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Abstract: In this paper, m-preopen sets are used in order to define some
special type of separation axioms. Here we characterize the m-pre-Ry space,
m-pre-R, space and weakly m-pre-Ry space. Some properties of such spaces
are studied and its relations. Also we study its relations with the m-pre-T; for
1=0,1,2.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure
which is a generalization of a topology on a given nonempty set. In
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[1], Carpintero et al. introduced and studied the m-pre-T; spaces for i =
=0, 1, 2 and new class of functions using m-preopen sets and m-preclosed
sets. Let X be a topological space and A C X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively.
A subfamily m of the power set P(X) of a nonempty set X is called a
minimal structure [4] on X if @ and X belong to m. By (X, m), we denote
a nonempty set X with a minimal structure m on X. The members of
the minimal structure m are called m-open sets [4], and the pair (X, m) is
called an m-space. The complement of m-open set is said to be m-closed
[4]. In this paper a new classes of separation axioms are introduced and
studied by making use of m-preopen sets and study its relations with the
m-pre-T; spaces for ¢« = 0,1,2. In the second section, some preliminaries
required for further proceeding is introduced. In the third section, the m-
pre- Ry spaces are introduced and characterized. In the fourth section, the
m-pre-R; space is introduced and characterized. Also some connections
with the m-pre-T; spaces for ¢ = 0, 1,2 are studied. In the fifth section,
the weakly m-pre-R, spaces are introduced and characterized and its
relation with the m-pre-T; spaces for ¢ = 0, 1, 2 are studied.

2. Preliminaries

Definition 2.1 ([4]). Given A C X, the m-interior of A and the m-
closure of A are defined by mInt(A)= U{W/W € m,W C A} and
mCl(A) ==n{F/ACF, X\ F € m}, respectively.

Definition 2.2. Let (X, m) be an m—space and A C X. Then a set A
is called an m-preopen [2] set in X if A C mInt(m CI(A)).

A set A is called an m-preclosed set if the complement of A is m-

preopen. The family of all m-preopen (resp. m-preclosed) subsets of
(X, m) is denoted by mPO(X) (resp. mPC(X)).
Definition 2.3 ([2]). Let (X, m) be an m—space. For A C X, the m-pre-
closure and the m-preinterior of A, denoted by mp Cl(A) and mp Int(A),
respectively, are defined as follows: mpCl(A) = N{U € X : A C U,
UemPC(X)} and mpInt(A)= U{F C X : F C A F € mPO(X)}.

Theorem 2.4 ([2]). Let (X,m) be an m-space, and A, B be subsets of
X. Then we have the following:

(i) x € mpCl(A) if and only if UNA # @ for every U € mPO(X)
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containing x.

(ii) mp Cl(mpCl(A)) = mpCIl(A).

(iii) mpInt(mpInt(A)) = mpInt(A).

(iv) mpInt(X \ A) = X \ mp Cl(A).

(v) mpCl(X \ A) = X \ mpInt(A).

(vi) If A C B, then mpCl(A) C mp Cl(B).
(vii) mp Cl(A) UmpCl(B) C mpCl(AU B).
(viii) A C mpCl(A) and mpInt(A) C A.
(ix) A€ mPO(X) if and only if mpInt(A) = A.

(x) AemPC(X) if and only if mpCl(A) = A.

(xi) mpInt(A) € mPO(X) and mp Cl(A) € mPC(X).

Definition 2.5 ([3]). Let f : (X,m) — (Y,0) be a function between
(X,m) and a topological space Y. Then f is said to be minimal pre-
continuous (briefly m-precontinuous) if for each x and each open set V'

containing f(z), there exists an m-preopen set U containing z such that
fu)cv.

Definition 2.6. An m-space (X, m) is said to be:
(i) m-pre-Ty [1] if for any distinct pair of points in X, there is an
m-preopen sets containing one of the points but not the other.

(ii) m-pre-T; [1] if for each pair of distinct points = and y of X, there
exist m-preopen sets U and V' of X such that x € U and y ¢ U,
andy € Vandz ¢ V.

(iii) m-pre-Ty [1] if for each pair of distinct points x and y in X, there
exists disjoint m-preopen sets U and V in X such that x € U and
yeV.

Remark 2.7. m-pre-T, — m-pre-Ty — m-pre-Ty.
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3. m-pre-R, spaces

Definition 3.1. A subset S of an m-space (X, m) is said to be m-
preregular if it is m-preopen and m-preclosed. The family of all m-
preregular sets of (X, m) is denoted by mPR(X).

