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Abstract: The object of the present paper is to investigate generalized semi-
pseudo Ricci symmetric manifolds admitting semi-symmetric non-metric con-
nection denoted by

[
G(SPRS)n,∇

]
.

1. Introduction

It is well known that spaces admitting some sense of symmetry are
important to solve the Einstein’s field equations of gravitation in general
relativity. Cartan [2] initiated the study of Riemannian symmetric spaces
in the late twenties and, in particular, obtained a classification of those
spaces.

Let (Mn, g) be a Riemannian manifold of dimension n and let ∇ be
its Levi-Civita connection. If a curvature tensor R of (Mn, g) is parallel
with respect to its Levi-Civita connection ∇, namely ∇R = 0 then this
manifold is called locally symmetric due to Cartan. The class of Rieman-
nian symmetric manifolds is a very natural generalization of the class of
manifolds of constant curvature.

The notion of locally symmetric manifolds has been weakened by
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many authors in several ways to different extent such as recurrent man-
ifolds by Walker [20], projective symmetric manifolds by Soós [16], Ricci
semi-symmetric manifolds by Szabó [17], pseudo symmetric manifolds by
Chaki [3], pseudo Ricci symmetric manifolds by Chaki [4], generalized
pseudo Ricci symmetric manifolds by Chaki and Koley [5], generalized
pseudo symmetric manifolds by Chaki [6], weakly symmetric manifolds
by Selberg [14], and weakly symmetric manifolds by Tamássy and Binh
[18], almost pseudo symmetric manifolds by De and Gazi [8], pseudo
cyclic Ricci symmetric manifold extended the notion of pseudo Ricci
symmetric manifolds by Shaikh and Hui [15], ete. It may be noted that
the notion of weakly symmetric Riemannian manifolds by Selberg is dif-
ferent and is not equivalent to that of Tamássy and Binh.

In 1993, the notion of semi-pseudo Ricci symmetric manifolds was
introduced by Tarafdar and Jawarneh [19]. A Riemannian manifold
(Mn, g) (n > 3) is said to be a semi-pseudo Ricci symmetric manifold if
its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
relation

(1.1) (∇XS) (Y, Z) = A(Y )S(X,Z) + A(Z)S(X, Y )

for all vector fields X, Y, Z ∈ χ(Mn), where A is a non-zero 1-form such
that g(X, ρ) = A(X) for every vector field X and ∇ denotes the Levi-
Civita connection on (Mn, g). Such an n−dimensional manifold is de-
noted by (SPRS)n.

Jawarneh and Tashtoush [11] introduced the notion of generalized
semi-pseudo Ricci symmetric manifolds. A Riemannian manifold (Mn, g)
(n > 3) is called a generalized semi-pseudo Ricci symmetric manifold if
its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
condition

(1.2) (∇XS) (Y, Z) = A(Y )S(X,Z) +B(Z)S(X, Y ),

where A and B are non-zero 1-forms, A and ∇ have the meaning already
stated, B(X) = g(X,µ) for every vector field X. The 1-forms are called
associated 1-forms of the manifold and such an n−dimensional manifold
is denoted by G(SPRS)n. If A = B, then from the definitions it follows
that G(SPRS)n reduces to (SPRS)n.

The present paper deals withG(SPRS)n admitting a semi-symmetric
non-metric connection. A G(SPRS)n admitting semi-symmetric non-
metric connection is denoted by

[
G(SPRS)n,∇

]
. The paper is organized
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as follows: In Sec. 2, it is given a brief introduction to the semi-symmetric
non-metric connection. In Sec. 3, it is introduced generalized semi-pseudo
Ricci symmetric manifolds endowed with a semi-symmetric non-metric
connection

[
G(SPRS)n,∇

]
and obtained nature of its the scalar curva-

ture r. The last section deals with generalized semi-pseudo Ricci symmet-
ric manifolds endowed with a special type of semi-symmetric non-metric
connection and it is shown that such a manifold admitting a parallel
vector field ρ with respect to the Levi-Civita connection ∇ is a quasi-
Einstein manifold [7]. Moreover, it is found that ρ is orthogonal to the
vector field µ corresponding to the associated 1-form B and the scalar
curvature r with respect to the connection ∇ is a non-zero constant.

