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1. Introduction and preliminaries

An Orlicz function M is a function, which is continuous, non-
decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and
M(x) −→∞ as x −→∞.

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to
define the following sequence space. Let w be the space of all real or
complex sequences x = (xk), then

`M =

{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞

}
which is called as an Orlicz sequence space. The space `M is a Banach
space with the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1

}
.

It is shown in [5] that every Orlicz sequence space `M contains a subspace
isomorphic to `p (p ≥ 1). The ∆2-condition is equivalent to M(Lx) ≤
≤ kLM(x) for all values of x ≥ 0, k > 0 and for L > 1.

A sequence M = (Mk) of Orlicz functions is called a Musielak–
Orlicz function see ([6], [7]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, . . .

is called the complementary function of Musielak–Orlicz function M.
For a given Musielak–Orlicz function M, the Musielak–Orlicz sequence
space tM and its subspace hM are defined as follows:

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf

{
1

k

(
1 + IM(kx)

)
: k > 0

}
.
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Let l∞, c and c0 denote the spaces of bounded, convergent and null
sequences x = (xk) with complex terms respectively. The zero sequence
(0,0,...) is denoted by θ and p = (pk) is a sequence of strictly positive
real numbers. Further the sequence (p−1k ) will be represented by (tk).

The notion of difference sequence spaces was introduced by Kizmaz
[4], who studied the difference sequence spaces l∞(∆), c(∆) and co(∆).
The notion was further generalized by Et and Colak [1] by introducing
the spaces l∞(∆n), c(∆n) and co(∆

n).
Let m, n be non-negative integers, then for Z a given sequence

space, we have

Z(∆n
m) =

{
x = (xk) ∈ w : (∆n

mxk) ∈ Z
}

for Z = c, c0 and l∞ where ∆n
mx = (∆n

mxk) = (∆n−1
m xk −∆n−1

m xk+m) and
∆0
mxk = xk for all k ∈ N, which is equivalent to the following binomial

representation

∆n
mxk =

n∑
v=0

(−1)v
(
n
v

)
xk+mv.

Taking m = 1, we get the spaces l∞(∆n), c(∆n) and co(∆
n) studied by

Et and Colak [1]. Taking m = n = 1, we get the spaces l∞(∆), c(∆) and
co(∆) introduced and studied by Kizmaz [4].

Let X be a linear metric space. A function p : X → R is called
paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,

(2) p(−x) = p(x) for all x ∈ X,

(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn)
is a sequence of vectors with p(xn − x) → 0 as n → ∞, then
p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [12], Th. 10.4.2, pp. 183). For more details about sequence spaces
see ([8], [9], [10], [11]) and references therein.

In [2] Hazarika and in [3] Hazarika and Tripathy studied some dif-
ference sequence spaces. By making the use of these spaces we have also
studied some sequence spaces in this paper.
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Let M = (Mk) be a Musielak–Orlicz function and p = (pk) be
any bounded sequence of positive real numbers and let (X, q) be a semi-
normed space seminormed by q. Now we define the following sequence
spaces:

c0 {M,∆n
m, p, q} =

{
x = (xk) ∈ X :

[
Mk

(
q(∆n

mxk)

ρ

)]pk
tk → 0,

as k →∞, for some ρ > 0

}
,

c {M,∆n
m, p, q} =

{
x = (xk) ∈ X :

[
Mk

(
q(∆n

mxk − L)

ρ

)]pk
tk → 0,

as k →∞, for some L ∈ X and for some ρ > 0

}
and

l∞ {M,∆n
m, p, q} =

{
x = (xk) ∈ X : sup

k

[
Mk

(q(∆n
mxk)

ρ

)]pk
tk <∞,

for some ρ > 0

}
.

If we take pk = 1, we have

c0 {M,∆n
m, q} =

{
x = (xk) ∈ X :

[
Mk

(
q(∆n

mxk)

ρ

)]
→ 0,

as k →∞, for some ρ > 0

}
,

c {M,∆n
m, q} =

{
x = (xk) ∈ X :

[
Mk

(q(∆n
mxk − L)

ρ

)]
→ 0,

as k →∞, for some L ∈ X and for some ρ > 0

}
and

l∞ {M,∆n
m, q} =

{
x = (xk) ∈ X : sup

k

[
Mk

(q(∆n
mxk)

ρ

)]
<∞,

for some ρ > 0

}
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
≤ sup pk = K, D = max(1, 2K−1), then

(1.1) |ak + bk|pk ≤ D
{
|ak|pk + |bk|pk

}
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for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|K) for all a ∈ C.