The family of all m-preregular (resp. m-preopen, m-preclosed) sets

of (X, m) containing a point x € X is denoted by mPR(X,z) (resp.
mPO(X,z), mPC(X,x)).
Definition 3.2. A point z € X is called the m-6-precluster point of S
it mpCl(U) NS # @ for every m-preopen set U of (X, m) containing .
The set of all m-0-precluster points of S is called the m-6#-preclosure of
S and is denoted by mpCly(S). A subset S is said to be m-6-preclosed
set is said to be m-f#-preopen.

Definition 3.3. A point z € X is called m-6-preinterior point of S if
there exists an m-preregular set U of X containing z such that rteU CS.
The set of all m-f-interior points of S and is denoted by mp Inty(S).

Definition 3.4. A subset A of an m-space (X, m) is said to be m-
O-preopen if A = mplnty(A). Equivalently, the complement of m-6-
preclosed set is m-6-preopen.

Definition 3.5. A subset U of an m-space (X, m) is called an m-pre-
neighborhood of a point x € X if there exists an m-preopen set V' of
(X, m) such that z € V C U.

Definition 3.6. Let (X, m) be an m-space and A C X. Then the m-pre-
kernel of A, denoted by mp Ker(A) is defined to be the set mp Ker(A) =
=N{G e mPO(X) | A C G}.
Lemma 3.7.Let (X, m) be an m-space and x € X. Then, y€mp Ker({z})
if and only if v € mp Cl({y}).

Proof. Suppose that y ¢ mpKer({z}). Then there exists U € mPO(X, x)
such that y ¢ U. Therefore, we have ¢ mp Cl({y}). The proof of the
converse case can be done similarly. ¢

Lemma 3.8. Let (X,m) be an m-space and A a subset of X. Then,
mpKer(A) = {z € X|mpCl({z}) N A # &}.

Proof. Let x € mp Ker(A) and mpCl({z}) N A = &. Hence z ¢
¢ X\mp Cl({z}) which is an m-preopen set containing A. This is impos-
sible, since € mp Ker(A). Consequently, mp Cl({z}) N A # &. Next, let
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z € X such that mpCl({z}) N A # @ and suppose that = ¢ mp Ker(A).
Then, there exists an m-preopen set U containing A and = ¢ U. Let y €
€ mpCl({z}) N A. Hence, U is an m-preneighborhood of y which does
not contain x. By this contradiction x € mp Ker(A) and hence the claim.

O

Definition 3.9. An m-space (X, m) is said to be an m-pre-R space if
every m-preopen set contains the m-preclosure of each of its singletons.

Example 3.10. Let X = {a,b,c} and m = {0, X, {a},{b}, {c},{a,c}}.
Then the m-space (X, m) is m-pre-Ry

Remark 3.11. Since an m-space (X, m) is m-pre-T; if and only if the
singletons are m-preclosed [1], it is clear that every m-pre-T; space is
m-pre-Ry. At this point there are a Question there exists an m-space
(X, m) that is m-pre-R, but not m-pre-T7.

Proposition 3.12. For an m-space (X, m), the following properties are
equivalent:

(i) (X, m) is m-pre-Ry space;

(ii) For any F € mPC(X), ¢ F implies F C U and x ¢ U for some
U e mPO(X);

(iii) For any F € mPC(X), x ¢ F implies FNmpCl({z}) = &;

(iv) For any distinct points x andy of X, either mp Cl({x})=mp Cl({y})
or mpCl({z}) NmpCl({y}) = @.

Proof. (i)—(ii): Let FemPC(X) and x¢ F. Then by (i) mp Cl({z}) C
C X\F. Set U = X\mpCl({z}), then U € mPO(X), F C U and x ¢ U.

(ii)—(iii): Let FF € mPC(X) and x ¢ F. There exists U € mPC(X)
such that ' C U and « ¢ U. Since U € mPO(X), UNmpCl({z}) = @
and FFNmpCl({z}) = @.

(iii)—(iv): Suppose that mpCl({z}) # mpCl({y}) for distinct
points z,y € X. There exists z € mp Cl({x}) such that z ¢ mp Cl({y})
(or zemp Cl({y}) such that z¢mp Cl({x})). There exists VemPC(X)
such that y ¢ V and z € V; hence x € V. Therefore, we have x ¢
¢ mpCl({y}). By (iii), we obtain mp Cl({z}) N mpCl({y}) = @. The
proof for the other case is similar.

