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Abstract: We supply Chebyshev and Jensen type inequalities for Choquet
integral. Moreover, in the setting of normalized linear functionals on a real
vector space of measurable functions including all bounded ones, we state the
equivalence of these inequalities and the positivity condition of functionals.

1. Introduction and preliminaries

Some well-known integral inequalities (stated for the Lebesgue inte-
gral), such as Chebyshev inequality and Jensen inequality, play important
roles not only from a theoretical point of view but also in applications.
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For this reason, in the last years, several authors have studied the valid-
ity of these inequalities, in the setting of non-additive set functions, for
the Choquet integral (e.g. see [7], [8], [12]), for the Sugeno integral (e.g.
see [2], [3], [6]) and for semi-normed fuzzy integrals (e.g. see [1], [9]).

In this paper, with reference to Choquet integral, we complete our
results (obtained in [7]) on the validity of Chebyshev inequality and state
a general form of Jensen inequality. Moreover, we show that, in the set-
ting of normalized linear functionals on a real vector space of measurable
functions including all bounded ones, these inequalities and the positivity
condition of functionals are equivalent.

Now, we are going to recall briefly some notion, notation and results
useful in the sequel. Given a measurable space (Ω,F), we shall denote by
ω (with or without indices) any element of Ω and by F (with or without
indices) any element of F . Any set function µ : F → [0,+∞[ is called
a (real) monotone set function if the following properties are satisfied:

(a) µ(∅) = 0;

(b) µ(F1) ≤ µ(F2), whenever F1 ⊂ F2 (monotonicity).

We call µ a monotone probability, if ‖µ‖ = µ(Ω) = 1 and additive, if
µ(F1 ∪ F2) = µ(F1) + µ(F2), whenever F1 ∩ F2 = ∅. Finally, for any µ,
we will consider the corresponding conjugate monotone set function on
F defined as: µ(F ) = ‖µ‖ − µ(F c).

Henceforth, X, Y always denote real-valued functions on Ω which
are F -Borel measurable and IF denotes the indicator function of F .
Moreover, given X , we put {X > t} = {ω : X(ω) > t} for any
t ≥ 0. Finally, we recall that X , Y are said to be comonotonic if
X(ω1) > X(ω2) and Y (ω1) < Y (ω2) is impossible for any ω1, ω2 (i.e.
(X(ω1)−X(ω2)) (Y (ω1)− Y (ω2)) ≥ 0 for any ω1, ω2).

Now, given the monotone set function space (Ω,F , µ), the Choquet
integral of X w.r.t. µ is defined as:

ℑµ(X) =

∫ 0

−∞

[µ({X > t})− ‖µ‖ ] dt+

∫ +∞

0

µ({X > t}) d t,

whenever at least one of the involved integrals is finite (this integral
is usually denoted, in the related literature, by C

∫

Ω
X dµ). Note that

ℑµ(X) ∈ R = [−∞,+∞] and that ℑµ(X) exists for any X ≥ 0. Now,
we recall some properties of this integral (see [5]):

- ℑµ(IF ) = µ(F );
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- ℑµ(αX) = αℑµ(X) for any real α ≥ 0 (positive homogeneity);
- ℑµ(−X) = −ℑµ(X) (asymmetry);
- ℑµ(X + α) = ℑµ(X) + α‖µ‖ for any real α (translatability);
- ℑµ(X) ≤ ℑµ(Y ), whenever X ≤ Y (monotonicity).

Moreover, by translatability (put X ≡ 0), we have ℑµ(αIΩ) = α‖µ‖ for
any real α.

Note that, if µ is additive, µ = µ so that ℑµ is homogeneous and
ℑµ(X) = ℑµ(X

+)− ℑµ(X
−), on noting that

ℑµ(X
−) = −

∫ 0

−∞

[µ({X > t})− ‖µ‖ ] dt

(where X+, X− are, respectively, the positive and the negative part
of X).

Finally, we call X Choquet integrable (w.r.t. µ), whenever ℑµ(X)
exists and is finite; plainly, any bounded function X is Choquet inte-
grable.

2. Main results

The following lemma paves the way for verifying that the comono-
tonicity condition is “nearly always”sufficient for the validity of Cheby-
shev inequality in the setting of monotone set functions.

