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Abstract: In this paper, m-preopen sets are used in order to define some
special type of separation axioms. Here we characterize the m-pre-R0 space,
m-pre-R1 space and weakly m-pre-R0 space. Some properties of such spaces
are studied and its relations. Also we study its relations with the m-pre-Ti for
i = 0, 1, 2.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure
which is a generalization of a topology on a given nonempty set. In
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[1], Carpintero et al. introduced and studied the m-pre-Ti spaces for i =
= 0, 1, 2 and new class of functions using m-preopen sets and m-preclosed
sets. Let X be a topological space and A ⊂ X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively.
A subfamily m of the power set P (X) of a nonempty set X is called a
minimal structure [4] onX if ∅ andX belong tom. By (X,m), we denote
a nonempty set X with a minimal structure m on X. The members of
the minimal structure m are called m-open sets [4], and the pair (X,m) is
called an m-space. The complement of m-open set is said to be m-closed
[4]. In this paper a new classes of separation axioms are introduced and
studied by making use of m-preopen sets and study its relations with the
m-pre-Ti spaces for i = 0, 1, 2. In the second section, some preliminaries
required for further proceeding is introduced. In the third section, the m-
pre-R0 spaces are introduced and characterized. In the fourth section, the
m-pre-R1 space is introduced and characterized. Also some connections
with the m-pre-Ti spaces for i = 0, 1, 2 are studied. In the fifth section,
the weakly m-pre-R0 spaces are introduced and characterized and its
relation with the m-pre-Ti spaces for i = 0, 1, 2 are studied.

2. Preliminaries

Definition 2.1 ([4]). Given A ⊆ X, the m-interior of A and the m-
closure of A are defined by m Int(A)= ∪{W/W ∈ m,W ⊆ A} and
mCl(A) = = ∩{F/A ⊆ F,X \ F ∈ m}, respectively.

Definition 2.2. Let (X,m) be an m−space and A ⊂ X. Then a set A
is called an m-preopen [2] set in X if A ⊂ m Int(mCl(A)).

A set A is called an m-preclosed set if the complement of A is m-
preopen. The family of all m-preopen (resp. m-preclosed) subsets of
(X,m) is denoted by mPO(X) (resp. mPC(X)).

Definition 2.3 ([2]). Let (X,m) be an m−space. For A ⊂ X, the m-pre-
closure and the m-preinterior of A, denoted by mpCl(A) and mp Int(A),
respectively, are defined as follows: mpCl(A) = ∩{U ⊂ X : A ⊆ U ,
U ∈ mPC(X)} and mp Int(A)= ∪{F ⊂ X : F ⊆ A,F ∈ mPO(X)}.

Theorem 2.4 ([2]). Let (X,m) be an m-space, and A, B be subsets of
X. Then we have the following:

(i) x ∈ mpCl(A) if and only if U ∩ A 66= ∅ for every U ∈ mPO(X)



New separation axioms in m-spaces 111

containing x.

(ii) mpCl(mpCl(A)) = mpCl(A).

(iii) mp Int(mp Int(A)) = mp Int(A).

(iv) mp Int(X \ A) = X \mpCl(A).

(v) mpCl(X \ A) = X \mp Int(A).

(vi) If A ⊆ B, then mpCl(A) ⊆ mpCl(B).

(vii) mpCl(A) ∪mpCl(B) ⊆ mpCl(A ∪B).

(viii) A ⊆ mpCl(A) and mp Int(A) ⊆ A.

(ix) A ∈ mPO(X) if and only if mp Int(A) = A.

(x) A ∈ mPC(X) if and only if mpCl(A) = A.

(xi) mp Int(A) ∈ mPO(X) and mpCl(A) ∈ mPC(X).

Definition 2.5 ([3]). Let f : (X,m) → (Y, σ) be a function between
(X,m) and a topological space Y . Then f is said to be minimal pre-
continuous (briefly m-precontinuous) if for each x and each open set V
containing f(x), there exists an m-preopen set U containing x such that
f(U) ⊂ V .

Definition 2.6. An m-space (X,m) is said to be:

(i) m-pre-T0 [1] if for any distinct pair of points in X, there is an
m-preopen sets containing one of the points but not the other.

(ii) m-pre-T1 [1] if for each pair of distinct points x and y of X, there
exist m-preopen sets U and V of X such that x ∈ U and y /∈ U ,
and y ∈ V and x /∈ V .

(iii) m-pre-T2 [1] if for each pair of distinct points x and y in X, there
exists disjoint m-preopen sets U and V in X such that x ∈ U and
y ∈ V .

Remark 2.7. m-pre-T2 → m-pre-T1 → m-pre-T0 .
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3. m-pre-R0 spaces

Definition 3.1. A subset S of an m-space (X,m) is said to be m-
preregular if it is m-preopen and m-preclosed. The family of all m-
preregular sets of (X,m) is denoted by mPR(X).