(iv)—(i): Let V. € mPC(X,z). For each y ¢ V, © # y and
x ¢ mpCl({y}). This shows that mpCl({z}) # mpCl({y}). By (iv),



114 C. Carpintero, N. Rajesh and E. Rosas

mp Cl({x}) Nmp Cl({y}) = @ for each y € X\V and hence mp Cl({z})N
ﬂ( U mp Cl({y})) = @. On the other hand, since V'€ mPC(X) and

yeX\V
y€ X\V, we have mp Cl({y}) C X\V and hence X\V = |J mpCl({y}).
yeX\V

Therefore, we obtain (X\V) N mpCl({z}) = @ and mpCl({z}) C V.
This shows that (X, m) is an m-pre-Ry space. ¢

Theorem 3.13. An m-space (X, m) is an m-pre-Ry space if and only
if for any x and y in X, mpCl({z}) # mp Cl({y}) implies mp Cl({z})N
Amp Cl({y}) = &

Proof. Necessity. Suppose that (X, m) is m-pre-Ry and x, y € X such
that mp Cl({z}) # mpCl({y}). Then, there exists z € mp Cl({z}) such
that zemp Cl({y}) (or z¢mpCl({y})) such that z¢mpCl({z}). There
exists V€ mPO(X) such that y ¢ V and z € V; hence x € V. Therefore,
we have x ¢ mpCl({y}). Thus x € X\mpCl({y}) € mPO(X), which
implies mp Cl({z}) € X\mp Cl({y}) and mp Cl({z}) N mp Cl({y}) = 2.
The proof for the other case is similar.

Sufficiency. Let V€ mPO(X, x). We will show that mp Cl({z}) C V.
Let yeV, ie, ye X\V. Then z#y and x ¢ mp Cl({y}). This shows that
mp Cl({z}) # mpCl({y}). By assumption, mp Cl({z}) N mpCl({y}) =
= @. Hence y ¢ mpCl({z}) and therefore mp Cl({z}) C V. O

Lemma 3.14. The following statements are equivalent for any points x
and y in an m-space (X, m):

(i) mpKer({z}) # mpKer({y});
(ii) mp Cl({z}) # mp Cl({y}).

Proof. (i)—(ii): Suppose that mp Ker({z}) # mpKer({y}), then there
exists a point z in X such that z € mpKer({z}) and z ¢ mp Ker({y}). It
follows from z € mp Ker({z}) that {z}Nmp Cl({z}) # @. This implies that
zempCl({z}). By z¢mpKer({y}), we have {y}Nmp Cl({z})=2. Since
x € mpCl({z}), mpCl({z}) C mpCl({z}) and {y} NmpCl({z}) = @.
Therefore, it follows that mp C1({z}) # mp Cl({y}). Now mpKer({z}) #
# mp Ker({y}) implies that mp Cl({z}) # mp Cl({y}).

(ii)—(i): Suppose that mp Cl({z}) # mp Cl({y}). Then there ex-
ists a point z in X such that z € mp Cl({z}) and z ¢ mp Cl({y}). Then,
there exists an m-preopen set containing z and therefore x but not y,

namely, y ¢ mp Ker({z}) and thus mp Ker({z}) # mpKer({y}). O
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Theorem 3.15. An m-space (X, m) is an m-pre-Ry space if and only if
for any pair of points x and y in X, mp Ker({x}) # mpKer({y}) implies
mp Ker({z}) NmpKer({y}) = @.

Proof. Suppose that (X,m) is an m-pre-Ry space. Thus by Lemma
3.14, for any points z and y in X if mpKer({z}) # mpKer({y}), then
mpCl({z}) # mpCl{y}). Now we prove that mpKer({z})N
NmpKer({y}) = @.

Assume that z € mpKer({z}) nmpKer({y}). By z€mpKer({z})
and Lemma 3.7, it follows that x € mp Cl({z}). Since x € mp Cl({z}),
by Th.3.13, mp Cl({z}) = mp Cl({z}). Similarly, we have mp Cl({y}) =
=mpCl({z}) = mpCl({z}). This is a contradiction. Therefore, we have
mp Ker({z}) NmpKer({y}) = @. Conversely, let (X, m) be an m-space
such that for any points = and y in X, mpKer({z}) # mpKer({y})
implies mp Ker({z}) N mpKer({y}) = @. If mpCl({z}) # mpCl({y}),
then by Lemma 3.7, mp Ker({z}) # mpKer({y}). Hence, mp Ker({z})N
NmpKer({y})=2, which implies mp C1({z}) Nmp Cl({y}) =2. Because
z € mpCl({z}) implies z € mpKer({z}) and therefore mpKer({z})N
Nmp Ker({y}) # @. By hypothesis, we have mp Ker({z}) =mp Ker({z}).
Then z € mpCl({z}) N mpCl({y}) implies that mpKer({z}) =
= mpKer({z}) = mpKer({y}). This is a contradiction. Therefore,
mp Cl({z}) N mpCl({y}) = @ and by Th. 3.13, (X, m) is an m-preR,
space.