The main aim of this paper is to study some difference sequence
spaces defined by Musielak–Orlicz function. We also make an effort to
study some topological properties and inclusion relations between these
spaces.

2. Main results

Theorem 2.1. Suppose M = (Mk) is a Musielak–Orlicz function and
let p = (pk) be a bounded sequence of positive real numbers for all k ∈ N.
Then the spaces c0{M,∆n

m, p, q}, c{M,∆n
m, p, q} and l∞{M,∆n

m, p, q}
are linear spaces over the complex field C.

Proof. Let x = (xk), y = (yk) ∈ c{M,∆n
m, p, q} and α, β ∈ C. Then

there exist positive real numbers ρ1 and ρ2 such that[
Mk

(q(∆n
mxk − L)

ρ1

)]pk
tk → 0, as k →∞,

and [
Mk

(q(∆n
myk − L)

ρ2

)]pk
tk → 0, as k →∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since Mk’s are non-decreasing, convex
function and by using inequality (1.1), we have[
Mk

(q((α∆n
mxk + β∆n

myk)− 2L)

ρ3

)]pk
tk ≤

≤
[
Mk

(q(α∆n
mxk − L)

ρ3
+
q(β∆n

myk − L)

ρ3

)]pk
tk ≤

≤D 1

2pk

[
Mk

(q(∆n
mxk − L)

ρ1

)]pk
tk +D

1

2pk

[
Mk

(q(∆n
myk − L)

ρ2

)]pk
tk ≤

≤D
[
Mk

(q(∆n
mxk−L)

ρ1

)]pk
tk+D

[
Mk

(q(∆n
myk−L)

ρ2

)]pk
tk → 0 as k →∞.

Thus, αx+βy ∈ c{M,∆n
m, p, q}. Hence c{M,∆n

m, p, q} is a linear space.
Similarly, we can prove c0{M,∆n

m, p, q} and l∞{M,∆n
m, p, q} are linear

spaces over the field C of complex numbers.

Theorem 2.2.For any Musielak–Orlicz functionM=(Mk) and p=(pk)
be a bounded sequence of strictly positive real numbers, then the space
l∞{M,∆n

m, p, q} is a paranormed space with the paranorm defined by
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g(x) = q(x1) + inf

{
ρ

pk
H : sup

k≥1

{
Mk

(q(∆n
mxk)

ρ

)
tk

1
pk

}
≤ 1, ρ > 0

}
,

where H = max(1, K).

Proof. (i) Clearly, g(x) ≥ 0 for x = (xk) ∈ l∞{M,∆n
m, p, q}. Since

Mk(0) = 0, we get g(θ) = 0.
(ii) g(−x) = g(x).
(iii) Let x = (xk), y = (yk) ∈ l∞{M,∆n

m, p, q}, then there exist
ρ1, ρ2 > 0 such that

sup
k≥1

{
Mk

(q(∆n
mxk)

ρ1

)
tk

1
pk

}
≤ 1

and

sup
k≥1

{
Mk

(q(∆n
myk)

ρ2

)
tk

1
pk

}
≤ 1.

Let ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
k≥1

{
Mk

(
q(∆n

m(xk + yk))

ρ

)
tk

1
pk

}
=

= sup
k≥1

{
Mk

(
q(∆n

m(xk + yk))

ρ1 + ρ2

)
tk

1
pk

}
≤

≤ ρ1
ρ1 + ρ2

sup
k≥1

[
Mk

(
q(∆n

mxk)

ρ1

)
tk

1
pk

]
+

+
ρ2

ρ1 + ρ2
sup
k≥1

[
Mk

(
q(∆n

myk)

ρ2

)
tk

1
pk

]
≤ 1

and thus

g(x+ y) =

= q(x1 + y1)+

+ inf

{
(ρ1+ρ2)

pk
H : sup

k≥1

{
Mk

(
q(∆n

mxk + ∆n
myk)

ρ

)}
tk

1
pk ≤ 1, ρ>0

}
≤

≤ q(x1) + inf

{
(ρ1)

pk
H : sup

k≥1

{
Mk

(
q(∆n

mxk)

ρ1

)}
tk

1
pk ≤ 1, ρ > 0

}
+

+ q(y1) + inf

{
(ρ2)

pk
H : sup

k≥1

{
Mk

(
q(∆n

myk)

ρ2

)}
tk

1
pk ≤ 1, ρ > 0

}
≤

≤ g(x) + g(y).
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(iv) Finally, we prove that the scalar multiplication is continuous.
Let λ be any complex number. By definition,

g(λx) = q(λx1)+inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q(λ∆n

mxk)

ρ

)}
tk

1
pk ≤ 1, ρ > 0

}
=

= |λ|q(x1)+inf

{
(|λ|r)

pk
H : sup

k≥1

{
Mk

(
q(∆n

mxk)

r

)}
tk

1
pk ≤ 1, r > 0

}
,

where r = ρ
|λ| . Hence l∞{M,∆n

m, p, q} is a paranormed space.