The family of all m-preregular (resp. m-preopen, m-preclosed) sets
of (X,m) containing a point x ∈ X is denoted by mPR(X, x) (resp.
mPO(X, x), mPC(X, x)).

Definition 3.2. A point x ∈ X is called the m-θ-precluster point of S
if mpCl(U) ∩ S 6= ∅ for every m-preopen set U of (X,m) containing x.
The set of all m-θ-precluster points of S is called the m-θ-preclosure of
S and is denoted by mpClθ(S). A subset S is said to be m-θ-preclosed
set is said to be m-θ-preopen.

Definition 3.3. A point x ∈ X is called m-θ-preinterior point of S if
there exists an m-preregular set U of X containing x such that x∈U⊂S.
The set of all m-θ-interior points of S and is denoted by mp Intθ(S).

Definition 3.4. A subset A of an m-space (X,m) is said to be m-
θ-preopen if A = mp Intθ(A). Equivalently, the complement of m-θ-
preclosed set is m-θ-preopen.

Definition 3.5. A subset U of an m-space (X,m) is called an m-pre-
neighborhood of a point x ∈ X if there exists an m-preopen set V of
(X,m) such that x ∈ V ⊂ U .

Definition 3.6. Let (X,m) be an m-space and A ⊂ X. Then the m-pre-
kernel of A, denoted by mpKer(A) is defined to be the set mpKer(A) =
= ∩{G ∈ mPO(X) | A ⊂ G}.
Lemma 3.7.Let (X,m) be an m-space and x∈X. Then, y∈mpKer({x})
if and only if x ∈ mpCl({y}).
Proof. Suppose that y /∈ mpKer({x}). Then there exists U ∈mPO(X, x)
such that y /∈ U . Therefore, we have x /∈ mpCl({y}). The proof of the
converse case can be done similarly. ♦

Lemma 3.8. Let (X,m) be an m-space and A a subset of X. Then,
mpKer(A) =

{
x ∈ X|mpCl({x}) ∩ A 6= ∅

}
.

Proof. Let x ∈ mp Ker (A) and mpCl({x}) ∩ A = ∅. Hence x /∈
/∈X\mpCl({x}) which is an m-preopen set containing A. This is impos-
sible, since x ∈ mpKer(A). Consequently, mpCl({x})∩A 6= ∅. Next, let
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x ∈ X such that mpCl({x}) ∩ A 6= ∅ and suppose that x /∈ mpKer(A).
Then, there exists an m-preopen set U containing A and x /∈ U . Let y ∈
∈ mpCl({x}) ∩ A. Hence, U is an m-preneighborhood of y which does
not contain x. By this contradiction x ∈ mpKer(A) and hence the claim.

♦

Definition 3.9. An m-space (X,m) is said to be an m-pre-R0 space if
every m-preopen set contains the m-preclosure of each of its singletons.

Example 3.10. Let X = {a, b, c} and m = {∅, X, {a}, {b}, {c}, {a, c}}.
Then the m-space (X,m) is m-pre-R0

Remark 3.11. Since an m-space (X,m) is m-pre-T1 if and only if the
singletons are m-preclosed [1], it is clear that every m-pre-T1 space is
m-pre-R0. At this point there are a Question there exists an m-space
(X,m) that is m-pre-Ro but not m-pre-T1.

Proposition 3.12. For an m-space (X,m), the following properties are
equivalent:

(i) (X,m) is m-pre-R0 space;

(ii) For any F ∈ mPC(X), x /∈ F implies F ⊂ U and x /∈ U for some
U ∈ mPO(X);

(iii) For any F ∈ mPC(X), x /∈ F implies F ∩mpCl({x}) = ∅;

(iv) For any distinct points x and y of X, eithermpCl({x})=mpCl({y})
or mpCl({x}) ∩mpCl({y}) = ∅.

Proof. (i)→(ii): Let F ∈mPC(X) and x /∈F . Then by (i) mpCl({x}) ⊂
⊂ X\F . Set U = X\mpCl({x}), then U ∈ mPO(X), F ⊂ U and x /∈ U .

(ii)→(iii): Let F ∈ mPC(X) and x /∈ F . There exists U ∈ mPC(X)
such that F ⊂ U and x /∈ U . Since U ∈ mPO(X), U ∩mpCl({x}) = ∅
and F ∩mpCl({x}) = ∅.

(iii)→(iv): Suppose that mpCl({x}) 6= mpCl({y}) for distinct
points x, y ∈ X. There exists z ∈ mpCl({x}) such that z /∈mpCl({y})
(or z∈mpCl({y}) such that z /∈mpCl({x})). There exists V ∈mPC(X)
such that y /∈ V and z ∈ V ; hence x ∈ V . Therefore, we have x /∈
/∈ mpCl({y}). By (iii), we obtain mpCl({x}) ∩ mpCl({y}) = ∅. The
proof for the other case is similar.