Theorem 3.16. For an m-space (X, m), the following properties are
equivalent:

(i) (X, m) is an m-pre-Ry space;

(ii) For any nonempty sets A, G € mPO(X) such that ANG # &,
there exists FF € mPC(X) such that ANF # & and F C G;

(i) Any G € mPO(X), G =\{F e mPC(X) | F C G};
(iv) Any F € mPC(X), F =n{G €e mPO(X) | F C G};
(v) For any x € X, mpCl({z}) CmpKer({z}).

Proof. (i)—(ii): Let A be a nonempty set of X and G € mPO(X) such
that AN G # &. There exists x € ANG. Since x € G € mPO(X),
mp Cl({z}) C G. Set F' = mpCl({z}), then F € mPC(X), F C G and
ANF # 9.
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(ii)—(iii): Let GemPO(X), then GD|{F e mPC(X) | F C G}.
Let x be any point of G. There exists F' € mPC(X) such that x € F
and F' C G. Therefore, we have x € F' C |J{F € mPC(X) | F C G}
and hence G = |J{F € mPC(X) | F C G}.

(iii)—(iv): This is obvious.

(iv)—(v): Let x be any point of X and y ¢ mpKer({z}). There
exists V€ mPO(X,z) y ¢ V; hence mpCl({y}) NV = @.

By (iv) (N{G € mPO(X)|mpCl({y}) C G})NV = & and there
exists G € mPO(X) such that ¢ G and mpCl({y}) C G. Therefore,
mpCl{z}) NG = @ and y ¢ mpCl({z}). Consequently, we obtain
mp Cl({z}) C mpKer({z}).

(v)—=(i): Let G € mPO(X,z). Let y € mpKer({x}), then z €
€ mpCl({y}) and y € G. This implies that mpKer({z}) C G. There-
fore, we obtain z € mpCl({z}) C mpKer({z}) C G. This shows that
(X, m) is an m-pre-Ry space. ¢
Corollary 3.17. For an m-space (X, m), the following properties are
equivalent:

(i) (X, m) is an m-pre-Ry space;
(ii) mpCl({z}) =mpKer({z}) for all z € X.

Proof. (i)—(ii): Suppose that (X, m) is an m-pre- R, space. By Th. 3.16,
mp Cl({z}) CmpKer({z}) for each x € X. Let y empKer({z}), then
z € mpCl({y}) and by Th. 3.13, mp Cl({z}) = mpCl({y}). Therefore,
y € mpCl({z}) and hence mp Ker({z}) C mp Cl({x}). This shows that

mp Cl({z}) =mp Ker({z}).
(ii)—(i): This is obvious by Th. 3.16. ¢

Corollary 3.18. If for any point x of an m-pre-Ry space (X, m),
mp Cl({z}) N mpKer({z}) = {z}, then mpKer({z}) = {z}.
Proof. The proof follows from Th. 3.16(v). ¢
Theorem 3.19. For an m-space (X, m), the following properties are
equivalent:

(i) (X, m) is an m-pre-Ry space;

(ii) = € mpCl({y}) if and only if y € mp Cl({x}) for any points x and
yin X.
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Proof. (i)—(ii): Assume that (X, m) is m-pre-Rq. Let z € mp Cl({y})
and A € mPO(X,y). Now by hypothesis, z € A. Therefore, every
m-preopen set containing y contains z. Hence y € mp Cl({x}).

(ii)—(@1): Let U € mPO(X,x). If y ¢ U, then = ¢ mp Cl({y}) and
hence y ¢ mp Cl({z}). This implies that mp Cl({z}) C U. Hence (X, m)
is m-pre-Ry. O

Theorem 3.20. For an m-space (X, m), the following properties are
equivalent:

(i) (X, m) is an m-pre-Ry space;

(ii) If F is an m-preclosed subset of X, then F' = mpKer(F);
(i) If F is an m-preclosed subset of X and x € F, then mp Ker({z}) C F;
(iv) If x € X, then mpKer({z}) C mp Cl({z}).

