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Abstract: A general summability method, the so-called θ-summability is con-
sidered for multi-dimensional Fourier series. It is proved that if the kernel
functions are uniformly bounded in a Herz space then the restricted maximal
operator of the θ-means of a distribution is of weak type (1, 1), provided that
the supremum in the maximal operator is taken over a cone-like set. From this
it follows that σθ

n
f → f a.e. for all f ∈ L1(T

d). Moreover, σθ
n
f(x) converges

to f(x) over a cone-like set at each Lebesgue point of f ∈ L1(T
d) if and only

if the kernel functions are uniformly bounded in a suitable Herz space. The
Cesàro, Riesz and Weierstrass summations are investigated as special cases of
the θ-summation.

1. Introduction

The well-known Lebesgue [8] theorem says that for every integrable
function f the Fejér means σnf(x) =

1
n

∑n−1
k=0 skf(x) converge to f(x) as

n → ∞ at each Lebesgue point of f , where skf denotes the kth partial
sum of the Fourier series of f . Almost every point is a Lebesgue point
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of f . Later Alexits [1] generalized this result and gave a sufficient and
necessary condition such that the singular integrals converge at every
Lebesgue point.

For multi-dimensional trigonometric-Fourier series Marcinkievicz
and Zygmund [9, 17] proved that the Fejér means σnf of a function
f ∈ L1(T

d) converge a.e. to f as n → ∞ provided that n is in a
cone, i.e., τ−1 ≤ nk/nj ≤ τ for every k, j = 1, . . . , d and for some
τ ≥ 1 (n = (n1, . . . , nd) ∈ N

d). We have extended this result to the
θ-summation in [14]. The so called θ-summation is a general method of
summation and it is intensively studied in the literature (see e.g. Butzer
and Nessel [3], Trigub and Belinsky [13] and Weisz [14, 4, 5] and the ref-
erences therein). Similar results for so-called cone-like sets can be found
in Gát [6] and Weisz [15, 16].

In this paper we extend the results concerning the Lebesgue points
to cone-like sets defined by a function γ. We introduce a new version of
the Hardy–Littlewood maximal function depending on γ and show that
if the kernel functions of the θ-summation are uniformly bounded in a
modified Herz space, then the maximal function σθ

γf can be estimated by
the Hardy–Littlewood maximal function Mγ

p f , provided that the supre-
mum in the maximal operator is taken over a cone-like set. Since Mγ

p is
of weak type (p, p) we obtain σθ

nf → f a.e. over a cone-like set for all
f ∈ Lp(T

d). The set of convergence is also characterized, the convergence
holds at every p-Lebesgue point of f . The converse holds also, more ex-
actly, σθ

nf(x) → f(x) over a cone-like set at each p-Lebesgue point of
f ∈ Lp(T

d) if and only if the kernel functions are uniformly bounded in
the Herz space. As special cases five examples of the θ-summation are
considered, amongst others the Cesàro, Riesz and Weierstrass summa-
tions. Similar results for Fourier transforms can be found in Feichtinger
and Weisz [5, 15].

2. Wiener algebra

Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Y
d be its Cartesian

product Y× . . .×Y taken with itself d-times. For x = (x1, . . . , xd) ∈ R
d

and u = (u1, . . . , ud) ∈ R
d set u · x :=

∑d
k=1 ukxk.

We briefly write Lp or Lp(T
d) instead of Lp(T

d, λ) space equipped
with the norm (or quasi-norm) ‖f‖p := (

∫
Td |f |p dλ)1/p (0 < p ≤ ∞),

where T = [−π, π] is the torus and λ is the Lebesgue measure.
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The weak Lp space, Lp,∞(Td) (0 < p < ∞) consists of all measur-
able functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞,

while we set L∞,∞(Td) = L∞(Td). Note that Lp,∞(Td) is a quasi-normed
space (see Bergh and Löfström [2]). It is easy to see that for each 0 <
< p ≤ ∞,

Lp(T
d) ⊂ Lp,∞(Td) and ‖ · ‖p,∞ ≤ ‖ · ‖p.

The space of continuous functions with the supremum norm is denoted
by C(Td).

