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Abstract: The object of the present paper is to study a new type of Rieman-
nian manifold called mixed quasi-Einstein manifoldsM(QE)n. Some geometric
properties of mixed quasi-Einstein manifolds have been studied. Also we study
some global properties of mixed quasi-Einstein manifolds. The existence of a
mixed quasi-Einstein manifold have been proved by two non-trivial examples.

1. Introduction

A Riemannian manifold (Mn, g), n = dimM ≥ 2, is said to be an
Einstein manifold if the following condition

(1.1) S =
r

n
g
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holds on M , where S and r denote the Ricci tensor and the scalar curva-
ture of (Mn, g) respectively. According to ([1], p. 432), (1.1) is called the
Einstein metric condition. Every Einstein manifold belongs to the class
of Riemannian manifolds (Mn, g) realizing the following relation:

(1.2) S(X, Y ) = ag(X, Y ) + bA(X)A(Y ),

where a, b ∈ R and A is a non-zero 1-form such that

(1.3) g(X,U) = A(X),

for all vector fields X .
A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a

quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition (1.2).

It is to be noted that Chaki and Maity [2] also introduced the notion
of quasi-Einstein manifolds in a different way. They have taken a, b are
scalars and the vector field U metrically equivalent to the 1-form A as a
unit vector field. Such an n-dimensional manifold is denoted by (QE)n.
Quasi-Einstein manifolds have been studied by several authors such as
De and Ghosh [6], De and De [7] and De, Ghosh and Binh [11] and many
others.

Quasi-Einstein manifolds have been generalized by several authors
in several ways such as generalized quasi-Einstein manifolds ([3], [8], [9],
[13], [17]), super quasi-Einstein manifolds ([4], [10], [15]), pseudo quasi-
Einstein manifolds [18], N(k)-quasi-Einstein manifolds ([14], [19]) and
many others.

In a recent paper [16] Nagaraja generalizes the quasi-Einstein man-
ifold as follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called mixed
quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition

(1.4) S(X, Y ) = ag(X, Y ) + bA(X)B(Y ) + cB(X)A(Y ),

where a, b and c are smooth functions and A and B are non-zero 1-forms
such that g(X,U) = A(X) and g(X, V ) = B(X) for all vector fields X

and U and V being the orthogonal unit vector fields called the generator
of the manifold.
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From (1.4), it follows that

(1.5) S(Y,X) = ag(Y,X) + bA(Y )B(X) + cB(Y )A(X).

From (1.4) and (1.5), it follows that
(b− c)[A(X)B(Y )−A(Y )B(X)] = 0.

This shows that either b = c or A(X)B(Y ) = A(Y )B(X). Motivated by
this result we give the following definition:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called mixed
quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition:

(1.6) S(X, Y ) = ag(X, Y ) + b[A(X)B(Y ) + A(Y )B(X)],

where a, b are scalars of which b 6= 0 and A and B are non-zero 1-forms
such that

g(X,U) = A(X), g(X, V ) = B(X), g(U, V ) = 0,

where U, V are unit vector fields. In such a case A, B are called associated
1-forms and U, V are called the generators of the manifold. Such an n-
dimensional manifold is denoted by the symbol M(QE)n.

If b = 0, then the manifold becomes an Einstein manifold. If A = B,
then the manifold reduces to a quasi-Einstein manifold. This justifies the
name mixed quasi-Einstein manifold.

A generalization of a manifold of quasi-constant curvature, called
a manifold of mixed quasi-constant curvature is needed for the study of
a M(QE)n. Such a manifold is denoted by the symbol M(QC)n and is
defined as follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called a mani-
fold of mixed quasi-constant curvature if its curvature tensor R̃ of type
(0, 4) satisfies the condition

R̃(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]+(1.7)

+ q[g(Y, Z){A(X)B(W ) +B(X)A(W )}+
+ g(X,W ){A(Y )B(Z) +B(Y )A(Z)}−
− g(X,Z){A(Y )B(W ) + A(W )B(Y )}−
− g(Y,W ){A(X)B(Z) + A(Z)B(X)}],

where R̃(X, Y, Z,W ) = g(R(X, Y )Z,W ) and p, q are scalars and A, B are
non-zero 1-forms. If the 1-forms A and B are equal, then the manifold
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reduces to a manifold of quasi-constant curvature introduced by Chen
and Yano [5].

The notion of quasi-conformal curvature tensor was given by Yano
and Sawaki [21] and is defined as follows:

C⋆(X, Y )Z = a1R(X, Y )Z + b1[S(Y, Z)X − S(X,Z)Y+(1.8)

+ g(Y, Z)QX − g(X,Z)QY ]−

− r

n

[

a1

n− 1
+ 2b1

]

[g(Y, Z)X − g(X,Z)Y ].