Proof. (i)—(ii): Let F' be m-preclosed subset of X and = ¢ F. Thus
X\F € mPO(X,z). Since (X,m) is m-pre-Ro, mpCl({z}) C X\F.
Thus mpCl({z}) N F = @ and Lemma 3.8, z ¢mpKer(F'). Therefore,
mp Ker(F) = F.

(ii)—(iii): In general, A C B implies mpKer(A) C mpKer(B).
Therefore, it follows from (ii) that mpKer({z}) C mpKer(F) = F.

(iii)—(iv): Since z € mp Cl({z}) and mp Cl({z}) is m-preclosed,
by (iii) mp Ker({z}) C mp Cl({z}).

(iv)—(i): We show the implication by using Th. 3.19. Let = €
€ mpCl({y}). Then by Lemma 3.7, y € mp Ker({z}). Since z € mp Cl({z})
and mp Cl({x}) is m-preclosed, by (iv) we obtain y € mpKer({z}) C
C mpCl({z}). Therefore, z € mp Cl({z}) implies y € mp Cl({x}). The
converse is obvious and (X, m) is m-pre-Ry. ¢

Definition 3.21. A filterbase F is called m-preconvergent to a point x
in X, if for any U € mPO(X, x), there exists B € F such that B is a
subset of U.

Lemma 3.22. Let (X,m) be an m-space and let x and y be any two

points in X such that every net in X m-preconverging to y m-preconverges
to x. Then x € mpCl({y}).

Proof. Suppose that x, = y for each n € N. Then {x,},cn is a
net in mp Cl({y}). Since {x,},eny m-preconverges to y, then {z,}nen
m-preconverges to « and this implies that x € mp Cl({y}). ¢
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Theorem 3.23. For an m-space (X, m), the following statements are
equivalent:

(i) (X,m) is an m-pre-Rqy space;

(i) If x, y € X, then y € mpCl({x}) if and only if every net in X
m-preconverging to y, m-preconverges to x.

Proof. (i)—(ii): Let 2, y € X such that y € mpCl({z}). Suppose
that {x4}aen be a net in X such that {z,}.en m-preconverges to y.
Since y € mpCl({z}), by Th. 3.13, we have mp Cl({z}) = mp Cl({y}).
Therefore x € mpCl({y}). This means that {x,}sen m-preconverges
to x. Conversely, let x, y € X such that every net in X m-preconverging
to y m-preconverges to . Then z € mpCl({y}) by Lemma 3.8. By
Th. 3.13, we have mp Cl({z}) = mp Cl({y}). Therefore y € mp Cl({x}).
(ii)—(i): Assume that z and y are any two points of X such that
mp Cl({x})Nmp Cl({y}) # @. Let z € mp Cl({z})Nmp Cl({y}). So there
exists a net {4 }aen in mp Cl({x}) such that {z,} ey m-preconverges to
z. Since z € mp Cl({y}), then {x,}aen m-preconverges to y. It follows
that y € mpCl({z}). By the same token we obtain = € mpCl({y}).
Therefore mp Cl({z}) = mpCl({y}) and by Th. 3.13, (X, m) is m-pre-
Ro. <>
Example 3.24. Let X = {a,b,c} and m = {0, X, {b}, {c},{a,c}}. Then
the m-space (X, m) is m-pre-Ty but not m-pre-Ry

4. m~-pre-R, spaces

Definition 4.1. An m-space (X, m) is said to be m-pre-R; if for x, y in
X with mp Cl({z}) # mp Cl({y}), there exist disjoint m-preopen sets U
and V' such that mp Cl({z}) C U and mp Cl({y}) C V.

Example 4.2. Let X = {a,b,c} and m = {0, X, {a},{b},{c}}. Then
the m-space (X, m) is m-pre-R;.

Proposition 4.3. If (X, m) is m-pre-Ry, then it is m-pre-Ry.

Proof. Let U € mPO(X,z). If y ¢ U, then since = ¢ mpCl({y}),
mp Cl({z}) # mpCl({y}). Hence there exists an m-preopen V, such
that mp Cl({y}) C V,, and = ¢ V,,, which implies y ¢ mp Cl({z}). Thus
mp Cl({x}) C U. Therefore (X, m) is m-pre-Ry. ¢
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Example 4.4. Let X = {a,b,c} and m = {0, X,{a,b},{b,c}}. Then
the m-space (X, m) is m-pre-Ry but is not m-pre-R;

Theorem 4.5. An m-space (X, m) is m-pre-Ry if and only if for z,
y € X, mpKer({z}) #mpKer({y}), there exist disjoint m-preopen sets
U and V' such that mpCl({z}) C U and mpCl({y}) C V.