A measurable function f belongs to the Wiener amalgam space
W (L∞, ℓ1)(R

d) if

‖f‖W (L∞,ℓ1) :=
∑

k∈Zd

sup
x∈[0,1)d

|f(x+ k)| <∞.

It is easy to see that W (L∞, ℓ1)(R
d) ⊂ Lp(R

d) for all 1 ≤ p ≤ ∞.
The closed subspace of W (L∞, ℓ1)(R

d) containing continuous functions
is denoted by W (C, ℓ1)(R

d) and is called Wiener algebra. It is used quite
often in Gabor analysis, because it provides a convenient and general
class of windows (see e.g. Gröchenig [7]). It turned out in Feichtinger
and Weisz [4, 5] that it can be well applied in summability theory, too.

3. θ-summability of Fourier series

We will consider the θ-summation defined by a multi-parameter
sequence. Let

(1) θ =
(
θ(k, n), k ∈ Z

d, n ∈ N
d
)

be a 2d-parameter sequence of real numbers satisfying

(2) θ(0, . . . 0, n) = 1, lim
n→∞

θ(k, n) = 1 (θ(k, n))k∈Zd ∈ ℓ1

for each n ∈ N
d. Recall that for a distribution f ∈ S ′(Td) the nth Fourier

coefficient is defined by f̂(n) := f(e−ın·x) (n ∈ Z
d, ı =

√
−1). In special

case, if f ∈ L1(T
d) then

f̂(n) =
1

(2π)d

∫

Td

f(t)e−ın·t dt (n ∈ Z
d).
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The θ-means of a distribution f ∈ S ′(Td) are defined by
(3)

σθ
nf(x) :=

∞∑

k1=−∞

. . .
∞∑

kd=−∞

θ(−k, n)f̂(k)eık·x =
1

(2π)d

∫

T

f(x− t)Kθ
n(t) dt

(x ∈ T
d, n ∈ N

d), where Kθ
n denotes the θ-kernel

Kθ
n(t) :=

∞∑

k1=−∞

. . .

∞∑

kd=−∞

θ(−k, n)eık·t (t ∈ T
d).

Observe that (2) ensures that Kθ
n ∈ L1(T).

We can also define a θ-summation by one single function θ defined
on R

d. In this case we define the sequence in (1) by

θ(k, n) := θ
(k1
n1

, . . . ,
kd
nd

)
(k ∈ Z

d, n ∈ N
d).

If θ(0) = 1 and θ ∈ W (C, ℓ1)(R
d) then (2) is satisfied, because

∞∑

k1=−∞

. . .

∞∑

kd=−∞

∣∣∣θ
(k1
n1

, . . . ,
kd
nd

)∣∣∣ ≤
∞∑

l1=−∞

. . .

∞∑

ld=−∞

( d∏

j=1

nj

)
sup

x∈[0,1)

|θ(x+l)|=

=
( d∏

j=1

nj

)
‖θ‖W (C,ℓ1) <∞.

The Fourier transform of f ∈ L1(R
d) is given by

f̂(x) :=

∫

Rd

f(t)e−2πıx·t dt (x ∈ R
d).

If θ is a function and θ̂ ∈ L1(R
d) then

(4) σθ
nf(x) =

( d∏

j=1

nj

)∫

Rd

f(x− t)θ̂(n1t1, . . . , ndtd) dt

for all x ∈ T
d, n ∈ N

d and f ∈ L1(T
d), where f is extended periodically

to R
d (see Feichtinger and Weisz [4]).

4. Hardy–Littlewood inequality and cone-like sets

Suppose that for all j = 2, . . . , d, γj : R+ → R+ are strictly in-
creasing and continuous functions such that γj(1) = 1, lim∞ γj =∞ and
lim+0 γj = 0. Moreover, suppose that there exist cj,1, cj,2, ξ > 1 such that

(5) cj,1γj(x) ≤ γj(ξx) ≤ cj,2γj(x) (x > 0).
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Note that this is satisfied if γj is a power function. For convenience
we extend the notations for j = 1 by γ1 := I and c1,1 = c1,2 = ξ.
Here I denotes the identity function I(x) = x. Let γ = (γ1, . . . , γd)
and τ = (τ1, . . . , τd) with τ1 = 1 and fixed τj ≥ 1 (j = 2, . . . , d). We
will investigate the Hardy–Littlewood maximal operator and later the
maximal operator of the θ-summation over a cone-like set (with respect
to the first dimension)

(6) R
d
τ,γ :=

{
x ∈ R

d
+ : τ−1

j γj(n1) ≤ nj ≤ τjγj(n1), j = 2, . . . , d
}
.