(iv)→(i): Let V ∈ mPC(X, x). For each y /∈ V , x 6= y and
x /∈ mpCl({y}). This shows that mpCl({x}) 6= mpCl({y}). By (iv),
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mpCl({x})∩mpCl({y}) = ∅ for each y ∈ X\V and hence mpCl({x})∩
∩
( ⋃
y∈X\V

mpCl({y})
)

= ∅. On the other hand, since V ∈ mPC(X) and

y∈X\V , we have mpCl({y})⊂X\V and hence X\V =
⋃

y∈X\V
mpCl({y}).

Therefore, we obtain (X\V ) ∩ mpCl({x}) = ∅ and mpCl({x}) ⊂ V .
This shows that (X,m) is an m-pre-R0 space. ♦

Theorem 3.13. An m-space (X,m) is an m-pre-R0 space if and only
if for any x and y in X, mpCl({x}) 6= mpCl({y}) implies mpCl({x})∩
∩mpCl({y}) = ∅.

Proof. Necessity. Suppose that (X,m) is m-pre-R0 and x, y ∈ X such
that mpCl({x}) 6= mpCl({y}). Then, there exists z ∈ mpCl({x}) such
that z∈mpCl({y}) (or z /∈mpCl({y})) such that z /∈mpCl({x}). There
exists V ∈ mPO(X) such that y /∈ V and z ∈ V ; hence x ∈ V . Therefore,
we have x /∈ mpCl({y}). Thus x ∈ X\mpCl({y}) ∈ mPO(X), which
implies mpCl({x}) ⊂ X\mpCl({y}) and mpCl({x})∩mpCl({y}) = ∅.
The proof for the other case is similar.

Sufficiency. Let V ∈ mPO(X, x). We will show thatmpCl({x})⊂V.
Let y∈V , i.e., y∈X\V . Then x 6=y and x /∈mpCl({y}). This shows that
mpCl({x}) 6= mpCl({y}). By assumption, mpCl({x}) ∩mpCl({y}) =
= ∅. Hence y /∈ mpCl({x}) and therefore mpCl({x}) ⊂ V . ♦

Lemma 3.14. The following statements are equivalent for any points x
and y in an m-space (X,m):

(i) mpKer({x}) 6= mpKer({y});
(ii) mpCl({x}) 6= mpCl({y}).

Proof. (i)→(ii): Suppose that mpKer({x}) 6= mpKer({y}), then there
exists a point z in X such that z ∈ mpKer({x}) and z /∈ mpKer({y}). It
follows from z∈mpKer({x}) that {x}∩mpCl({z}) 6=∅. This implies that
x∈mpCl({z}). By z /∈mpKer({y}), we have {y}∩mpCl({z})=∅. Since
x ∈ mpCl({z}), mpCl({x}) ⊂ mpCl({z}) and {y} ∩ mpCl({x}) = ∅.
Therefore, it follows that mpCl({x}) 6= mpCl({y}). Now mpKer({x}) 6=
6= mpKer({y}) implies that mpCl({x}) 6= mpCl({y}).

(ii)→(i): Suppose that mpCl({x}) 6= mpCl({y}). Then there ex-
ists a point z in X such that z ∈ mpCl({x}) and z /∈ mpCl({y}). Then,
there exists an m-preopen set containing z and therefore x but not y,
namely, y /∈ mpKer({x}) and thus mpKer({x}) 6= mpKer({y}). ♦
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Theorem 3.15. An m-space (X,m) is an m-pre-R0 space if and only if
for any pair of points x and y in X, mpKer({x}) 6= mpKer({y}) implies
mpKer({x}) ∩mpKer({y}) = ∅.

Proof. Suppose that (X,m) is an m-pre-R0 space. Thus by Lemma
3.14, for any points x and y in X if mpKer({x}) 6= mpKer({y}), then
mpCl({x}) 6= mpCl({y}). Now we prove that mpKer({x})∩
∩mpKer({y}) = ∅.

Assume that z ∈ mpKer({x}) ∩mpKer({y}). By z∈mpKer({x})
and Lemma 3.7, it follows that x ∈ mpCl({z}). Since x ∈ mpCl({x}),
by Th. 3.13, mpCl({x}) = mpCl({z}). Similarly, we have mpCl({y}) =
= mpCl({z}) = mpCl({x}). This is a contradiction. Therefore, we have
mpKer({x}) ∩mpKer({y}) = ∅. Conversely, let (X,m) be an m-space
such that for any points x and y in X, mpKer({x}) 6= mpKer({y})
implies mpKer({x}) ∩mpKer({y}) = ∅. If mpCl({x}) 6= mpCl({y}),
then by Lemma 3.7, mpKer({x}) 6= mpKer({y}). Hence, mpKer({x})∩
∩mpKer({y})=∅, which implies mpCl({x})∩mpCl({y})=∅. Because
z ∈ mpCl({x}) implies x ∈ mpKer({z}) and therefore mpKer({x})∩
∩mpKer({y}) 6= ∅. By hypothesis, we have mpKer({x})=mpKer({z}).
Then z ∈ mpCl({x}) ∩ mpCl({y}) implies that mpKer({x}) =
= mpKer({z}) = mpKer({y}). This is a contradiction. Therefore,
mpCl({x}) ∩ mpCl({y}) = ∅ and by Th. 3.13, (X,m) is an m-preR0

space. ♦

Theorem 3.16. For an m-space (X,m), the following properties are
equivalent:

(i) (X,m) is an m-pre-R0 space;

(ii) For any nonempty sets A, G ∈ mPO(X) such that A ∩ G 6= ∅,
there exists F ∈ mPC(X) such that A ∩ F 6= ∅ and F ⊂ G;

(iii) Any G ∈ mPO(X), G =
⋃
{F ∈ mPC(X) | F ⊂ G};

(iv) Any F ∈ mPC(X), F = ∩{G ∈ mPO(X) | F ⊂ G};
(v) For any x ∈ X, mpCl({x}) ⊂mpKer({x}).

Proof. (i)→(ii): Let A be a nonempty set of X and G ∈ mPO(X) such
that A ∩ G 6= ∅. There exists x ∈ A ∩ G. Since x ∈ G ∈ mPO(X),
mpCl({x}) ⊂ G. Set F = mpCl({x}), then F ∈ mPC(X), F ⊂ G and
A ∩ F 6= ∅.
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(ii)→(iii): Let G∈mPO(X), then G⊃
⋃
{F ∈mPC(X) | F ⊂G}.

Let x be any point of G. There exists F ∈ mPC(X) such that x ∈ F
and F ⊂ G. Therefore, we have x ∈ F ⊂

⋃
{F ∈ mPC(X) | F ⊂ G}

and hence G =
⋃
{F ∈ mPC(X) | F ⊂ G}.

(iii)→(iv): This is obvious.
(iv)→(v): Let x be any point of X and y /∈ mpKer({x}). There

exists V ∈ mPO(X, x) y /∈ V ; hence mpCl({y}) ∩ V = ∅.
By (iv) (∩{G ∈ mPO(X)|mpCl({y}) ⊂ G}) ∩ V = ∅ and there

exists G ∈ mPO(X) such that x /∈ G and mpCl({y}) ⊂ G. Therefore,
mpCl({x}) ∩ G = ∅ and y /∈ mpCl({x}). Consequently, we obtain
mpCl({x}) ⊂ mpKer({x}).

(v)→(i): Let G ∈ mPO(X, x). Let y ∈ mpKer({x}), then x ∈
∈ mpCl({y}) and y ∈ G. This implies that mpKer({x}) ⊂ G. There-
fore, we obtain x ∈ mpCl({x}) ⊂ mpKer({x}) ⊂ G. This shows that
(X,m) is an m-pre-R0 space. ♦

Corollary 3.17. For an m-space (X,m), the following properties are
equivalent:

(i) (X,m) is an m-pre-R0 space;

(ii) mpCl({x}) =mpKer({x}) for all x ∈ X.

Proof. (i)→(ii): Suppose that (X,m) is anm-pre-R0 space. By Th. 3.16,
mpCl({x}) ⊂mpKer({x}) for each x ∈ X. Let y ∈mpKer({x}), then
x ∈ mpCl({y}) and by Th. 3.13, mpCl({x}) = mpCl({y}). Therefore,
y ∈ mpCl({x}) and hence mpKer({x}) ⊂ mpCl({x}). This shows that
mpCl({x}) =mpKer({x}).

(ii)→(i): This is obvious by Th. 3.16. ♦

Corollary 3.18. If for any point x of an m-pre-R0 space (X,m),
mpCl({x}) ∩mpKer({x}) = {x}, then mpKer({x}) = {x}.
Proof. The proof follows from Th. 3.16(v). ♦

Theorem 3.19. For an m-space (X,m), the following properties are
equivalent:

(i) (X,m) is an m-pre-R0 space;

(ii) x ∈ mpCl({y}) if and only if y ∈ mpCl({x}) for any points x and
y in X.
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Proof. (i)→(ii): Assume that (X,m) is m-pre-R0. Let x ∈ mpCl({y})
and A ∈ mPO(X, y). Now by hypothesis, x ∈ A. Therefore, every
m-preopen set containing y contains x. Hence y ∈ mpCl({x}).

(ii)→(i): Let U ∈ mPO(X, x). If y /∈ U , then x /∈ mpCl({y}) and
hence y /∈ mpCl({x}). This implies that mpCl({x}) ⊂ U . Hence (X,m)
is m-pre-R0. ♦

Theorem 3.20. For an m-space (X,m), the following properties are
equivalent:

(i) (X,m) is an m-pre-R0 space;

(ii) If F is an m-preclosed subset of X, then F = mpKer(F );

(iii) If F is an m-preclosed subset of X and x∈F , then mpKer({x})⊂F ;
(iv) If x ∈ X, then mpKer({x}) ⊂ mpCl({x}).