Proof. It follows from Lemma 3.14. ¢

Theorem 4.6. The following properties are equivalent:
(i) (X,m) is m-pre-Ts,

(ii) (X, m) is m-pre-Ry and m-pre-Ty, and

(iii) (X, m) is m-pre-Ry and m-pre-Tj.

Proof. (i)—(ii): Since (X, m) is m-pre-T5, then it is m-pre-Ty. If z,
y € X such that mpCl({z}) # mpCl({y}), then = # y and there exist
disjoint m-preopen sets U and V such that + € U and y € V and
mpCl({z}) = {z} C U and mpCl({y}) = {y} € V. Hence (X, m) is
m-pre-R;.

(ii)—(iii): Since (X, m) is m-pre-T}, then (X, m) is m-pre-Tj.

(iii)—(i): Since (X, m) is m-pre-R;, and m-pre-T1, then (X, m) is
m-pre-Ry and m-pre-Tg, which implies (X, m) is m-pre-T;. Let x, y € X
such that x # y. Since mpCl({z}) = {z} # {y} = mpCl({y}), then
there exist disjoint m-preopen sets U and V such that x € U and y € V.
Hence, (X, m) is m-pre-Ty. O
Lemma 4.7. For any subset A of an m-space (X, m), mpCl(A) C
C mpCly(A).
Lemma 4.8. Let  and y be any points in an m-space (X, m). Then
y € mpClg({z}) if and only if x € mp Clg({y}).
Proof. Let y¢mp Cly({z}). This implies that there exists V e mPO(X, y)
such that mp Cl(V) N {z} =0 and X\mpCl(V) € mPR(X,z), which
means that = ¢ mp Cly({y}). O
Theorem 4.9. An m-space (X, m) is m-pre-Ry if and only if

mp Cl({z}) = mpCly({x}) for each z € X.

Proof. Necessity. Assume that (X, m) is m-pre-R; and
y € mp Cly({z})\mp Cl({z}).
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Then mp Cl({x}) # mp Cl({y}), therefore, there exist disjoint m-preopen
sets Uy and Uy such that mp Cl({z}) CU; and mp Cl({y}) C Us. In conse-
quence, mp Cl(Uy)N{z} C mp Cl(Uz)NU; = ) and hence y ¢ mp Clp({z}).
This is a contradiction, therefore mp Cly({z}) C mp Cl({z}). Now using
Lemma 4.8, we obtain mp Cl({z}) = mp Clp({z}).

Sufficiency. Suppose that mp Cl({z})=mp Cly({z}) for each z € X.
We first prove that (X, m) is m-pre-Ry. Let U € mPO(X,z) and y¢U.
Since mpCly({y}) = mpCl({y}) € X\U, we have x ¢ mpCly({z})
and by Lemma 4.8, y ¢ mpCly({z}) = mpCl({z}). It follows that
mp Cl({xz}) C U. Therefore, (X, m) is m-pre-Ry. Now, let a,b € X with
mp Cl({a}) # mp Cl({b}). It follows that, (X, m) is m-pre-T} and a # b.
Since mp Cl({a}) = mpCly({a}) for each a € X, b ¢ mpCly({a}) and
hence there exists U € mPO(X,b) such that a ¢ mp Cl(U). Therefore,
we obtain b € U, a € X\mp Cl(U) and UNX\mp Cl(U) = (). This shows
that (X, m) is m-pre-R;y. ¢

Theorem 4.10. An m-space (X, m) is m-pre-Ry if and only if for each
m-preopen set U and each x € U, mpCly({z}) C U.