If each γj is the identity, j = 2, . . . , d, then we get the cone defined by τ .
The condition on γj seems to be natural, because Gát [6] proved in the
two-dimensional case that to each cone-like set with respect to the first
dimension there exists a larger cone-like set with respect to the second
dimension and reversely, if and only if (5) holds.

Lloc
p (Td) (1 ≤ p ≤ ∞) denotes the space of measurable functions f

for which |f |p is locally integrable, resp. f is locally bounded if p = ∞.
In [15] we have introduced the Hardy–Littlewood maximal function on a
cone-like set by

M τ,γ
p f(x) := sup

x∈I,(|I1|,...,|Id|)∈Rd
τ,γ

(
1

|I|

∫

I

|f |p dλ
)1/p

(x ∈ T
d)

with the usual modification for p = ∞, where f ∈ Lloc
1 (Td) and the

supremum is taken over all rectangles I := I1 × · · · × Id ⊂ T
d with

sides parallel to the axes. Taking the supremum over rectangles with
|Ij| = γj(|I1|), j = 2, . . . , d, (i.e. τj = 1, j = 1, . . . , d), we obtain the
maximal operator Mγ

p . The inequality

Mγ
p f ≤M τ,γ

p f ≤ CMγ
p f

was shown in Weisz [15]. In case p = 1 we write simply M τ,γ and Mγ .
If each γj is the identity function then we get back the classical Hardy–
Littlewood maximal function defined on a cone. The following theorem
was proved in [15].

Theorem 1. The maximal operator M τ,γ
p (1 ≤ p ≤ ∞) is of weak type

(p, p), i.e.

‖M τ,γ
p f‖p,∞ = sup

ρ>0
ρλ(M τ,γ

p f > ρ)1/p ≤ Cp‖f‖p (f ∈ Lp(T
d)).

Moreover, if 1 ≤ p < r ≤ ∞ then

‖M τ,γ
p f‖r ≤ Cr‖f‖r (f ∈ Lr(T

d)).
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Since the set of continuous functions are dense in L1(T
d), the usual

density argument due to Marcinkiewicz and Zygmund [9] implies

Corollary 1. If f ∈ L1(T
d) then

lim
x∈I,(|I1|,...,|Id|)∈Rdτ,γ

|Ij |→0,j=1,...,d

1

|I|

∫

I

f dλ = f(x) for a.e. x ∈ T
d.

5. Herz spaces

The Eq(R
d) (1 ≤ q ≤ ∞) spaces were used recently by Feichtinger

and Weisz [5] in the summability theory of Fourier transforms. A function
belongs to the (homogeneous) Herz space Eq(R

d) (1 ≤ q ≤ ∞) if

‖f‖Eq
:=

∞∑

k=−∞

2kd(1−1/q)‖f1{x∈Rd:2k−1π≤‖x‖∞<2kπ}‖q <∞.

Here we introduce a generalization of the Eq(R
d) spaces depending

on the function γ (see [15]). A function f ∈ Lloc
q (Rd) is in the space

Eγ
q (R

d) (1 ≤ q ≤ ∞) if

(7) ‖f‖Eγ
q
:=

∞∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q

‖f1Pk
‖q <∞,

where ξ and γj are defined in (5) and

Pk :=

d∏

j=1

(
− γj(ξ

k)π, γj(ξ
k)π

)
\

d∏

j=1

(
− γj(ξ

k−1)π, γj(ξ
k−1)π

)
(k ∈ Z).