Theorem 2.3. If M = (Mk) is a Musielak–Orlicz function and p =
= (pk) ∈ l∞, then the spaces c0{M,∆n

m, p, q}, c{M,∆n
m, p, q} and

l∞{M,∆n
m, p, q} are complete paranormed spaces paranormed by g.

Proof. Suppose (xn) is a Cauchy sequence in l∞{M,∆n
m, p, q}, where

xn = (xnk)∞k=1 for all n ∈ N. So that g(xi − xj) → 0 as i, j → ∞.
Suppose ε > 0 is given and let s and x0 be such that ε

sx0
> 0 and

Mk

(
sx0
2

)
≥ sup

k≥1
(pk)

tk . Since g(xi − xj) → 0, as i, j → ∞ which means

that there exists n0 ∈ N such that

g(xi − xj) < ε

sx0
, for all i, j ≥ n0.

This gives g(xi1 − x
j
1) <

ε
sx0

and
(2.1)

inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q(∆n

mx
i
k −∆n

mx
j
k)

ρ

)
tk

1
pk

}
≤ 1, ρ > 0

}
<

ε

sx0
.

It shows that (xi1) is a Cauchy sequence in X. Therefore (xi1) is conver-
gent in X because X is complete. Suppose lim

i→∞
xi1 = x1, then

lim
j→∞

g(xi1 − x
j
1) <

ε

sx0
,

we get

g(xi1 − x1) <
ε

sx0
.

Thus, we have

Mk

(
q(∆n

mx
i
k −∆n

mx
j
k)

g(xi − xj)

)
tk

1
pk ≤ 1.

This implies that
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Mk

(
q(∆n

mx
i
k −∆n

mx
j
k)

g(xi − xj)

)
≤ (pk)

tk ≤Mk

(sx0
2

)
and thus

q(∆n
mx

i
k −∆n

mx
j
k) <

sx0
2
.
ε

sx0
<
ε

2

which shows that (∆n
mx

i
k) is a Cauchy sequence in X for all k ∈ N.

Therefore, (∆n
mx

i
k) converges in X. Suppose lim

i→∞
∆n
mx

i
k = yk for all

k ∈ N. Also, we have lim
i→∞

∆n
mx

i
2 = y1 − x1. On repeating the same

procedure, we obtain lim
i→∞

∆n
mx

i
k+1 = yk − xk for all k ∈ N. Therefore by

continuity of Mk, we get

lim
j→∞

sup
k≥1

Mk

(
q(∆n

mx
i
k −∆n

mx
j
k)

ρ

)
t

1
pk
k ≤ 1,

so that

sup
k≥1

Mk

(
q(∆n

mx
i
k −∆n

mx
j
k)

ρ

)
t

1
pk
k ≤ 1.

Let i ≥ n0 and taking infimum of each ρ’s, we have g(xi − x) < ε. So
(xi− x) ∈ l∞{M,∆n

m, p, q}. Hence x = xi− (xi− x) ∈ l∞{M,∆n
m, p, q},

since l∞{M,∆n
m, p, q} is a linear space. Hence, l∞{M,∆n

m, p, q} is a
complete paranormed space. Similarly, we can prove that the spaces
c0{M,∆n

m, p, q} and c{M,∆n
m, p, q} are complete paranormed spaces.

Theorem 2.4. If 0 < pk ≤ rk < ∞ for each k, then Z{M,∆n
m, p, q} ⊆

⊆ Z{M,∆n
m, r, q} for Z = c0 and c.

Proof. Let x = (xk) ∈ c{M,∆n
m, p, q}. Then there exists some ρ > 0

and L ∈ X such that

Mk

(q(∆n
mxk − L)

ρ

)pk
tk → 0 as k →∞.

This implies that

Mk

(q(∆n
mxk − L)

ρ

)
< ε, (0 < ε < 1)

for sufficiently large k. Hence we get

Mk

(q(∆n
mxk − L)

ρ

)rk
tk ≤Mk

(q(∆n
mxk − L)

ρ

)pk
tk → 0 as k →∞.