Proof. Necessity. Assume that (X, m) is m-pre-R;. Suppose that U €
€ mPO(X,z). Let y € X\U. Since (X, m) is m-pre-R;, by Th. 4.9,
mp Cly({y}) = mpCl({y}) € X\U. Hence we have that = ¢ mp Cly({y})
and by Lemma 4.8, y ¢ mp Clp({z}). It follows that mpCly({z}) C U.
Sufficiency. Assume now that y € mp Clp({x})\mp Cl({z}) for some

x € X. Then there exists U € mPO(X,y) such that mp CL({U) N {x} # 0
but U N {z} = 0. Then mpCly({y}) € U and mpCly({y}) N {z} # 0.
Hence, x ¢ mp Clp({y}). Thus, y ¢ mp Cly({z}). By this contradiction,
we obtain mp Cly({z}) = mp Cl({z}) for each x € X. Thus, by Th. 4.9,
(X, m) is m-pre-R;. O
Theorem 4.11. The following properties are equivalent:

(i) (X,m) is m-pre-R;.

(ii) For each x, y € X one of the following holds:

(a) If U is m-preopen, then x € U if and only if y € U.

(b) There ezist disjoint m-preopen sets U and V' such that x € U
andy € V.

(iii) If x, y € X such that mp Cl({z}) # mpCl({y}), then there exist
m-preclosed sets Fy and Fy such that x € Fy, y ¢ Fy, y € F},
x ¢ Fy, and X = Fy U F,.
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Proof. (i)—(ii): Let z, y € X. Then mpCl({z}) = mpCl({y}) or
mpCl({z}) # mpCl({y}). If mpCl({z}) = mpCl({y}) and U is m-
preopen, then z € U implies y € mpCl({z}) C U and y € U im-
plies z € mpCl({y}) C U. Thus consider the case that mpCl({z}) #
# mp Cl({y}). Then there exist disjoint m-preopen sets U and V such
that x € mpCl({z}) C U and y € mpCl({y}) C V.

(ii)—(iii): Let z, y € X such that mp Cl({z}) # mp Cl({y}). Then
x ¢ mpCl({y}) or y ¢ mpCl({z}), say x ¢ mpCl({y}). Then there
exist an m-preopen set A such that z € A and y ¢ A, which implies
there exist disjoint m-preopen sets U and V' such that x € U and y € V.
Then F; = X\V and F, = X\U are m-preclosed sets such that = € F7,
y%FljyeFQ,xéFQ,X:FluFQ.

(iii)—(i): Let U be m-preopen and let x € U. Then mp Cl({z}) CU,
for suppose not. Let y € mpCl({z}) N (X\U). Then mpCl({z}) #
# mpCl({y}) and there exist m-preclosed sets F; and F, such that
x € Fl, Yy ¢ Fl, Yy E Fg, x ¢ FQ, X = F, U F5. Then y < FQ\Fl :X\Fl,
which is m-preopen, and x ¢ X\Fj, which is a contradiction. Hence,
(X,m) is m-pre-Ry. Let a,b € X such that mpCl({a}) # mpCl({b}).
Then there exist m-preclosed sets A; and As such that a € Ay, b ¢ Ay,
a¢ Ay,and X = A; U Ay. Thusa € A1\ Ay and b € Ao\ Ay, which are m-
preopen, which implies mp Cl({a}) C A;\Ay and mp Cl({b}) C A2\A;.
Hence, (X, m) is m-pre-Ry. O

Theorem 4.12. An m-space (X, m) is m-pre-Ty if and only if for z,
y € X such that x # y, there exist m-preclosed sets Fy and Fy such that
reEF,y¢ Fl,y¢ Fy, ¢ Fy, and X = F1 U Fy.
Proof. The straightforward proof is omitted. ¢
Remark 4.13. If {z)}rca is a net in (X, m), let mplim({z)}rea) =
= {x € X : {z)}rea m-preconverges to z}.
Theorem 4.14. The following properties are equivalent:
(i) (X,m) is m-pre-Ry;
(i) for z,y € X, mpCl({z}) = mpCl({y}), whenever there exists a
net {xx}trea such that x,y € mplim({x}trea);
(iii) (X, m) is m-pre-Ry, and for every m-preconvergent net {x\}reca in
X, mplim({z\}rca) = mp Cl({z}) for some z € X.

Proof. (i)—(ii): Let z,y € X such that there exists a net {z)} ca in
X such that x,y € mplim({x)}rca). Then (a) if U is m-preopen, then
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x € U if and only if y € U or (b) there exist disjoint m-preopen sets U
and V such that z € U and y € V. Since x,y € mplim({z)}rca), then
(i) is satisfied, which implies mp Cl({z}) = mp Cl({y}).