If γj = I for all j = 1, . . . , d and ξ = 2 then we get back the original
spaces Eq(R

d). However, it is easy to see that the spaces are equivalent
for all ξ > 1, whenever each γj is the identity function. If we modify the
definition of Pk,

P ′
k=

d∏

j=1

(
−γj(ξk)π, γj(ξk)π

)
\

d∏

j=1

(
−γj(ξk−1)π, γj(ξ

k−1)π
)⋂

T
d (k∈Z),

then we get the definition of the space Eγ
q (T

d). This means that we
have to take the sum in (7) for k ≤ 0, only, because γj(1) = 1 for all
j = 1, . . . , d. Observe that

|Pk| ∼
d∏

j=1

γj(ξ
k) (k ∈ Z).
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Indeed,

|Pk| = (2π)d
( d∏

j=1

γj(ξ
k)
)(

1−
d∏

j=1

γj(ξ
k−1)

γj(ξk)

)

and
1

cj,2
γj(ξ

k) ≤ γj(ξ
k−1) ≤ 1

cj,1
γj(ξ

k)

because of (5). Thus

(2π)d
( d∏

j=1

γj(ξ
k)
)(

1−
d∏

j=1

1

cj,1

)
≤ |Pk| ≤ (2π)d

( d∏

j=1

γj(ξ
k)
)(

1−
d∏

j=1

1

cj,2

)
.

This implies easily that

L1(X
d) = Eγ

1 (X
d) ←֓ Eγ

q (X
d) ←֓ Eγ

q′(X
d) ←֓ Eγ

∞(Xd) (1<q<q′<∞),

where X denotes either R or T. Moreover,

(8) Eγ
q (T

d) ←֓ Lq(T
d) (1 ≤ q ≤ ∞).

Indeed, we have

γj(ξ
k) ≤ 1

cj,1
γj(ξ

k+1) ≤ . . . ≤ 1

c
|k|
j,1

and

‖f‖Eγ
q (Td) ≤

0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q

‖f1Pk
‖q ≤

≤
0∑

k=−∞

( d∏

j=1

1

cj,1

)|k|(1−1/q)

‖f1Pk
‖q ≤ Cq‖f‖q.

6. Convergence of the θ-means of Fourier transforms

For a given τ, γ satisfying the above conditions the restricted max-
imal θ-operator are defined by

σθ
γf := sup

n∈Rd
τ,γ

|σθ
nf |.

If γj = I for all j = 2, . . . , d then we get a cone. This case was considered
in Marcinkiewicz and Zygmund [9, 17] and more recently by the author
[14]. Obviously, σθ

nf → f in L1- or C-norm if and only if the numbers
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‖Kθ
n‖1 are uniformly bounded (n ∈ R

d
τ,γ). In [4, 15] we have proved if θ

is a function then this condition is equivalent to θ̂ ∈ L1(R
d).

Here we consider the pointwise convergence of the θ-means. In the
one-dimensional case Alexits [1] and Torchinsky [12] proved that if there

exists an even function η such that η is non-increasing on R+, |θ̂| ≤ η,
η ∈ L1(R) then the maximal operator of the θ-means is of weak type

(1, 1). This condition is equivalent to θ̂ ∈ E∞(R) (see [5]). Now we
generalize this theorem as follows.

Theorem 2. Let θ satisfy (2), 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1. If

(9) sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C,

then

σθ
γf ≤ C

(
sup

n∈Rd
τ,γ

‖Kθ
n‖Eγ

q (Td)

)
M τ,γ

p f a.e.

for all f ∈ Lp(T
d).

Proof. By (3),

|σθ
nf(x)|=

1

(2π)d

∣∣∣∣
∫

Td

f(x− t)Kθ
n(t) dt

∣∣∣∣≤
1

(2π)d

0∑

k=−∞

∫

Pk

|f(x− t)||Kθ
n(t)| dt.

Then

|σθ
nf(x)| ≤

1

(2π)d

0∑

k=−∞

(∫

Pk

|Kθ
n(t)|q dt

)1/q(∫

Pk

|f(x− t)|p dt
)1/p

.

It is easy to see that if

G(u) :=

(∫

|tj |<uj ,j=1,...,d

|f(x− t)|p dt
)1/p

(u ∈ R
d
+)

then
Gp(u)
∏d

j=1 uj

≤ C(M τ,γ
p f)p(x) (u ∈ R

d
τ,γ).