Lemma 2.1.Let µ be additive. Then, the set of Choquet integrable func-
tions is a real vector space including all bounded F-Borel measurable func-
tions and ℑµ is a real linear functional on it. Moreover, if ℑµ(X) is not
finite and ℑµ(Y ) is finite, then there exists ℑµ(X+Y ) and ℑµ(X + Y ) =
= ℑµ(X).

Proof. The first statement of the thesis immediately follows from Cor. 6.5
and Prop. 9.4 in [5]. Let ℑµ(X) be not finite and ℑµ(Y ) finite. Now,
recall that (X+Y )− ≤ X−+Y −, (X+Y )+ ≤ X++Y + and (X+Y )++
+X− + Y − = (X + Y )− +X+ + Y +. First assume ℑµ(X) = +∞. Then,
ℑµ(X

−) is finite and hence, by monotonicity, ℑµ((X+Y )−) is also finite,
so that ℑµ(X + Y ) exists. Therefore, by Cor. 6.5 in [5], we have

ℑµ((X+Y )+)+ℑµ(X
−)+ℑµ(Y

−) = ℑµ((X+Y )−)+ℑµ(X
+)+ℑµ(Y

+)

and hence ℑµ((X + Y )+) = +∞, recalling that ℑµ(X
+) = +∞ and

ℑµ(X
−), ℑµ(Y

−) are finite.
Finally, if ℑµ(X) = −∞, by similar arguments we get the thesis. ♦
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The next theorem supplies some sufficient conditions assuring the
validity of a Chebyshev type inequality in the setting of monotone set
functions.

Theorem 2.2. Let X, Y be comonotonic such that ℑµ(X),ℑµ(Y ) and
ℑµ(XY ) exist. Assume one of the following conditions being valid:

(i) X, Y ≥ 0;

(ii) Let µ be additive and assume one of the following conditions being
valid:

(ii1) X, Y are Choquet integrable;

(ii2) ℑµ(X) = +∞ and there is ω0 such that Y (ω0) > 0;

(ii3) ℑµ(X) = −∞ and there is ω0 such that Y (ω0) < 0.

Then, the Chebyshev type inequality ‖µ‖ℑµ(XY ) ≥ ℑµ(X)ℑµ(Y ) holds.

Proof. When (i) or, for µ additive, (ii1) holds, the thesis immediately
follows from Th. 2.2 and Th. 2.5 in [7].

Now, let µ be additive. First assume (ii2). Let ℑµ(Y ) be finite. By
comonotonicity we have 0 ≤ [X −X(ω0)][Y −Y (ω0)] = XY −X(ω0)Y−
−Y (ω0)X +X(ω0)Y (ω0) and hence

XY ≥ X(ω0)Y + Y (ω0)X −X(ω0)Y (ω0).

Note that, by positive homogeneity, ℑµ(Y (ω0)X) = Y (ω0)ℑµ(X) = +∞
and, by Lemma 2.1, ℑµ(X(ω0)Y −X(ω0)Y (ω0)) is finite. Therefore, by
Lemma 2.1 and monotonicity, we get
ℑµ(XY ) ≥ ℑµ(Y (ω0)X+[X(ω0)Y−X(ω0)Y (ω0)]) = ℑµ(Y (ω0)X) = +∞.

Now, let ℑµ(Y ) = +∞ (if ℑµ(Y ) = −∞, the thesis is trivial). Then,
ℑµ(X

+) = ℑµ(Y
+) = +∞. On noting that (XY )+ ≥ X+Y +, by mono-

tonicity and (i), we get

ℑµ((XY )+) ≥ ℑµ(X
+Y +) ≥ ℑµ(X

+)ℑµ(Y
+) = +∞

so that ℑµ(XY ) = +∞ (ℑµ(XY ) exists!).
Finally, assume (ii3). The thesis follows from (ii2) and homogeneity,

on noting that −X,−Y are comonotonic. ♦

Remark 2.3. (i) Note that under assumption of (i) or, for µ additive,
(ii1) in the previous theorem, the hypothesis of the existence of ℑµ(XY )
can be dropped (see proof of Th. 2.5 in [7]).