We assume the condition n > 3 throughout the paper.

2. Semi-symmetric non-metric connection

Let ∇ be defined a linear connection on a Riemannian manifold
(Mn, g) by [1]

(2.1) ∇XY = ∇XY + A(Y )X

for all vector fields X, Y . Using (2.1), the torsion tensor T of (Mn, g)
with respect to the connection ∇ is given by

T (X, Y ) = ∇XY −∇YX − [X, Y ] ,

and satisfies

(2.2) T (X, Y ) = A(Y )X − A(X)Y.

A linear connection satisfying (2.2) is called a semi-symmetric con-
nection [10, 12, 13]. ∇ is called a metric connection if

∇g = 0.

If ∇g 6= 0, then ∇ is said to be a non-metric connection. From (2.1), it
follows that

(2.3)
(
∇Xg

)
(Y, Z) = −A(Y )g(X,Z)− A(Z)g(X, Y )

for vector fields X, Y, Z on (Mn, g).
Therefore, due to (2.2) and (2.3), the connection ∇ is a semi-

symmetric non-metric connection.
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Let us denote the curvature tensor with respect to the connections
∇ and ∇ by R and R, respectively. Then, due to (2.1), we obtain [1]

(2.4) R(X, Y )Z = R(X, Y )Z + α(X,Z)Y − α(Y, Z)X,

where α is a tensor field of type (0, 2) defined by

(2.5) α(X, Y ) = (∇XA) (Y )− A(X)A(Y ).

By virtue of (2.1), we have

(2.6)
(
∇XA

)
(Y ) = (∇XA) (Y )− A(X)A(Y ).

It follows from (2.5) and (2.6) that

(2.7) α(X, Y ) =
(
∇XA

)
(Y ).

Contracting (2.4), we get

(2.8) S(Y, Z) = S(Y, Z) + (1− n)α(Y, Z),

where S and S denote the Ricci tensors of the semi-symmetric non-metric
connection and the Levi-Civita connection, respectively. The tensor α
of type (0, 2) given in (2.5) is not symmetric in general and hence, from
(2.8), it follows that the Ricci tensor S of the connection ∇ is not so
either. But, using (2.7), we get

α(Y, Z)− α(Z, Y ) =
(
∇YA

)
(Z)−

(
∇ZA

)
(Y ) =

= dA(Y, Z).

Thus a tensor α is symmetric if and only if the 1-form A is closed [1].
Again contracting (2.8), we obtain

(2.9) r = r + (1− n)trace α,

where r and r denote the scalar curvatures of the connections ∇ and ∇,
respectively.
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3. Generalized semi-pseudo Ricci symmetric mani-
fold admitting a semi symmetric non-metric con-
nection

Definition 1. A Riemannian manifold (Mn, g) (n > 3) is called a gener-
alized semi-pseudo Ricci symmetric manifold admitting a semi-symmetric
non-metric connection ∇ if its Ricci tensor S of type (0, 2) is not identi-
cally zero and satisfies the relation

(3.1)
(
∇XS

)
(Y, Z) = A(Y )S(X,Z) +B(Z)S(X, Y ),

where A and B are distinct non-zero 1-forms.

The 1-forms A and B are called associated 1-forms of the manifold
and such an n−dimensional manifold is denoted by

[
G(SPRS)n,∇

]
.

Theorem 1. If, in a
[
G(SPRS)n,∇

]
the 1-form A, associated with the

torsion tensor T , is closed, then its Ricci tensor S is of the form:

(3.2) S(X, Y ) = rH(X)H(Y ),

where H is a non-zero 1-form defined by H(X) = g(X, h), h being a unit
vector field.