Therefore

|σθ
nf(x)| ≤ C

0∑

k=−∞

(∫

Pk

|Kθ
n(t)|q dt

)1/q

G(γ1(ξ
k)π, . . . , γd(ξ

k)π) ≤

≤ C

0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1/p(∫

Pk

|Kθ
n(t)|q dt

)1/q

M τ,γ
p f(x) =

= C‖Kθ
n‖Eq(Td)M

τ,γ
p f(x),



Herz spaces and pointwise summability of Fourier series 243

which shows the theorem. ♦

Note that (2) implies Kθ
n ∈ L∞(Td) ⊂ Lq(T

d) ⊂ Eγ
q (T

d) for all
n ∈ N

d. Th. 1 implies immediately

Theorem 3. Let θ satisfy (2), 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1. If

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C,

then

‖σθ
γf‖p,∞ ≤ Cp

(
sup

n∈Rd
τ,γ

‖Kθ
n‖Eγ

q (Td)

)
‖f‖p (f ∈ Lp(T

d)).

Moreover, for every p < r ≤ ∞
‖σθ

γf‖r ≤ C
(

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td)

)
‖f‖r (f ∈ Lr(T

d)).

These inequalities and the usual density theorem due to Marcinkie-
wicz–Zygmund [9] imply

Corollary 2. Let θ satisfy (2), 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1. If

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C,

then
lim

n→∞,n∈Rd
τ,γ

σθ
nf = f a.e.

for all f ∈ Lp(T
d) whenever 1 ≤ p <∞ and for all f ∈ C(Td) whenever

p =∞.

In case the summability method is defined by a function θ and
θ̂ ∈ Eγ

q (R
d) then the preceding theorems hold.

Theorem 4. Suppose that cj = cj,1 = cj,2 for all j = 1, . . . , d. Let

θ ∈ W (C, ℓ1)(R
d), 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1. If θ̂ ∈ Eγ

q (R
d) then

σθ
γf ≤ C‖θ̂‖Eγ

q (Rd)M
τ,γ
p f a.e.

for all f ∈ Lp(T
d).

Proof. Since by (4)

σθ
nf(x) =

1

(2π)d

∫

Td

f(x− t)Kθ
n(t) dt =

=
( d∏

j=1

nj

)∫

Rd

f(x− t)θ̂(n1t1, . . . , ndtd) dt,

we can see that
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Kθ
n(t) = (2π)d

( d∏

j=1

nj

)∑

j∈Zd

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ)).

We will prove that θ̂ ∈ Eγ
q (R

d) implies

(10) ‖Kθ
n‖Eγ

q (Td) ≤ Cq‖θ̂‖Eγ
q (Rd) for all n ∈ R

d
τ,γ.

Since n ∈ R
d
τ,γ we have τ−1

j γj(n1) ≤ nj ≤ τjγj(n1) for all j = 1, . . . , d.
For the term j = 0 of the norm we observe by (6) that
∥∥∥∥
( d∏

j=1

nj

)
θ̂(n1t1, . . . , ndtd)

∥∥∥∥
Eγ

q (Td)

=

=

0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q( d∏

j=1

nj

)(∫

Pk

|θ̂(n1t1, . . . , ndtd)|q dt
)1/q

≤

≤ Cq

0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q( d∏

j=1

γj(n1)
)1−1/q

(∫

Qk

|θ̂(t1, . . . , td)|q dt
)1/q

,

where

Qk :=
d∏

j=1

(
− τjγj(n1)γj(ξ

k)π, τjγj(n1)γj(ξ
k)π

)
\

\
d∏

j=1

(
− τ−1

j γj(n1)γj(ξ
k−1)π, τ−1

j γj(n1)γj(ξ
k−1)π

)
.

Suppose that ξl−1 ≤ n1 < ξl for some l ∈ N. Then by (5),

cl−1
j = γj(ξ

l−1) ≤ γj(n1) ≤ γj(ξ
l) = clj.

We can choose r, s ∈ N such that τj/c
r
j ≤ 1 and csj/τj ≥ 1 for all

j = 1, . . . , d. This and (5) imply that

τjγj(n1)γj(ξ
k) ≤ τjγj(ξ

l)γj(ξ
k) = τjc

l
jγj(ξ

k) =
τj
crj
γj(ξ

k+l+r) ≤ γj(ξ
k+l+r)

and
1

τj
γj(n1)γj(ξ

k−1) ≥ 1

τj
γj(ξ

l−1)γj(ξ
k−1) =

=
1

τj
cl−1
j γj(ξ

k−1) =
csj
τj
γj(ξ

k+l−s−2) ≥ γj(ξ
k+l−s−2).

