees.

Proposition 9. If P is an unusual CNS polynomial, then P (Xn) is an
unusual CNS polynomial for every n ∈ N>0.

Proof. Clear by [12, Th. 1]. ♦

Now we extend the list of examples of unusual CNS polynomials
and firstly present an infinite family of cubic unusual CNS polynomials.

Proposition 10. Let n ∈ N. Then

Pn = X3 + (15n+ 50)X2 + (22n+ 73)X + 17n+ 55

is an unusual CNS polynomial and P100n − n is a CNS polynomial.

Proof. First we show that Pn = X3 + p2X + p1X + p0 with p0 =
= 17n+55, p1 =22n+73, p2 =15n+50 is indeed a CNS polynomial. This
is checked algorithmically for n < 4 (e.g., see [2, Sec. 5] or [33, 10, 17] for
an algorithm). Let now n ≥ 4. To r = (r1, r2, r3) = (1/p0, p2/p0, p1/p0)
we associate the mapping τr : Z3 → Z3 in the following way:

τr(a1, a2, a3) = (a2, a3,−br1a1 + r2a2 + r3a3c) .
A rather tedious but straightforward calculation shows

(1)
Fi ⊂ Nr := {x ∈ Z3 : there exists k ∈ N

with τ kr (x) = 0}, τr(Fi) ⊂ Gi ∪ Fi+1 (i = 0, . . . , 20),

3For a mapping f we write f0 = id and fk+1 = f ◦ fk.
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where we set
S = S ∪ (−S)

for subsets S of Z3,

Gk =
k⋃

i=0

Fi (k = 0, 1, . . . , 21),

and the sets Fi are defined as follows (the choice of these sets is motivated
by [2, Th. 5.1]):

F0 ={(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)},
F1 ={(0, 1,−2), (0, 1,−1), (1,−2, 1), (1,−1, 0), (1,−1, 1), (1, 0,−1),

(2,−1, 0)},
F2 ={(1,−2, 2), (1, 1,−2), (2,−2, 0), (2,−1,−1), (2, 0,−1)},
F3 ={(0, 2,−2), (1,−3, 3), (1,−3, 4), (1, 1,−3), (2,−2, 1), (2, 0,−2),

(2, 1,−3), (3,−4, 2), (3,−3, 2), (3,−2,−1), (4,−2, 0)},
F4 ={(0, 2,−3), (1,−4, 4), (2,−3, 2), (2, 1,−4), (3,−4, 3), (3,−3, 1),

(3,−2, 0), (3,−1,−1), (3, 0,−2), (4,−4, 2), (4,−3, 0), (4,−2,−1)},
F5 ={(0, 3,−3), (1,−4, 5), (1, 2,−4), (1, 2,−3), (2,−4, 3), (2,−3, 3),

(3,−1,−2), (3, 0,−3), (4,−5, 2), (4,−4, 1), (4,−3, 1), (4,−1,−2),

(5,−2,−1)},
F6 ={(0, 3,−4), (1, 3,−4), (2,−4, 4), (2, 1,−3), (2, 2,−4), (3,−4, 2),

(3,−3, 3), (3, 1,−3), (4,−5, 3), (4,−1,−3), (5,−3,−1), (5,−2,−2)},
F7 ={(1, 3,−5), (2,−5, 4), (2, 2,−5), (3,−5, 3), (3, 1,−4), (5,−4, 1),

(5,−3, 0), (5,−3, 1)},
F8 ={(2,−5, 5), (3,−5, 4), (4, 0,−3), (5,−5, 2), (5,−4, 0)},
F9 ={(0, 4,−5), (4, 0,−4), (5,−5, 3)},
F10 ={(0, 4,−6), (4,−6, 4), (6,−4, 0)},
F11 ={(4,−6, 5), (4, 1,−4), (5,−1,−3), (6,−5, 1), (6,−4,−1)},
F12 ={(1,−5, 5), (1,−4, 4), (1, 4,−6), (4, 1,−5), (5,−1,−4), (6,−5, 2)},
F13 ={(1,−5, 6), (1, 4,−7), (3, 1,−4), (4,−7, 5), (5,−6, 3), (6,−3,−1),