Proof. (i)→(ii): Let F be m-preclosed subset of X and x /∈ F . Thus
X\F ∈ mPO(X, x). Since (X,m) is m-pre-R0, mpCl({x}) ⊂ X\F .
Thus mpCl({x}) ∩ F = ∅ and Lemma 3.8, x /∈mpKer(F ). Therefore,
mpKer(F ) = F .

(ii)→(iii): In general, A ⊂ B implies mpKer(A) ⊂ mpKer(B).
Therefore, it follows from (ii) that mpKer({x}) ⊂ mpKer(F ) = F .

(iii)→(iv): Since x ∈ mpCl({x}) and mpCl({x}) is m-preclosed,
by (iii) mpKer({x}) ⊂ mpCl({x}).

(iv)→(i): We show the implication by using Th. 3.19. Let x ∈
∈ mpCl({y}). Then by Lemma 3.7, y∈mpKer({x}). Since x∈mpCl({x})
and mpCl({x}) is m-preclosed, by (iv) we obtain y ∈ mpKer({x}) ⊂
⊂ mpCl({x}). Therefore, x ∈ mpCl({x}) implies y ∈ mpCl({x}). The
converse is obvious and (X,m) is m-pre-R0. ♦

Definition 3.21. A filterbase F is called m-preconvergent to a point x
in X, if for any U ∈ mPO(X, x), there exists B ∈ F such that B is a
subset of U .

Lemma 3.22. Let (X,m) be an m-space and let x and y be any two
points in X such that every net in X m-preconverging to y m-preconverges
to x. Then x ∈ mpCl({y}).
Proof. Suppose that xn = y for each n ∈ N . Then {xn}n∈N is a
net in mpCl({y}). Since {xn}n∈N m-preconverges to y, then {xn}n∈N
m-preconverges to x and this implies that x ∈ mpCl({y}). ♦
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Theorem 3.23. For an m-space (X,m), the following statements are
equivalent:

(i) (X,m) is an m-pre-R0 space;

(ii) If x, y ∈ X, then y ∈ mpCl({x}) if and only if every net in X
m-preconverging to y, m-preconverges to x.

Proof. (i)→(ii): Let x, y ∈ X such that y ∈ mpCl({x}). Suppose
that {xα}α∈N be a net in X such that {xα}α∈N m-preconverges to y.
Since y ∈ mpCl({x}), by Th. 3.13, we have mpCl({x}) = mpCl({y}).
Therefore x ∈ mpCl({y}). This means that {xα}α∈N m-preconverges
to x. Conversely, let x, y ∈ X such that every net in X m-preconverging
to y m-preconverges to x. Then x ∈ mpCl({y}) by Lemma 3.8. By
Th. 3.13, we have mpCl({x}) = mpCl({y}). Therefore y ∈ mpCl({x}).

(ii)→(i): Assume that x and y are any two points of X such that
mpCl({x})∩mpCl({y}) 6= ∅. Let z ∈ mpCl({x})∩mpCl({y}). So there
exists a net {xα}α∈N in mpCl({x}) such that {xα}α∈N m-preconverges to
z. Since z ∈ mpCl({y}), then {xα}α∈N m-preconverges to y. It follows
that y ∈ mpCl({x}). By the same token we obtain x ∈ mpCl({y}).
Therefore mpCl({x}) = mpCl({y}) and by Th. 3.13, (X,m) is m-pre-
R0. ♦

Example 3.24. Let X = {a, b, c} and m = {∅, X, {b}, {c}, {a, c}}. Then
the m-space (X,m) is m-pre-T0 but not m-pre-R0

4. m-pre-R1 spaces

Definition 4.1. An m-space (X,m) is said to be m-pre-R1 if for x, y in
X with mpCl({x}) 6= mpCl({y}), there exist disjoint m-preopen sets U
and V such that mpCl({x}) ⊂ U and mpCl({y}) ⊂ V .

Example 4.2. Let X = {a, b, c} and m = {∅, X, {a}, {b}, {c}}. Then
the m-space (X,m) is m-pre-R1.

Proposition 4.3. If (X,m) is m-pre-R1, then it is m-pre-R0.
Proof. Let U ∈ mPO(X, x). If y /∈ U , then since x /∈ mpCl({y}),
mpCl({x}) 6= mpCl({y}). Hence there exists an m-preopen Vy such
that mpCl({y}) ⊂ Vy and x /∈ Vy, which implies y /∈ mpCl({x}). Thus
mpCl({x}) ⊂ U . Therefore (X,m) is m-pre-R0. ♦
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Example 4.4. Let X = {a, b, c} and m = {∅, X, {a, b}, {b, c}}. Then
the m-space (X,m) is m-pre-R0 but is not m-pre-R1

Theorem 4.5. An m-space (X,m) is m-pre-R1 if and only if for x,
y ∈ X, mpKer({x}) 6=mpKer({y}), there exist disjoint m-preopen sets
U and V such that mpCl({x}) ⊂ U and mpCl({y}) ⊂ V .