Proof. Let us interchange Y and Z in (3.1). Then we get

(3.3)
(
∇XS

)
(Z, Y ) = A(Z)S(X, Y ) +B(Y )S(X,Z).

Since 1-form A is closed, the Ricci tensor S is symmetric. Sub-
stracting (3.3) from (3.1), we obtain(

∇XS
)

(Y, Z)−
(
∇XS

)
(Z, Y ) =(3.4)

=
{
B(Z)− A(Z)

}
S(X, Y ) +

{
A(Y )−B(Y )

}
S(X,Z).

If the symmetry property of S is used, then it follows from (3.4)
that

(3.5)
{
A(Y )−B(Y )

}
S(X,Z) =

{
A(Z)−B(Z)

}
S(X, Y ).

Let us now consider D(X) = A(X) − B(X) such that D(X) =
= g(X, ν) for all vector fields X and ν is a vector field associated with



60 H. B. Yılmaz

the 1-form D. In virtue of Definition 1, D(X) 6= 0. Thus (3.5) reduces
to the following form

(3.6) D(Y )S(X,Z) = D(Z)S(X, Y ).

Contracting (3.6) with respect to X and Z, we have

(3.7) rD(Y ) = D(LY ),

where L is the Ricci operator associated with the Ricci tensor such that
S(X, Y ) = g(LX, Y ) for all vector fields X, Y .

Substituting Z = ν into (3.6), we obtain

(3.8) D(Y )S(X, ν) = D(ν)S(X, Y ) = D(Y )D(LX).

From (3.7), it follows that

(3.9) D(ν)S(X, Y ) = rD(Y )D(X).

Hence we have

(3.10) S(X, Y ) =
r

D(ν)
D(Y )D(X) = rH(X)H(Y ),

where H(X) = g(X, h) = D(X)√
D(ν)

, h being a unit vector field associated

with the 1-form H. Thus the theorem is proved. ♦

From (3.2), it follows that if r = 0, then S(X, Y ) = 0 which is
inadmissible by the definition of a

[
G(SPRS)n,∇

]
.

Theorem 2. In a
[
G(SPRS)n,∇

]
with D(X) 6= 0, r is an eigenvalue

of the Ricci tensor S corresponding to the eigenvector ν.

Proof. From (3.7), it follows that

rg(Y, ν) = g(LY, ν) = S(Y, ν).

This relation shows that r is an eigenvalue of the Ricci tensor cor-
responding to the eigenvector ν. Hence the theorem is proved. ♦

Theorem 3. If, in a
[
G(SPRS)n,∇

]
, the length of the Ricci tensor S

is l, then that of the scalar curvature r is also l.

Proof. From (3.2), it follows that

(3.11) S(X,X) = r [g(X, h)]2
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for all vector fields X. From (3.11), since h is a unit vector field, i.e.
g(h, h) = 1, we get

(3.12) S(h, h) = r.

Let θ be the angle between h and an arbitrary vector field X. Then
remembering that h is a unit vector field, we have

cos θ =
g(X, h)√

g(h, h)
√
g(X,X)

=
g(X, h)√
g(X,X)

.

Hence [g(X, h)]2 ≤ g(X,X) = |X|2 and if r > 0, then r [g(X, h)]2 ≤
≤ r |X|2, from (3.11), we get

S(X,X) ≤ r |X|2 .
Let l2 be the square of the length of the Ricci tensor S. Then we

can write

(3.13) l2 = S(Lei, ei),

where {ei} , (1 ≤ i ≤ n) is an orthonormal basis of the tangent space at
a point.

From (3.2), it follows that

S(Lei, ei) = rH(Lei)H(ei) =

= rg(Lei, h)g(ei, h) =

= rg(Lh, h) =

= rS(h, h).

Thus, using (3.12) and (3.13), we get

l2 = r.r = r2.
Hence we can say that the length of the scalar curvature r is also l.