(ii) As the next example shows, in the previous theorem the exis-
tence of ω0 assumed in (ii2) and (ii3) can not be dropped for its valid-
ity. Let Ω be the set of positive natural numbers and µ′ the additive
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probability on the finite-cofinite field on Ω defined as: µ′(A) = 0, if
A is finite, and µ′(A) = 1, if A is cofinite. Now, let µ be an addi-
tive extension of µ′ on F = 2Ω (see Th. 3.4.4 in [4]) and consider the
following two comonotonic functions on Ω defined as: X(ω) = ω2 and
Y (ω) = − 1

ω
. On noting that, for any real t ≥ 0, the sets {X > t},

{(XY )− > t} are cofinite and {Y − > t} is finite, we easily get that
ℑµ(X) = +∞, ℑµ(XY ) = −∞ and ℑµ(Y ) = 0. Consequently, adopting
the usual rule +∞·0 = 0 of arithmetic in the extended real line, we have
‖µ‖ℑµ(XY ) < 0 = ℑµ(X)ℑµ(Y ).

Now, we are going to study the validity of the well-known Jensen
inequality in the setting of monotone probabilities. We recall that any
real convex function g, defined on a real interval I (bounded or not), is
monotone or there is a ∈ I such that g is decreasing to the left of a and
increasing to the right (so that g admits limits at the endpoints of I);
moreover, for any interior points x1, x2 of I with x1 < x2, we have:

g′+(x1) ≤
g(x2)− g(x1)

x2 − x1

≤ g′+(x2),

where g′+ is the right-hand derivative of g which is finite on the interior
of I and supplies a subgradient of g at any interior point. Finally, for any
interior point x0, we consider the difference quotient w.r.t. x0 defined on
I as:

R(g)
x0
(x) =

{

g(x)−g(x0)
x−x0

if x 6= x0
g′+(x0)+g′

−
(x0)

2
if x = x0

,

where g′− is the left-hand derivative of g. Note that this function is
increasing for any interior point x0.

Now we show that Jensen inequality does not hold, in general, in
the setting of monotone probabilities for the most used non additive
integrals.

Example 2.4. Let Ω =]0, 2[, F = 2Ω and S = ]0, 3
2
]. Consider then

the (non additive) monotone probability µS defined as: µS(A) = 1, if
A ⊃ S, and µS(A) = 0, otherwise (introduced in [10], p.91). Plainly,
we get ℑµ

S
(X) = infX(S) for any X . Now, consider the function on

Ω defined as: X(ω) = 2 − ω and the convex function g on Ω defined
as: g(ω) = (ω − 1)2. Consequently, we get g ◦ X = g, ℑµ

S
(X) = 1

2
,

ℑµ
S
(g ◦X) = 0 and g(ℑµ

S
(X)) = 1

4
and hence g(ℑµ

S
(X)) > ℑµ

S
(g ◦X).

On noting that Choquet, Sugeno and Shilkret integrals of X and
g ◦X w.r.t. µ

S
coincide, this example shows that Jensen inequality does
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not hold, in general, for all these integrals (for definition and some prop-
erties of these integrals see [13] and [11]).

The following theorem supplies a generalization of Jensen inequality
for Choquet integral which becomes the classical one in the setting of
additive probabilities.

Theorem 2.5. Given I = ]i0, i1[⊂ R (bounded or not), let X : Ω → I

and g : I → R such that ℑµ(X) and ℑµ(g ◦ X) exist. If g is a convex
function and µ is a monotone probability, then we have:

g(ℑµ(X)) ≤ max(ℑµ(g ◦X),ℑµ(g ◦X)),

where g(ℑµ(X)) = g(i−1 ), if ℑµ(X) = i1, and g(ℑµ(X)) = g(i+0 ), if
ℑµ(X) = i0.

More precisely: if ℑµ(X) ∈ I, then g(ℑµ(X)) ≤ ℑµ(g ◦ X), if
g′+(ℑµ(X)) ≥ 0, and g(ℑµ(X)) ≤ ℑµ(g ◦ X), if g′+(ℑµ(X)) < 0; if
ℑµ(X) = i1, then g(ℑµ(X)) ≤ ℑµ(g ◦X).

Finally, if µ is additive, then we get the usual Jensen inequality
g(ℑµ(X)) ≤ ℑµ(g ◦X).

Proof. Let x0 = ℑµ(X) and note that, by monotonicity, x0 ∈ [i0, i1] ⊂ R.
Since the desired inequality is obvious if g(x0)=−∞, assume g(x0)>−∞.
Now, the proof is carried out in the following steps.