Here a1 and b1 are constant, R is the Riemannian curvature tensor of
type (1, 3), S is the Ricci tensor of type (0, 2), Q is the Ricci operator
and r is the scalar curvature of the manifold.

If a1 = 1 and b1 = − 1
n−2

, then (1.8) reduces to the conformal
curvature tensor. A Riemannian manifold is called quasi-conformally
flat if C⋆ = 0 for n > 3.

The present paper is organised as follows:
After preliminaries in Sec. 3, we prove that a quasi-conformally flat

M(QE)n is a M(QC)n. In the next section we look for a sufficient con-
dition in order that a M(QE)n may be quasi-conformally conservative.
In Sec. 5, we study compact orientable M(QE)n. In the next section we
study Killing vector field in a compact orientable M(QE)n. Sec. 7 is de-
voted to study Harmonic vector field in a M(QE)n. Finally, we construct
two non-trivial examples of a M(QE)n.

2. Preliminaries

From (1.6), we have

(2.1) S(X,X) = a|X|2 + 2b|g(X,U)g(X, V )|, ∀X.

Let θ1 be the angle between U and any vector X ; θ2 be the angle between
V and any vector X . Then cos θ1 =

g(X,U)√
g(X,X)

and cos θ2 =
g(X,V )√
g(X,X)

.

If b > 0, we have from (2.1)

(2.2) (a+ 2b)|X|2 ≥ a|X|2 + 2b|g(X,U)g(X, V )| = S(X,X).

Now contracting (1.6) over X and Y we obtain

(2.3) r = an,
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where r is the scalar curvature of the manifold.
Putting X = Y = U in (1.6), we get

(2.4) S(U, U) = a.

Similarly, we have

(2.5) S(V, V ) = a

and

(2.6) S(U, V ) = b.

Let Q be the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor S. Then

(2.7) S(X, Y ) = g(QX, Y ),

for all X, Y ∈ TM.

Let l2 denote the square of the length of the Ricci tensor S. Then

(2.8) l2 = S(Qei, ei),

where {ei}, (i = 1, 2, 3, . . . . . . , n) is an orthonormal basis of the tangent
space at each point of the manifold.

Then from (1.6), we have

(2.9) l2 = na2 + 2b2.

This result will be used in the sequel.

3. Quasi-conformally flat M(QE)n (n > 3)

A M(QE)n (n > 3) is not, in general a M(QC)n. In this section
we consider a conformally flat M(QE)n (n > 3) and show that such a
M(QE)n is a M(QC)n.

From (1.8) it follows that in a quasi-conformally flat Riemannian
manifold (Mn, g) (n > 3) the curvature tensor R̃ of type (0, 4) has the
following form:

a1R̃(X, Y, Z,W )= −b1[S(Y, Z)g(X,W )−S(X,Z)g(Y,W )+(3.1)

+ S(X,W )g(Y, Z)−S(Y,W )g(X,Z)]+

+
r

n

{

a1

n−1
+2b1

}

[g(Y, Z)g(X,W )−g(X,Z)g(Y,W )].
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Using (1.6) in (3.1), we obtain

R̃(X, Y, Z,W ) = p[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]+(3.2)

+ q[g(Y, Z){A(X)B(W ) +B(X)A(W )}+
+ g(X,W ){A(Y )B(Z) + A(Z)B(Y )}−
− g(X,Z){A(Y )B(W ) + A(W )B(Y )}−
− g(Y,W ){A(X)B(Z) +B(X)A(Z)}],

where p = r
a1n

( a1
n−1

+ 2b1)− 2ab1 and q = − bb1
a1
.

Thus we can state the theorem:

Theorem 3.1. Every quasi-conformally flat M(QE)n is a M(QC)n.

From Th. 3.1 we can also have the following corollary:

Corollary 1. A conformally flat M(QE)n is a M(QC)n.

4. M(QE)n (n > 3) with divergence free quasi-
conformal curvature tensor

In this section we look for sufficient condition in order that a
M(QE)n (n>3) may be quasi-conformally conservative. Quasi-conformal
curvature tensor is said to be conservative [12] if the divergence of C⋆

vanishes, i.e., div C⋆ = 0.
In a M(QE)n if both a and b are constant, then contracting (1.6)

we have r =constant, where r is the scalar curvature. Then dr = 0.
Using dr = 0 we obtain from (1.8)

(∇WC⋆)(X, Y, Z) = a1(∇WR)(X, Y )Z + b1[(∇WS)(Y, Z)X−(4.1)

− (∇WS)(X,Z)Y + g(Y, Z)(∇WQ)(X)−
− g(X,Z)(∇WQ)(Y )].