(ii)—(iii): Let U € mPO(X,z). Let y ¢ U. For each n € N let
z, = x. Then {x,},en) m-preconverges to = and since mp Cl({z}) #
# mpCl({y}), that y € A and = ¢ A. Thus, y ¢ mpCl({z}) and
mpCl({y}) € U. Hence (X,m) is m-preRy. Let {x }rca be an m-
preconvergent net in X. Let z € X such that {x)}yca m-preconverges
tox. If y € mpCl({z}), then {x)} ca m-preconverges to y, which implies
mpCl({z}) C mplim({z)}rca) and if y € mplim({z)}rca), then x,y €
€ mplim({xy)}rea), which implies y € mp Cl({y}) = mp Cl({z}). Hence
mplim({zx}rea) = mp Cl({z}).

(iii)—(i): Assume that (X, m) is not m-pre-R;. Then there exists
z,y € X such that mp Cl({z}) # mpCl({y}) and every m-preopen set
containing mpCl({x}) intersects every m-preopen set containing
mp Cl({y}). Since (X, m) is m-pre-Ry, then every m-preopen set con-
taining x contains mp Cl({z}) and every m-preopen set containing y
contains mp Cl({y}), which implies that every m-preopen set containing
x intersects every m-preopen set containing y. Let D, ={U C X : U €
€ mPO(X,x)}. Let >, be the binary relation on D, defined by U; >, Us
if and only if Uy C U,. Then, clearly (D,,>,) is a directed set. Let
D, ={U Cc X : U € mPO(X,y)} and let >, be the binary relation
on D, defined by Uy >, U, if and only if U; C U,. Then, (D,,>,)
is also a directed set. Let D = {(U;,U,) : Uy € DyandUy € D,} and
let > be the binary relation on D defined by (U, Us) > (V4, V2) if and
only if Uy >, Vi and Uy >, V5. Then, (D,>) is a directed set. For
each (Uy,Us) € D, let zw, v, € (Ur,Us). Then {xw, v, }w, vz)en is
a net in X that m-preconverges to both x and y. Thus, there exists
z € X such that mp lim({zw, v, }w,,vs)ep) = mp Cl({z}), which implies
z,y € mpCl({z}). Since {mp Cl({w}) : w € X} is a decomposition of X,
then mp Cl({z}) = mpCl({z}) = mpCl({y}), which is a contradiction.
Hence (X, m) is m-pre-R;y. ¢

Theorem 4.15. An m-space (X, m) is m-pre-Ty if and only if every
m-preconvergent net in X m-preconverges to a unique point.

Proof. The proof follows from Theorems 4.14 and 4.6. ¢
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5. Weakly m-preR, spaces

Definition 5.1. An m-space (X, m) is said to be weakly m-pre-Ry if
and only if N,ex mpCl({z}) = @.

Remark 5.2. It should be noticed that m-pre-R, space is weakly m-
pre- Ry, but the converse is not true.

Example 5.3. Let X = {a,b,c} and m = {0, X, {b},{a,b},{b,c}}.
Then the m-space (X, m) is weakly m-pre-Ry but is not m-pre-Ry.
Theorem 5.4. An m-space (X, m) is weakly m-pre-Ry if and only if
mpKer({z}) # X for every x in X.

Proof. Suppose that (X, m) is weakly m-pre- Ry and that there is a point
z € X such that mpKer({z}) = X. It follows that z ¢ U, where U is
some proper m-preopen subset of X. It means that z € N,ex mp Cl({z})
which is a contradiction to our assumption. Conversely, suppose that
mpKer({z}) # X for every x € X. If there exists a point z € X such
that z € Nyex mp Cl({x}), then every m-preopen set containing z must
contain every point of X. It follows that X is the unique m-preopen set
containing z. Therefore, mp Ker({z}) = X which is a contradiction and
hence (X, m) is weakly m-pre-Ry. O

Definition 5.5. A function f : (X,m) — (Y,m/) is called (m,m’)-
preclosed, if the image of every m-preclosed subset of (X,m) is m/'-
preclosed in (Y, m/).

Theorem 5.6. If f: (X,m) — (Y, m') is an injective (m, m’)-preclosed
function and X is weakly m-pre-Ry, then (Y, m') is weakly m'-pre-Ry.

Proof. From the assumption follows the following relation:
Nyey m'pCl({y}) C Nuex m'p CL({f(2)}) C
C f(Ngex mpCl({z})) = f(2) = @. O

Remark 5.7. In the following diagram, we denote by arrows the im-
plications between the separation axioms which we have introduced and
discussed in this paper and the examples show that no other implications
hold between them:

m-pre-Ry — m-pre-Ry — weakly m-pre-Ry .
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