This completes the proof. ♦

4. G(SPRS)n admitting a special type of semi-sym-
metric non-metric connection

In this section we consider a generalized semi-pseudo Ricci sym-
metric manifold G(SPRS)n admitting a type of semi-symmetric metric
connection ∇ whose curvature tensor R satisfies the condition

(4.1) R(X, Y )Z = 0.
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Agashe and Chafle [1] proved that if a Riemannian manifold (Mn, g)
(n > 3) admits a semi-symmetric non-metric connection whose curvature
tensor vanishes, then the manifold is of constant curvature and hence is
conformally flat.

We now give the definition of Weyl conformal curvature tensor, or
simply the conformal curvature tensor. The conformal curvature tensor
C on a Riemannian manifold (Mn, g) (n > 3) is defined by [9]

C(X, Y, Z,W ) =(4.2)

= R(X, Y, Z,W )− 1

n− 2
[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )+

+g(Y, Z)S(X,W )− g(X,Z)S(Y,W )] +

+
r

(n− 1)(n− 2)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] .

Theorem 4. If, in a
[
G(SPRS)n,∇

]
whose curvature tensor R van-

ishes, ρ is a parallel vector field with respect to the Levi-Civita connection
∇, then the manifold reduces to a quasi-Einstein manifold.

Proof. Let ρ be a paralel vector field. Then we get

(4.3) ∇Xρ = 0,

and hence we obtain
R(X, Y )ρ = ∇X∇Y ρ−∇Y∇Xρ−∇[X,Y ]ρ = 0.

Thus we have

(4.4) A(R(X, Y )Z) = g(R(X, Y )Z, ρ) = −g(R(X, Y )ρ, Z) = 0.

Since C = 0, it follows from (4.2) that

R(X, Y, Z,W ) =
1

n− 2
[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )+

(4.5)

+g(Y, Z)S(X,W )− g(X,Z)S(Y,W )]−

− r

(n− 1)(n− 2)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] .

Substituting W = ρ into (4.5) and using (4.4), we get
(4.6)

S(Y, Z)A(X)− S(X,Z)A(Y ) =
r

(n− 1)
[g(Y, Z)A(X)− g(X,Z)A(Y )] .
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Taking X = ρ in (4.6), we get

(4.7) S(Y, Z) =
r

(n− 1)
g(Y, Z)− 1

A(ρ)
A(Y )A(Z)

for A(ρ) 6= 0. Thus we have

(4.8) S(Y, Z) = ag(Y, Z) + bA(Y )A(Z),

where a = r
(n−1)

6= 0 and b = − 1
A(ρ)
6= 0. Due to (4.8), it is shown that

this manifold is a quasi-Einstein manifold. ♦

Theorem 5. If a
[
G(SPRS)n,∇

]
whose curvature tensor R vanishes

admits a parallel vector field ρ with respect to the connection ∇, then ρ
is orthogonal to the vector field µ corresponding to the associated 1-form
B of a

[
G(SPRS)n,∇

]
and the scalar curvature r with respect to the

connection ∇ is a non-zero constant.

Proof. Since ρ is a parallel vector field, we know that
∇Xρ = 0.

From (4.4), it follows that

(4.9) S(X, ρ) = 0.

Putting Y = ρ into (4.7) and using (4.9), we get

(4.10)

(
r

n− 1
− 1

)
A(X) = 0.

Since A(X) 6= 0 then by (4.10) one can get r = n − 1, which
means that the scalar curvature of this manifold is a non-zero constant.
Moreover, substituting Z = ρ into (1.2) and using (4.9), it follows that

(4.11) B(ρ)S(X, Y ) = 0.

Since the Ricci tensor S with respect to the connection ∇ is not
identically zero, we have

(4.12) B(ρ) = g(ρ, µ) = 0.

It follows from (4.12) that ρ is orthogonal to µ. Hence the proof is
completed. ♦
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