Proof. It follows from Lemma 3.14. ♦

Theorem 4.6. The following properties are equivalent:

(i) (X,m) is m-pre-T2,

(ii) (X,m) is m-pre-R1 and m-pre-T1, and

(iii) (X,m) is m-pre-R1 and m-pre-T0.

Proof. (i)→(ii): Since (X,m) is m-pre-T2, then it is m-pre-T1. If x,
y ∈ X such that mpCl({x}) 6= mpCl({y}), then x 6= y and there exist
disjoint m-preopen sets U and V such that x ∈ U and y ∈ V and
mpCl({x}) = {x} ⊂ U and mpCl({y}) = {y} ⊂ V . Hence (X,m) is
m-pre-R1.

(ii)→(iii): Since (X,m) is m-pre-T1, then (X,m) is m-pre-T0.
(iii)→(i): Since (X,m) is m-pre-R1, and m-pre-T1, then (X,m) is

m-pre-R0 and m-pre-T0, which implies (X,m) is m-pre-T1. Let x, y ∈ X
such that x 6= y. Since mpCl({x}) = {x} 6= {y} = mpCl({y}), then
there exist disjoint m-preopen sets U and V such that x ∈ U and y ∈ V .
Hence, (X,m) is m-pre-T2. ♦

Lemma 4.7. For any subset A of an m-space (X,m), mpCl(A) ⊂
⊂ mpClθ(A).

Lemma 4.8. Let x and y be any points in an m-space (X,m). Then
y ∈ mpClθ({x}) if and only if x ∈ mpClθ({y}).
Proof. Let y /∈mpClθ({x}). This implies that there existsV ∈mPO(X, y)
such that mpCl(V ) ∩ {x} = ∅ and X\mpCl(V ) ∈ mPR(X, x), which
means that x /∈ mpClθ({y}). ♦

Theorem 4.9. An m-space (X,m) is m-pre-R1 if and only if
mpCl({x}) = mpClθ({x}) for each x ∈ X.

Proof. Necessity. Assume that (X,m) is m-pre-R1 and
y ∈ mpClθ({x})\mpCl({x}).
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Then mpCl({x}) 6= mpCl({y}), therefore, there exist disjoint m-preopen
sets U1 and U2 such that mpCl({x})⊂U1 and mpCl({y})⊂U2. In conse-
quence, mpCl(U2)∩{x} ⊆ mpCl(U2)∩U1 = ∅ and hence y /∈mpClθ({x}).
This is a contradiction, therefore mpClθ({x}) ⊆ mpCl({x}). Now using
Lemma 4.8, we obtain mpCl({x}) = mpClθ({x}).

Sufficiency. Suppose that mpCl({x})=mpClθ({x}) for each x∈X.
We first prove that (X,m) is m-pre-R0. Let U ∈ mPO(X, x) and y /∈U .
Since mpClθ({y}) = mpCl({y}) ⊂ X\U , we have x /∈ mpClθ({x})
and by Lemma 4.8, y /∈ mpClθ({x}) = mpCl({x}). It follows that
mpCl({x}) ⊂ U . Therefore, (X,m) is m-pre-R0. Now, let a, b ∈ X with
mpCl({a}) 6= mpCl({b}). It follows that, (X,m) is m-pre-T1 and a 6= b.
Since mpCl({a}) = mpClθ({a}) for each a ∈ X, b /∈ mpClθ({a}) and
hence there exists U ∈ mPO(X, b) such that a /∈ mpCl(U). Therefore,
we obtain b ∈ U , a ∈ X\mpCl(U) and U ∩X\mpCl(U) = ∅. This shows
that (X,m) is m-pre-R1. ♦

Theorem 4.10. An m-space (X,m) is m-pre-R1 if and only if for each
m-preopen set U and each x ∈ U , mpClθ({x}) ⊂ U .

Proof. Necessity. Assume that (X,m) is m-pre-R1. Suppose that U ∈
∈ mPO(X, x). Let y ∈ X\U . Since (X,m) is m-pre-R1, by Th. 4.9,
mpClθ({y}) = mpCl({y}) ⊂ X\U . Hence we have that x /∈ mpClθ({y})
and by Lemma 4.8, y /∈ mpClθ({x}). It follows that mpClθ({x}) ⊂ U .