If
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Qk,l :=

d∏

j=1

(
−γj(ξk+l+r)π, γj(ξ

k+l+r)π
)
\

d∏

j=1

(
−γj(ξk+l−s−2)π, γj(ξ

k+l−s−2)π
)
,

then

∥∥∥∥
( d∏

j=1

nj

)
θ̂(n1t1, . . . , ndtd)

∥∥∥∥
Eγ

q (Td)

≤

(11)

≤ Cq

0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q( d∏

j=1

γj(ξ
l)
)1−1/q

(∫

Qk,l

|θ̂(t1, . . . , td)|q dt
)1/q
≤

≤ Cq

0∑

k=−∞

( d∏

j=1

cs+1
j

)1−1/q( d∏

j=1

γj(ξ
k+l−s−1)

)1−1/q

×

×
( k+l+r∑

i=k+l−s−1

∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

≤

≤ Cq

0∑

k=−∞

k+l+r∑

i=k+l−s−1

( d∏

j=1

γj(ξ
i)
)1−1/q(∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

≤

≤ Cq

l+r∑

i=−∞

( d∏

j=1

γj(ξ
i)
)1−1/q(∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

≤

≤ Cq‖θ̂‖Eγ
q (Rd).

Moreover,

∥∥∥
( d∏

j=1

nj

) ∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∥∥∥
Eγ

q (Td)
=

=
0∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1−1/q( d∏

j=1

nj

)
×

×
(∫

Pk

∣∣∣
∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∣∣∣
q

dt

)1/q

≤

≤
0∑

k=−∞

( d∏

j=1

cj

)k(1−1/q)( d∏

j=1

nj

)
×
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×
(∫

Td

∣∣∣
∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∣∣∣
q

dt

)1/q

≤

≤ Cq

( d∏

j=1

nj

)(∫

Td

∣∣∣
∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∣∣∣
q

dt

)1/q

.

Let
Ri := {j ∈ Z

d : j 6= 0, n1(T+ 2j1π)× . . .× nd(T+ 2jdπ) ∩ Pi 6= 0}.
Since

|nj(tj + 2jjπ)| ≥
1

τj
γj(n1)π ≥

1

τj
γj(ξ

l−1)π =

=
1

τj
cl−1
j π =

csj
τj
γj(ξ

l−s−1) ≥ γj(ξ
l−s−1),

we conclude

∥∥∥
( d∏

j=1

nj

) ∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∥∥∥
Eγ

q (Td)
≤

≤Cq

( d∏

j=1

nj

)(∫

Td

∣∣∣
∞∑

i=(l−s)∨0

∑

j∈Ri

θ̂(n1(t1+2j1π), . . . , nd(td+2jdπ))
∣∣∣
q

dt

)1/q
≤

≤Cq

∞∑

i=(l−s)∨0

( d∏

j=1

nj

)(∫

Td

∣∣∣
∑

j∈Ri

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∣∣∣
q

dt

)1/q
.

Since Ri has at most C
∏d

j=1
γj(ξi)

nj
members, we get that

∥∥∥
( d∏

j=1

nj

) ∑

j∈Zd,j 6=0

θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))
∥∥∥
Eγ

q (Td)
≤(12)

≤ Cq

∞∑

i=(l−s)∨0

( d∏

j=1

nj

)(∑

j∈Ri

( d∏

m=1

γm(ξ
i)

nm

)q−1

×

×
∫

Td

|θ̂(n1(t1 + 2j1π), . . . , nd(td + 2jdπ))|q dt
)1/q

≤

≤ Cq

∞∑

i=(l−s)∨0

( d∏

j=1

γj(ξ
i)
)1−1/q( d∏

j=1

nj

)(∑

j∈Ri

( d∏

m=1

nm

)−q

×
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×
∫

n1(T+2j1π)×...×nd(T+2jdπ)

|θ̂(t1, . . . , td)|q dt
)1/q

≤

≤ Cq

∞∑

i=(l−s)∨0

( d∏

j=1

γj(ξ
i)
)1−1/q

(∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

≤

≤ Cq‖θ̂‖Eγ
q (Rd),

which proves (10). The theorem follows from Th. 2. ♦

Theorem 5. Let θ ∈ W (C, ℓ1)(R
d), 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. If

θ̂ ∈ Eγ
q (R

d), then

‖σθ
γf‖p,∞ ≤ Cp‖θ̂‖Eγ

q (Rd)‖f‖p (f ∈ Lp(T
d)).