We know that (divR)(X, Y, Z) = (∇XS)(Y, Z)−(∇Y S)(X,Z), and from
(1.6) we get

(∇XS)(Y, Z) = b[(∇XA)(Y )B(Z) + (∇XB)(Z)A(Y )+(4.2)

+ (∇XB)(Y )A(Z) + (∇XA)(Z)B(Y )],

since both a and b are constant.
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Contracting (4.1) and using (4.2) we get

(divC⋆)(X, Y, Z) = (a1+b1)
[

(∇XA)(Y )B(Z)+(∇XB)(Z)A(Y )+(4.3)

+ (∇XB)(Y )A(Z) + (∇XA)(Z)B(Y )−
− (∇YA)(X)B(Z)− (∇YB)(Z)A(X)−
− (∇YB)(X)A(Z)− (∇YA)(Z)B(X)

]

.

Imposing the condition that the generators U and V of the manifold are
parallel vector fields give ∇XU = 0, ∇XV = 0.

Hence

(4.4) g(∇XU, Y ) = 0, i.e., (∇XA)(Y ) = 0,

and

(4.5) g(∇XV, Y ) = 0, i.e., (∇XB)(Y ) = 0.

Therefore, from (4.3) it follows
(div C⋆)(X, Y, Z) = 0.

Thus we can state the following:

Theorem 4.1. If in a M(QE)n, the associated scalars are constants and
the generators U and V of the manifold are parallel vector fields, then
the manifold is quasi-conformally conservative.

5. Compact orientable M(QE)n

In this section we consider a compact orientable M(QE)n without
boundary having constant associated scalars a, b. Then from (2.3) and
(2.9), it follows that the scalar curvature is constant and so also is the
length of the Ricci tensor. We further suppose that M(QE)n under
consideration admits a non-isometric conformal motion generated by a
vector field X .

Since l2 is constant, it follows that

(5.1) £X(l
2) = 0,

where £X denotes Lie differentiation with respect to X .
Now, it is known [20] that if a compact Riemannian manifold M of

dimension n ≥ 3 with constant scalar curvature admits an infinitesimal
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non-isometric conformal transformation X such that £X(l
2) = 0, then

M is isometric to a sphere. But a sphere is Einstein so that b vanishes
which is a contradiction.

This leads to the following:

Theorem 5.1. A compact orientable M(QE)n (n ≥ 3) without bound-
ary does not admit non-isometric conformal vector fields.

6. Killing vector fields in compact orientableM(QE)n

In this section we consider a compact orientable M(QE)n (n≥ 3)
without boundary with a, b as associated scalars and U and V as associ-
ated generators.

It is known that for a vector field X in a Riemannian manifold M ,
the following relation holds

(6.1)

∫

M

[S(X,X)− |∇X|2 − (divX)2]dv ≤ 0,

where dv denotes the volume element of M .
If X is a Killing vector field, then divX = 0 [20]. Hence (6.1) takes

the following form

(6.2)

∫

M

[S(X,X)− |∇X|2]dv = 0.

Let b > 0, then by (2.2) (a+ 2b)|X|2 ≥ S(X,X).
Consequently,

∫

M

[(a+ 2b)|X|2]dv ≥
∫

M

[S(X,X)− |X|2]dv.
Hence by (6.2), we have

(6.3)

∫

M

[(a+ 2b)|X|2 − |∇X|2]dv ≥ 0.

If a+ 2b < 0, then
∫

M

[(a+ 2b)|X|2 − |∇X|2]dv = 0.

Therefore, X = 0. This leads to the following theorem:

Theorem 6.1. If in a compact orientable M(QE)n (n ≥ 3) without
boundary the associated scalars and the structure tensor are such that
b > 0 and a + 2b < 0, then there exists no non-zero Killing vector field
in this manifold.
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7. Harmonic vector fields in a compact orientable
M(QE)n (n ≥ 3) without boundary

Let us assume θ2 ≤ θ1, θ1 is the angle between U and any vector
field X and θ2 is the angle between V and any vector field X . Then we
have cos θ2 ≥ cos θ1 and g(X,U) ≥ g(X, V ). Then from (2.1) we obtain

(7.1) S(X,X) ≥ (a+ 2b){g(X,U)}2,

where a, b are positive.
A vector field H in a Riemannian manifold (Mn, g) (n ≥ 3) is said

to be harmonic if [20] dτ = 0 and δτ = 0, where τ(X) = g(X,H) ∀X.