Sufficiency. Assume now that y∈mpClθ({x})\mpCl({x}) for some
x ∈ X. Then there exists U ∈mPO(X, y) such that mpCl(U) ∩ {x} 6= ∅
but U ∩ {x} = ∅. Then mpClθ({y}) ⊂ U and mpClθ({y}) ∩ {x} 6= ∅.
Hence, x /∈ mpClθ({y}). Thus, y /∈ mpClθ({x}). By this contradiction,
we obtain mpClθ({x}) = mpCl({x}) for each x ∈ X. Thus, by Th. 4.9,
(X,m) is m-pre-R1. ♦

Theorem 4.11. The following properties are equivalent:

(i) (X,m) is m-pre-R1.

(ii) For each x, y ∈ X one of the following holds:

(a) If U is m-preopen, then x ∈ U if and only if y ∈ U .
(b) There exist disjoint m-preopen sets U and V such that x ∈ U

and y ∈ V .

(iii) If x, y ∈ X such that mpCl({x}) 6= mpCl({y}), then there exist
m-preclosed sets F1 and F2 such that x ∈ F1, y /∈ F2, y ∈ F1,
x /∈ F2, and X = F1 ∪ F2.
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Proof. (i)→(ii): Let x, y ∈ X. Then mpCl({x}) = mpCl({y}) or
mpCl({x}) 6= mpCl({y}). If mpCl({x}) = mpCl({y}) and U is m-
preopen, then x ∈ U implies y ∈ mpCl({x}) ⊂ U and y ∈ U im-
plies x ∈ mpCl({y}) ⊂ U . Thus consider the case that mpCl({x}) 6=
6= mpCl({y}). Then there exist disjoint m-preopen sets U and V such
that x ∈ mpCl({x}) ⊂ U and y ∈ mpCl({y}) ⊂ V .

(ii)→(iii): Let x, y ∈ X such that mpCl({x}) 6= mpCl({y}). Then
x /∈ mpCl({y}) or y /∈ mpCl({x}), say x /∈ mpCl({y}). Then there
exist an m-preopen set A such that x ∈ A and y /∈ A, which implies
there exist disjoint m-preopen sets U and V such that x ∈ U and y ∈ V .
Then F1 = X\V and F2 = X\U are m-preclosed sets such that x ∈ F1,
y /∈ F1, y ∈ F2, x /∈ F2, X = F1 ∪ F2.

(iii)→(i): Let U be m-preopen and let x ∈ U . Then mpCl({x})⊂U ,
for suppose not. Let y ∈ mpCl({x}) ∩ (X\U). Then mpCl({x}) 6=
6= mpCl({y}) and there exist m-preclosed sets F1 and F2 such that
x ∈ F1, y /∈ F1, y ∈ F2, x /∈ F2, X = F1 ∪ F2. Then y ∈ F2\F1 = X\F1,
which is m-preopen, and x /∈ X\F1, which is a contradiction. Hence,
(X,m) is m-pre-R0. Let a, b ∈ X such that mpCl({a}) 6= mpCl({b}).
Then there exist m-preclosed sets A1 and A2 such that a ∈ A1, b /∈ A1,
a /∈ A2, and X = A1 ∪ A2. Thus a ∈ A1\A2 and b ∈ A2\A1, which are m-
preopen, which implies mpCl({a}) ⊂ A1\A2 and mpCl({b}) ⊂ A2\A1.
Hence, (X,m) is m-pre-R1. ♦

Theorem 4.12. An m-space (X,m) is m-pre-T2 if and only if for x,
y ∈ X such that x 6= y, there exist m-preclosed sets F1 and F2 such that
x ∈ F1, y /∈ F1, y /∈ F2, x /∈ F2, and X = F1 ∪ F2.

Proof. The straightforward proof is omitted. ♦

Remark 4.13. If {xλ}λ∈A is a net in (X,m), let mp lim({xλ}λ∈A) =
= {x ∈ X : {xλ}λ∈A m-preconverges to x}.
Theorem 4.14. The following properties are equivalent:

(i) (X,m) is m-pre-R1;

(ii) for x, y ∈ X, mpCl({x}) = mpCl({y}), whenever there exists a
net {xλ}λ∈A such that x, y ∈ mp lim({xλ}λ∈A);

(iii) (X,m) is m-pre-R0, and for every m-preconvergent net {xλ}λ∈A in
X, mp lim({xλ}λ∈A) = mpCl({x}) for some x ∈ X.

Proof. (i)→(ii): Let x, y ∈ X such that there exists a net {xλ}λ∈A in
X such that x, y ∈ mp lim({xλ}λ∈A). Then (a) if U is m-preopen, then
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x ∈ U if and only if y ∈ U or (b) there exist disjoint m-preopen sets U
and V such that x ∈ U and y ∈ V . Since x, y ∈ mp lim({xλ}λ∈A), then
(i) is satisfied, which implies mpCl({x}) = mpCl({y}).