(7,−5, 1)},
F14 ={(3, 2,−5), (4,−7, 6), (5,−6, 4), (5, 0,−4), (6,−3,−2), (6,−1,−4),

(7,−6, 1), (7,−5, 0)},
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F15 ={(0, 5,−6), (2,−6, 6), (2, 3,−5), (3, 2,−6), (5, 0,−5), (6,−6, 3),

(6,−2,−3), (7,−6, 2)},
F16 ={(0, 5,−7), (2,−6, 7), (2, 3,−6), (3,−6, 5), (5,−7, 4), (6,−7, 3),

(6,−6, 2), (6,−2,−2), (7,−4, 0), (7,−3,−2)},
F17 ={(3,−6, 6), (3, 3,−6), (5,−7, 5), (6,−7, 4), (7,−4,−1), (7,−3,−3)},
F18 ={(3,−7, 6), (3, 3,−7)},
F19 ={(3,−7, 7), (7,−7, 2), (7,−2,−3)},
F20 ={(2, 4,−6), (4,−6, 5), (7,−7, 3), (7,−2,−4)},
F21 ={(2, 4,−7)}.

Let us exemplify the calculation for i = 0. Here we simply write an
arrow for the action of τr and successively find the following relations:

(i) (1, 0, 0) 7→ (0, 0, 0), hence (1, 0, 0) ∈ Nr and τr(1, 0, 0) ∈ F0 ⊂ G0,

(ii) (0, 1, 0) 7→ (1, 0, 0), hence (0, 1, 0) ∈ Nr and τr(0, 1, 0) ∈ G0,

(iii) (0, 0, 1) 7→ (0, 1,−1), hence τr(0, 0, 1) ∈ G0∪F1, and (0, 0, 1) ∈ Nr

because we have

(2) (0, 1,−1) 7→ (1,−1, 1) 7→ (−1, 1, 0) 7→ (1, 0, 0).

Now we turn to −F0 and derive
(−1, 0, 0) 7→ (0, 0, 1), hence (−1, 0, 0) ∈ Nr and τr(−1, 0, 0) ∈ G0,

then

(3) (0,−1, 0) 7→ (−1, 0, 1) 7→ (0, 1,−1),

hence (0,−1, 0) ∈ Nr by (2), and τr(0,−1, 0) ∈ (−F1) ⊂ G0 ∪ F1, and
finally

(0, 0,−1) 7→ (0,−1, 2) 7→ (−1, 2,−1) 7→ (2,−1, 0) 7→ (−1, 0, 1),

hence (0, 0,−1) ∈ Nr by (3), and τr(0, 0,−1) ∈ (−F1) ⊂ G0 ∪ F1. Since
(0, 0, 0) ∈ Nr is fixed by τr, we thus have shown F0 ⊂ Nr and τr(F0) ⊂
⊂ G0 ∪ F1.

The verification of (1) for i = 1, . . . , 20 is performed analogously
and left to the reader. Moreover, we find G21 ⊂ Nr and τr(G21) ⊂ G21,
i.e., G21 is a set of witnesses, and therefore Pn is a CNS polynomial; for
definitions and further details the reader is referred to [2, Sec. 5].
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Setting

T := TPn+1 and

A := p1 + 2p2 − 3 + (p2 + 2)X +X2 = 52n+ 170 + (15n+ 52)X +X2

we find

T 8(A) = T 7(−51n− 167 + (−45n− 149)X − 3X2) =

= T 6(21n+ 70 + (45n+ 147)X + 3X2) =

= T 5(23n+ 74 + (−15n− 47)X −X2) =

= T 4(−37n− 120 + (−15n− 51)X −X2) =

= T 3(51n+ 168 + (45n+ 149)X + 3X2) =

= T 2(−21n− 70 + (−45n− 147)X − 3X2) =

= T (−n− 1 + (30n+ 97)X + 2X2) = A,

thus an application of Th. 8 (i) concludes the proof of our first asser-
tion; alternatively, we can check that (−3, 2, 1) ∈ Z3 generates a periodic
element under the mapping τ := τ(1/(p0+1), p2/(p0+1), p1/(p0+1)), namely