1◦. Let x0 ∈ I. Since g is convex, we have g(x) ≥ g(x0)+
+g′+(x0)(x− x0) for any x ∈ I and hence

(2.1) g(X(ω)) ≥ g(x0) + g′+(x0)(X(ω)− x0)

for any ω. Now, assume g′+(x0) ≥ 0. Then, by monotonicity, positive
homogeneity and translatability, we have

ℑµ(g ◦X) ≥ g(x0) + g′+(x0)(ℑµ(X)− x0) = g(x0) = g(ℑµ(X)).

On the other hand, if g′+(x0) < 0, from (1) we get

(−g)(X(ω)) ≤ −g(x0) + (−g′+(x0))(X(ω)− x0)

for any ω and then ℑµ(−(g ◦ X)) ≤ −g(x0). Hence, by asymmetry,
−ℑµ(g ◦X) = ℑµ(−(g ◦X)) ≤ −g(x0), i.e. g(ℑµ(X)) ≤ ℑµ(g ◦X).

2◦. Let x0 = i0. If g is increasing, then g(x0) ∈ R (recall g(x0) >
> −∞) and g(X(ω)) ≥ g(x0) for any ω, so that, by monotonicity, we get
g(ℑµ(X)) ≤ ℑµ(g ◦X). If g is not increasing, then there is a ∈ I such
that g′+(a) < 0. Consider a sequence (xn)n≥1 in I such that a > xn ↓ x0.
Consequently, given n, we have g(X(ω)) ≥ g(xn)+g′+(xn)(X(ω)−xn) for
any ω and g′+(xn) < 0; therefore, by monotonicity, positive homogeneity
and translatability, we have
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ℑµ(−(g ◦X)) ≤ −g(xn) + (−g′+(xn))(ℑµ(X)− xn) ≤ −g(xn),

recalling that ℑµ(X) = i0 < xn for all n. Hence, by asymmetry, we
obtain ℑµ(g ◦X) ≥ g(xn) for all n. Now, by carrying out the passage to
the limit, we get ℑµ(g ◦ X) ≥ g(x+

0 ) = g(i+0 ) and hence, by definition,
g(ℑµ(X)) ≤ ℑµ(g ◦X).

3◦. Let x0 = i1. If g is decreasing, then g(X(ω)) ≥ g(x0) ∈ R for
any ω (recall g(x0) > −∞), so that we get g(ℑµ(X)) ≤ ℑµ(g ◦X). If g
is not decreasing, then there is a ∈ I such that g′+(a) > 0. Consider a
sequence (xn)n≥1 in I such that a < xn ↑ x0. Consequently, given n, we
have g(X(ω)) ≥ g(xn) + g′+(xn)(X(ω) − xn) for any ω and g′+(xn) > 0;
therefore, recalling that ℑµ(X) = i1 > xn for all n, we have ℑµ(g ◦X) ≥
≥ g(xn)+g′+(xn)(ℑµ(X)−xn) ≥ g(xn). Now, by carrying out the passage
to the limit, we get g(ℑµ(X)) = g(i−1 ) = g(x−

0 ) ≤ ℑµ(g ◦X).
Finally, if µ is additive (µ= µ!), we get the usual Jensen inequal-

ity. ♦

Remark 2.6. (i) Given a non-null monotone set function µ (not nec-
essarily a probability), we have ‖µ‖ = ‖µ‖ > 0, so that µ

‖µ‖
and µ

‖µ‖

are monotone probabilities. Consequently, in the same hypotheses for I,
X and g, the thesis of the previous theorem holds by putting µ

‖µ‖
, µ

‖µ‖

instead of µ and µ, respectively. In particular, we get

g

(

C

∫

Ω

X d
µ

‖µ‖

)

≤ max

(

C

∫

Ω

g ◦X d
µ

‖µ‖
,C

∫

Ω

g ◦Xd
µ

‖µ‖

)

and hence, by positive homogeneity of ℑµ(X) w.r.t. µ, the following
inequality holds:

‖µ‖ g

(

1

‖µ‖
ℑµ(X)

)

≤ max(ℑµ(g ◦X),ℑµ(g ◦X)).

(ii) With reference to Ex. 2.4, note that µS(A) = 1, if A ∩ S 6= ∅,
and µS(A) = 0, otherwise so that ℑµ

S

(Y ) = supY (S) for any Y ≥ 0.