(ii)→(iii): Let U ∈ mPO(X, x). Let y /∈ U . For each n ∈ N let
xn = x. Then {xn}n∈N) m-preconverges to x and since mpCl({x}) 6=
6= mpCl({y}), that y ∈ A and x /∈ A. Thus, y /∈ mpCl({x}) and
mpCl({y}) ⊂ U . Hence (X,m) is m-preR0. Let {xλ}λ∈A be an m-
preconvergent net in X. Let x ∈ X such that {xλ}λ∈A m-preconverges
to x. If y ∈ mpCl({x}), then {xλ}λ∈A m-preconverges to y, which implies
mpCl({x}) ⊂ mp lim({xλ}λ∈A) and if y ∈ mp lim({xλ}λ∈A), then x, y ∈
∈ mp lim({xλ}λ∈A), which implies y ∈ mpCl({y}) = mpCl({x}). Hence
mp lim({xλ}λ∈A) = mpCl({x}).

(iii)→(i): Assume that (X,m) is not m-pre-R1. Then there exists
x, y ∈ X such that mpCl({x}) 6= mpCl({y}) and every m-preopen set
containing mpCl({x}) intersects every m-preopen set containing
mpCl({y}). Since (X,m) is m-pre-R0, then every m-preopen set con-
taining x contains mpCl({x}) and every m-preopen set containing y
contains mpCl({y}), which implies that every m-preopen set containing
x intersects every m-preopen set containing y. Let Dx = {U ⊂ X : U ∈
∈ mPO(X, x)}. Let ≥x be the binary relation on Dx defined by U1 ≥x U2

if and only if U1 ⊂ U2. Then, clearly (Dx,≥x) is a directed set. Let
Dy = {U ⊂ X : U ∈ mPO(X, y)} and let ≥y be the binary relation
on Dy defined by U1 ≥y U2 if and only if U1 ⊂ U2. Then, (Dy,≥y)
is also a directed set. Let D = {(U1, U2) : U1 ∈ DxandU2 ∈ Dy} and
let ≥ be the binary relation on D defined by (U1, U2) ≥ (V1, V2) if and
only if U1 ≥x V1 and U2 ≥y V2. Then, (D,≥) is a directed set. For
each (U1, U2) ∈ D, let x(U1,U2) ∈ (U1, U2). Then {x(U1,U2)}(U1,U2)∈D is
a net in X that m-preconverges to both x and y. Thus, there exists
z ∈ X such that mp lim({x(U1,U2)}(U1,U2)∈D) = mpCl({z}), which implies
x, y ∈ mpCl({z}). Since {mpCl({w}) : w ∈ X} is a decomposition of X,
then mpCl({x}) = mpCl({z}) = mpCl({y}), which is a contradiction.
Hence (X,m) is m-pre-R1. ♦

Theorem 4.15. An m-space (X,m) is m-pre-T2 if and only if every
m-preconvergent net in X m-preconverges to a unique point.

Proof. The proof follows from Theorems 4.14 and 4.6. ♦
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5. Weakly m-preR0 spaces

Definition 5.1. An m-space (X,m) is said to be weakly m-pre-R0 if
and only if ∩x∈X mpCl({x}) = ∅.

Remark 5.2. It should be noticed that m-pre-R0 space is weakly m-
pre-R0, but the converse is not true.

Example 5.3. Let X = {a, b, c} and m = {∅, X, {b}, {a, b}, {b, c}}.
Then the m-space (X,m) is weakly m-pre-R0 but is not m-pre-R0.

Theorem 5.4. An m-space (X,m) is weakly m-pre-R0 if and only if
mpKer({x}) 6= X for every x in X.

Proof. Suppose that (X,m) is weakly m-pre-R0 and that there is a point
z ∈ X such that mpKer({z}) = X. It follows that z /∈ U , where U is
some proper m-preopen subset of X. It means that z ∈ ∩x∈X mpCl({x})
which is a contradiction to our assumption. Conversely, suppose that
mpKer({x}) 6= X for every x ∈ X. If there exists a point z ∈ X such
that z ∈ ∩x∈X mpCl({x}), then every m-preopen set containing z must
contain every point of X. It follows that X is the unique m-preopen set
containing z. Therefore, mpKer({x}) = X which is a contradiction and
hence (X,m) is weakly m-pre-R0. ♦

Definition 5.5. A function f : (X,m) → (Y,m′) is called (m,m′)-
preclosed, if the image of every m-preclosed subset of (X,m) is m′-
preclosed in (Y,m′).

Theorem 5.6. If f : (X,m)→ (Y,m′) is an injective (m,m′)-preclosed
function and X is weakly m-pre-R0, then (Y,m′) is weakly m′-pre-R0.

Proof. From the assumption follows the following relation:

∩y∈Y m′pCl({y}) ⊂ ∩x∈X m′pCl({f(x)}) ⊂
⊂ f(∩x∈X mpCl({x})) = f(∅) = ∅. ♦

Remark 5.7. In the following diagram, we denote by arrows the im-
plications between the separation axioms which we have introduced and
discussed in this paper and the examples show that no other implications
hold between them:

m-pre-R1 → m-pre-R0 → weakly m-pre-R0 .
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