Moreover, for every p < r ≤ ∞
‖σθ

γf‖r ≤ C‖θ̂‖Eγ
q (Rd)‖f‖r (f ∈ Lr(T

d)).

Corollary 3. Let θ ∈ W (C, ℓ1)(R
d), θ(0) = 1, 1 ≤ p ≤ ∞ and

1/p+ 1/q = 1. If θ̂ ∈ Eγ
q (R

d), then

lim
n→∞,n∈Rd

τ,γ

σθ
nf = f a.e.

for all f ∈ Lp(T
d) whenever 1 ≤ p <∞ and for all f ∈ C(Td) whenever

p =∞.

If f ∈ Lp(T
d) (1 ≤ p ≤ 2) implies the a.e. convergence of Cor. 2,

then σθ
γ is bounded from Lp(T

d) to Lp,∞(Td), as in Th. 3 (see Stein [10]).
The partial converse of Th. 2 is given in the next result. More exactly,
if σθ

γf can be estimated pointwise by M τ,γ
p f , then (9) holds.

Theorem 6. Let θ satisfy (2), 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Suppose
that

(13) σθ
γf(x) ≤ CM τ,γ

p f(x)

for all x ∈ T
d and for all f ∈ Lp(T

d). Then

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C.

Proof. Let us define the space Dγ
p (T

d) (1 ≤ p ≤ ∞) by the norm

(14) ‖f‖Dγ
p (Td) := sup

0<r≤1

(
1

∏d
j=1 γj(r)

∫
∏d

j=1(−γj(r)π,γj(r)π)

|f |p dλ
)1/p

.
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Observe that the norm

(15) ‖f‖∗ = sup
k≤0

( d∏

j=1

γj(ξ
k)
)−1/p

‖f1Pk
‖p

is an equivalent norm on Dγ
p (T

d). Indeed, choosing r = ξk (k ≤ 0) we
conclude ‖f‖∗ ≤ C‖f‖Dγ

p
. On the other hand, if ξn−1 < r ≤ ξn for some

n ≤ 0 then
1

∏d
j=1 γj(r)

∫
∏d

j=1(−γj(r)π,γj(r)π)

|f |p dλ ≤

≤
( d∏

j=1

γj(ξ
n−1)

)−1
∫
∏d

j=1(−γj (ξn)π,γj(ξn)π)

|f |p dλ =

=
( d∏

j=1

γj(ξ
n−1)

)−1
n∑

k=−∞

∫

Pk

|f |p dλ ≤

≤
( d∏

j=1

γj(ξ
n−1)

)−1
n∑

k=−∞

( d∏

j=1

γj(ξ
k)
)
‖f‖p∗.

Note that

γj(ξ
k) ≤ 1

cj,1
γj(ξ

k+1) ≤ . . . ≤ 1

cn−k
j,1

γj(ξ
n) and γj(ξ

n−1) ≥ 1

cj,2
γj(ξ

n).

Hence

1
d∏

j=1

γj(r)

∫
∏d

j=1(−γj(r)π,γj(r)π)

|f |p dλ ≤
( d∏

j=1

cj,2

) n∑

k=−∞

( d∏

j=1

1

cj,1

)n−k

‖f‖p∗ ≤

≤ C‖f‖p∗,
or, in other words ‖f‖Dγ

p (Td) ≤ C‖f‖∗. Choosing r = 1 we can see that

Dγ
p (T

d) ⊂ Lp(T
d) and ‖f‖p ≤ C‖f‖Dγ

p (Td). Taking the supremums in
(14) and (15) for all 0 < r < ∞ and k ∈ Z then we obtain the space
Dγ

p (R
d).
It is easy to see by (15) that

(16) sup
‖f‖

D
γ
p (Td)

≤1

∣∣∣
∫

Td

f(−t)Kθ
n(t) dt

∣∣∣ = ‖Kθ
n‖Eγ

q (Td).