It is known that in a compact orientable Riemannian manifold
(Mn, g) (n ≥ 3), the following relation holds

(7.2)

∫

M

[S(X,X)− 1

2
|dτ |2 + |∇X|2 − (δτ)2]dv = 0,

for any vector field X and dv denotes the volume element of M .
Now let X ∈ χ(M) be a harmonic vector field. Then from (7.2) we

get

(7.3)

∫

M

[S(X,X) + |∇X|2]dv = 0,

for any vector field X .
Hence if a, b of M(QE)n are positive, then (7.1) and (7.3) together

yield

(7.4)

∫

M

[(a+ 2b)|g(X,U)|2 + |∇X|2]dv ≤ 0,

which implies by virtue of a+ 2b > 0 that g(X,U) = 0 and ∇X = 0, for
any vector field X . This follows that X is orthogonal to U and X is a
parallel vector field.

Similarly, for the case θ1 ≤ θ2 and calculating as before it can be
shown that g(X, V ) = 0 and ∇X = 0, for any vector field X .

Thus we can state the following:

Theorem 7.1. In a compact orientable M(QE)n (n ≥ 3) without bound-
ary any harmonic vector field X is parallel and orthogonal to one of the
generators of the manifold which makes greatest angle with the vector
field X, provided that a, b are positive scalars.
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8. Example of a M(QE)n

Example 1. We consider a Riemannian manifold (M4, g) endowed with
the metric g given by

(8.1) ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 + (dx4)2,

i, j = 1, 2, 3, 4.

The only non-vanishing components of the Christoffel symbols, the
curvature tensor and the Ricci tensor are

Γ1
22 = −x1, Γ2

33 = − x2

(x1)2
, Γ2

12 =
1

x1
, Γ3

23 =
1

x2
,

R1332 = −x2

x1
, S12 = − 1

x1x2
.

It can be easily shown that the scalar curvature of the manifold is zero.
Therefore R4 with the considered metric is a Riemannian manifold (M4, g)
of vanishing scalar curvature. We shall now show that this M4 is a
M(QE)4 i.e., it satisfies the defining relation (1.6).

We take the associated scalars as follows:

a =
1

x1(x2)2
, b = − 2

(x1)2x2
.

We choose the 1-forms as follows:

Ai(x) =

{

x1, for i = 2,

0, for i = 1, 3, 4,

and

Bi(x) =























1

2
, for i = 1,

31/2x2

2
, for i = 3,

0, for i = 2, 4,

at any point x ∈ M . In our (M4, g), (1.6) reduces with these associated
scalars and 1-forms to the following equation:

(8.2) S12 = ag12 + b[A1B2 + A2B1].

It can be easily proved that the equation (8.2) is true.
We shall now show that the 1-forms are unit and orthogonal.



Some global properties of mixed quasi-Einstein manifolds 287

Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So, the manifold under consideration is a M(QE)4.

Example 2. We consider a Riemannian manifold (R4, g) endowed with
the metric g given by

(8.3) ds2 = gijdx
idxj = (dx1)2+(x1)2(dx2)2+(x1 sin x2)2(dx3)2+(dx4)2,

where x1 6= 0 and 0 < x2 < π
2
. Then the non-vanishing components of

the Christoffel symbols and the curvature tensor are

Γ1
22 = −x1, Γ1

33 = −x1(sin x2)2, Γ2
12 = Γ3

13 =
1

x1
,

Γ3
23 = cot x2, Γ2

33 = − sin x2 cos x2, R2332 = −(x1 sin x2)2,

and the components which can be obtained from these by the symmetry
properties. Using the above relations, we can find the non-vanishing
components of Ricci tensor as follows:

S22 = −1, S33 = −(sin x2)2.

Also it can be easily found that the scalar curvature of the manifold is
non-constant and is equal to − 2

(x1)2
6= 0.

We take the associated scalars as follows:

a = − 1

(x1)2
, b = x1x2.

We choose the 1-forms as follows:

Ai(x) =

{

x1 sin x2, for i = 3,

0, for i = 1, 2, 4,

and

Bi(x) =

{

x1, for i = 2,

0, for i = 1, 3, 4,

at any point x ∈ M . In our (M4, g), (1.6) reduces with these associated
scalars and 1-forms to the following equations:

(8.4) S22 = ag22 + b[A2B2 + A2B2],

(8.5) S33 = ag33 + b[A3B3 + A3B3].

It can be easily proved that the equations (8.4) and (8.5) are true.
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We shall now show that the 1-forms are unit and orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So, the manifold under consideration is a M(QE)4.
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