This implies that x=(xk)∈c{M,∆n
m, r, q}. This completes the proof. ♦
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Similarly, we can prove for the case Z = c0.

Theorem 2.5. Suppose M′ = (M ′
k) and M′′ = (M ′′

k ) are Musielak–
Orlicz functions satisfying the ∆2-condition then we have the following
results:

(i) if (pk) ∈ l∞ then Z{M′,∆n
m, p, q} ⊆ Z{M′′ ◦ M′,∆n

m, p, q} for
Z = c, c0 and l∞.

(ii) Z{M′,∆n
m, p, q} ∩ Z{M′′,∆n

m, p, q} ⊆ Z{M′ +M′′,∆n
m, p, q} for

Z = c, c0 and l∞.

Proof. If x = (xk) ∈ c0{M,∆n
m, p, q} then there exists some ρ > 0 such

that {
M ′

k

(
q(∆n

mxk)

ρ

)}pk
tk → 0 as k →∞.

Suppose

yk = M ′
k

(
q(∆n

mxk)

ρ

)
for all k ∈ N.

Choose δ > 0 be such that 0 < δ < 1, then for yk ≥ δ we have yk <
yk
δ
<

< 1 + yk
δ

. Now M ′′
k satisfies ∆2-condition so that there exists J ≥ 1 such

that

M ′′
k (yk) <

Jyk
2δ

M ′′
k (2) +

Jyk
2δ

M ′′
k (2) =

Jyk
δ
M ′′

k (2).

We obtain[
(M ′′

k ◦M ′
k)

(
q(∆n

mxk)

ρ

)]pk
tk =

=

[
M ′′

k

{
M ′

k

(
q(∆n

mxk)

ρ

)}]pk
tk = [M ′′

k (yk)]
pk tk ≤

≤ max

{
sup
k

([M ′′
k (1)]pk) , sup

k

(
[kM ′′

k (2)δ−1]pk
)}

[yk]
pktk → 0, as k →∞.

Similarly, we can prove the other cases.
(ii) Suppose x = (xk) ∈ c0{M ′

k,∆
n
m, p, q} ∩ c0{M ′′

k ,∆
n
m, p, q}, then

there exist ρ1, ρ2 > 0 such that{(
M ′

k

(
q(∆n

mxk)

ρ1

))pk
tk

}
→ 0, as k →∞

and
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M ′′

k

(
q(∆n

mxk)

ρ2

))pk
tk

}
→ 0, as k →∞.

Let ρ = max{ρ1, ρ2}. The remaining proof follows from the inequality{[
(M ′

k +M ′′
k )

(
q(∆n

mxk)

ρ

)]pk
tk

}
≤

≤ D

{[
M ′

k

(
q(∆n

mxk)

ρ1

)]pk
tk +

[
M ′′

k

(
q(∆n

mxk)

ρ2

)]pk
tk

}
.

Hence c0{M ′
k,∆

n
m, p, q}∩c0{M ′′

k ,∆
n
m, p, q} ⊆ c0{M ′

k+M ′′
k ,∆

n
m, p, q}. Sim-

ilarly we can prove the other cases.

Theorem 2.6. (i) If 0 < inf pk ≤ pk < 1, then l∞{M,∆n
m, p, q} ⊂

⊂ l∞{M,∆n
m, q}.

(ii) If 1 ≤ pk ≤ sup pk <∞, then l∞{M,∆n
m, q} ⊂ l∞{M,∆n

m, p, q}.
Proof. (i) Let x = (xk) ∈ l∞{M,∆n

m, p, q}. Since 0 < inf pk ≤ 1, we
have

sup
k

{[
Mk

(
q(∆n

mxk)

ρ

)]}
≤ sup

k

{[
Mk

(
q(∆n

mxk)

ρ

)]pk
tk

}
and hence x = (xk) ∈ l∞{M,∆n

m, q}.
(ii) Let pk ≥ 1 for each k and sup

k
pk <∞. Let

x = (xk) ∈ l∞{M,∆n
m, q},

then for each ε, 0 < ε < 1, there exists a positive integer n0 ∈ N such
that

sup
k

{
Mk

(
q(∆n

mxk)

ρ

)}
≤ ε < 1.

This implies that

sup
k

{[
Mk

(
q(∆n

mxk)

ρ

)]pk
tk

}
≤ sup

k

{
Mk

(
q(∆n

mxk)

ρ

)}
.

Thus x = (xk) ∈ l∞{M,∆n
m, p, q} and this completes the proof. ♦
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