τ 8(−3, 2, 1) =τ 7(2, 1,−3)=τ 6(1,−3, 3)=τ 5(−3, 3,−1)=τ 4(3,−1,−1)=

=τ 3(−1,−1, 3) = τ 2(−1, 3,−3) = τ(3,−3, 2) = (−3, 2, 1).

Analogously we settle our second statement, i.e., we show that
P100n − n is a CNS polynomial. This is clear for n = 0 by the above
and is checked algorithmically for 1 ≤ n ≤ 3. Now we fix n > 3 and set

Hk =
k⋃

i=0

Ei (k = 0, 1, . . . , 21)

with
Ei = Fi (i ∈ {0, 1, . . . , 6, 8, . . . , 14})

and

E7 =F7 \ {(5,−3, 1)},
E15 =F15 ∪ {(1, 5,−7), (5,−7, 5), (6,−1,−5)},
E16 ={(0, 5,−7), (1, 5,−8), (2,−6, 7), (2, 3,−6), (3,−6, 5), (5,−8, 5),

(5,−7, 4), (6,−7, 3), (6,−6, 2), (6,−2,−2), (7,−4,−1), (7,−3,−2),

(8,−5, 0)},
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E17 ={(2, 2,−4), (3,−6, 6), (3, 3,−6), (4, 2,−6), (5,−8, 6), (5, 1,−5),

(6,−7, 4), (6, 0,−5), (7,−4,−2), (7,−3,−3), (8,−6, 0), (8,−5,−1)},
E18 ={(0, 6,−7), (1,−6, 6), (2,−7, 7), (3,−7, 6), (3, 3,−7), (4, 2,−7),

(5, 1,−6), (6, 0,−6), (7,−7, 3), (8,−6, 1)},
E19 ={(0, 6,−8), (1,−6, 7), (2,−7, 8), (3,−7, 7), (6,−8, 5), (6,−7, 3),

(7,−8, 4), (7,−7, 2), (7,−2,−3), (8,−4,−1)},
E20 ={(2, 4,−6), (4,−6, 5), (6,−8, 6), (7,−8, 5), (7,−2,−4), (8,−4,−2)},
E21 ={(2, 4,−7), (8,−6, 1)}.
Replacing r by

s =
1

1699n+ 55
· (1, 1500n+ 50, 2200n+ 73)

we find H21 ⊂ Ns and τs(H21) ⊂ H21 which completes the proof. ♦

Obviously, the sequence (Pn)n∈N given in Prop. 10 solves the prob-
lem of A. Pethő mentioned in the introduction. Furthermore, it settles
the following conjecture of S. Akiyama and A. Pethő [5]:

Conjecture 11. For any positive integer k there exists a CNS polynomial
P of degree at least 3 such that P + k is not a CNS polynomial.

Indeed, if k > 0 then P = P100(k−1) is an unusual CNS polynomial
of degree 3, Q = P − (k − 1) is a CNS polynomial and

Q+ k = P − (k − 1) + k = P + 1

is not a CNS polynomial.

Remark 12. (i) Observe that the polynomial P2 of Prop. 10 coincides
with the first polynomial of Table 1.

(ii) The polynomial P0 seems to be an unusual CNS polynomial
with smallest known constant term.

(iii) The factor 100 in the second part of Prop. 10 was chosen to
downsize the quotient of the linear and the constant terms of the poly-
nomial. Numerical experiments suggest that this factor may be replaced
by an arbitrary positive integer.