Therefore, we have ℑµ
S

(g ◦X) = 1 > 1
4
= g(ℑµ

S
(X)).

The following result immediately follows from the previous theorem
and generalizes Cor. 4.1 in [8] which is stated for Ω finite.

Corollary 2.7. Given I = ]i0, i1[⊂ R (bounded or not), let X : Ω → I

and g : I → R such that ℑµ(X) and ℑµ(g ◦X) exist. If g is an increas-
ing convex function and µ is a monotone probability, then g(ℑµ(X)) ≤
≤ ℑµ(g ◦X), where g(ℑµ(X)) = g(i−1 ), if ℑµ(X) = i1, and g(ℑµ(X)) =
= g(i+0 ), if ℑµ(X) = i0.
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We conclude the paper by a theorem which supplies a characteri-
zation of normalized positive linear functionals on real vector spaces of
measurable functions, including all bounded ones, in terms of Cheby-
shev inequality or Jensen inequality. Note that, Lebesgue integral (in a
countable additive context) and Choquet integral, Dunford–Schwartz in-
tegral (D-integral) and Stieltjes type integral (S-integral) (in an additive
context) are positive linear functionals on the corresponding real vector
space of integrable functions (for the Choquet integral see Lemma 2.1
and for the last two integrals see Theorems 4.5.7 ÷ 4.5.9 and 4.4.13 in
[4]). In this way, we find again Chebyshev and Jensen inequalities for
Lebesgue and Choquet integrals and state their validity for D-integral
and S-integral, as well.

Theorem 2.8. Let D be a real vector space of F-Borel measurable func-
tions including all bounded ones. Moreover, let ℑ : D → R be such that:

(a) ℑ(IΩ) = 1 (normality);

(b) ℑ(αX +βY ) = αℑ(X)+βℑ(Y ) for any X, Y ∈ D and any real α, β
(linearity).

Then, the following statements are equivalent:

(i) Chebyshev inequality: Let X, Y be comonotonic such that X, Y,XY∈D.
Then, the inequality ℑ(XY ) ≥ ℑ(X)ℑ(Y ) holds.

(ii) Jensen inequality: Let I ⊂ R be an open interval (bounded or not)
and X : Ω → I such that ℑ(X) ∈ I. Moreover, let g : I → R be a

convex function such that g ◦X,R
(g)
ℑ(X) ◦X ∈ D. Then, the inequality

g(ℑ(X)) ≤ ℑ(g ◦X) holds.

(iii) Positivity: Let X ∈ D and X ≥ 0. Then, ℑ(X) ≥ 0.

Proof. (i) ⇒ (ii). Letting x0 = ℑ(X), we have g ◦ X − g(x0) =

= (R
(g)
x0 ◦ X)(X − x0) and, by normality and linearity, ℑ(X − x0) =

= ℑ(X)− x0ℑ(IΩ) = ℑ(X)− x0 = 0. Consequently, we have

ℑ(g ◦X)−g(x0) = ℑ(g ◦X)− g(x0)ℑ(IΩ) = ℑ(g ◦X − g(x0)) =

= ℑ((R(g)
x0

◦X)(X−x0)) ≥ ℑ(R(g)
x0

◦X)ℑ(X−x0)=0,

where the inequality follows from (i), on noting that R
(g)
x0 ◦X and X−x0

are comonotonic (R
(g)
x0 is increasing!). Therefore, g(ℑ(X)) ≤ ℑ(g ◦X).



Chebyshev and Jensen inequalities for Choquet integral 275

(ii) ⇒ (iii). Let I = R and g(x) = |x|. On noting that g ◦X = X ,

|R(g)
ℑ(X)| ≤ 1 and R

(g)
ℑ(X) is increasing, we have g ◦X,R

(g)
ℑ(X) ◦X ∈ D and

hence, by (ii), 0 ≤ |ℑ(X)| ≤ ℑ(|X|) = ℑ(X).
(iii) ⇒ (i). Plainly, by (iii) and linearity, the functional ℑ is mono-

tone. Then, (i) immediately follows from Prop. 2.4 in [7]. ♦

Remark 2.9. Note that the hypothesis R
(g)
ℑ(X) ◦X ∈ D, assumed in (ii)

of the previous theorem, can be dropped whenever R
(g)
x is bounded for

some x ∈ I.
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