(iv) Using the notation of [2, Sec. 5] we give a hint on the construc-
tion of the example given in Prop. 10. Let P =

∑d
i=1 piX

i ∈ N[X] be
an unusual CNS polynomial and assume that for a set of witnesses W =
= {k1, . . . , km} ⊂ Zd for P and certain b0, . . . , bm, B0, . . . , Bm ∈ N>0 we
have
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−bj <
d∑

i=1

kjiri < −bj+1 or Bj−1 <
d∑

i=1

kjiri < Bj (j = 1, . . . ,m),

where r1 = 1/p0, . . . , rd = p1/p0 are the components of the coefficient
vector r associated to P . Certainly W cannot be a set of witnesses for
P + 1 whose coefficient vector is

(r′1 . . . , r
′
d) :=

p0
p0 + 1

r .

Since

−bj < −
p0

p0 + 1
bj <

p0
p0 + 1

d∑
i=1

kjiri =
d∑

i=1

kjir
′
i <

p0
p0 + 1

Bj < Bj,

there must be some j such that
d∑

i=1

kjir
′
i ≥ −bj + 1 or

d∑
i=1

kjir
′
i ≤ Bj − 1,

which means
d∑

i=1

kjiri ≥ (−bj + 1)
p0 + 1

p0
=

(
1 +

1

p0

)
(1− bj)

or
d∑

i=1

kjiri ≤ (Bj − 1)
p0 + 1

p0
=

(
1 +

1

p0

)
(Bj − 1).

(v) It is immediate that our example described in Prop. 10 satisfies
the prerequisites of (iv). Furthermore, we observe

r1 + r2 − 3r3 =
1

p0
(−3p0 − 3) =

p0 + 1

p0
(1− 4) < −4 + 1.

Some easy numerical calculations (or [13, Prop. 2.2]) show that the dis-
criminants of the polynomials Pn are negative, that their real roots be-
long to the interval (−(15c+ 4),−(15c+ 3)) and that the moduli of the
complex roots are less than 1.0705.

Let us present examples of unusual CNS polynomials of degrees 4
and 5.

Example 13. (i) P = X4 + X3 + 410X2 + 611X + 474 is an unusual
quartic CNS polynomial: One can check algorithmically that P is in
fact a CNS polynomial and (−3, 2, 1,−3) ∈ Z4 yields a periodic element
(of period length 8) for P + 1 (compare the analogous statement in the
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proof of Prop. 10). P has only non-real roots, approximately given by
−0.747± 0.775 i and 0.247± 20.237 i .

(ii) Similarly, one can check algorithmically that P = X5 + X4+
+2X3 + 97X2 + 143X + 109 is an unusual quintic CNS polynomial; here
(1,−3, 3,−1,−1) ∈ Z5 defines a periodic element (of period length 8) for
P + 1. The roots of P are approximately −4.301, −0.741± 0.771 i, and
2.392± 4.052 i .

We conclude by speculating about the effect of adding constants to
CNS polynomials.

Conjecture 14. For every d ≥ 3 there exists an unusual CNS polynomial
of degree d.

Our results show that Conj. 14 holds provided that d is divisible by
3, 4 or 5.

Remark 15. (i) We observe that all examples of unusual CNS polynomi-
als given in Table 1, Prop. 10 and Ex. 13 have only positive coefficients
and are unimodal. Moreover, they admit a pair of complex conjugate
roots with modulus close to 1.

(ii) The concept of CNS polynomials was extended to semi-CNS
polynomials by P. Burcsi and A. Kovács [16, Def. 3.2]. In contrast to
CNS polynomials semi-CNS have completely been described (see [31,
11]). This characterization shows that addition of constants to semi-CNS
polynomials is not a reasonable problem: If P is a semi-CNS polynomial
then P − 1 is a semi-CNS polynomial, and if P (0) < −2 then also P + 1
is a semi-CNS polynomial.

Acknowledgement. The author is indebted to an anonymous referee
for very carefully reading the first version of this paper.
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