There exists a function f ∈ Dγ
p (T

d) with ‖f‖Dγ
p
≤ 1 such that
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‖Kθ
n‖Eγ

q (Td)

2
≤

∣∣∣
∫

Td

f(−t)Kθ
n(t) dt

∣∣∣.

Since f ∈ Lp(R
d), by (13),

|σθ
nf(0)| =

∣∣∣
∫

Td

f(−t)Kθ
n(t) dt

∣∣∣ ≤ CM τ,γ
p f(0) (n ∈ R

d
τ,γ),

which implies

‖Kθ
n‖Eγ

q (Td) ≤ CM τ,γ
p f(0) ≤ CMγ

p f(0) ≤ C‖f‖Dγ
p
≤ C.

This proves the result. ♦

Note that the norm of Dγ
p (T

d) in (14) is equivalent to

‖f‖ = sup
r∈(0,1]d,r∈Rd

τ,γ

(
1

∏d
j=1 rj

∫
∏d

j=1(−rjπ,rjπ)

|f |p dλ
)1/p

.

We will characterize the points of convergence. To this end we
generalize the concept of Lebesgue points. By Cor. 1,

lim
0∈I,(|I1|,...,|Id|)∈Rdτ,γ

|Ij |→0,j=1,...,d

1

|I|

∫

I

f(x+ u) du = f(x) for a.e. x ∈ T
d,

where f ∈ Lloc
1 (Td). A point x ∈ T

d is called a p-Lebesgue point (or a
Lebesgue point of order p) of f ∈ Lloc

p (Td) if

lim
0∈I,(|I1|,...,|Id|)∈Rdτ,γ

|Ij |→0,j=1,...,d

(
1

|I|

∫

I

|f(x+ u)− f(x)|p du
)1/p

= 0 (1 ≤ p <∞)

resp.
lim

0∈I,(|I1|,...,|Id|)∈Rdτ,γ
|Ij |→0,j=1,...,d

sup
u∈I
|f(x+ u)− f(x)| = 0 (p =∞).

One can see that this definition is equivalent to

lim
r→0

(
1

∏d
j=1 γj(r)

∫
∏d

j=1(−γj(r)π,γj(r)π)

|f(x+u)−f(x)|p du
)1/p

=0 (1≤p<∞)

resp. to
lim
r→0

sup
u∈

∏d
j=1(−γj(r)π,γj(r)π)

|f(x+ u)− f(x)| = 0 (p =∞).

Usually the 1-Lebesgue points are considered in the case if each γj is the
identity function (cf. Stein and Weiss [11] or Butzer and Nessel [3]). One
can show in the usual way that almost every point x ∈ T

d is a p-Lebesgue
point of f ∈ Lp(T

d) if 1 ≤ p < ∞. x ∈ T
d is an ∞-Lebesgue point of
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f ∈ Lloc
∞ (Td) if and only if f is continuous at x. Moreover, all r-Lebesgue

points are p-Lebesgue points, whenever p < r.
The next theorem generalizes Lebesgue’s theorem.

Theorem 7. Let θ satisfy (2), 1 ≤ p ≤ ∞, 1/p+ 1/q = 1 and

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C.

If for all δ > 0

(17) lim
n→∞,n∈Rd

τ,γ

‖Kθ
n‖Lq(Td\(−δ,δ)d) = 0,

then
lim

n→∞,n∈Rd
τ,γ

σθ
nf(x) = f(x)

for all p-Lebesgue points of f ∈ Lp(T
d).

Proof. Now denote by

G(u) :=

(∫

|tj |<uj ,j=1,...,d

|f(x− t)− f(x)|p dt
)1/p

(u ∈ R+).

Since x is a p-Lebesgue point of f , for all ǫ > 0 there exists m ∈ Z,
m ≤ 0 such that

(18)
G(γ1(r)π, . . . , γd(r)π)(∏d

j=1 γj(r)
)1/p

≤ ǫ if 0 < r ≤ ξm.

Note that

σθ
nf(x)− f(x) =

1

(2π)d

∫

Td

(f(x− t)− f(x))Kθ
n(t) dt.

Thus

|σθ
nf(x)− f(x)| ≤ C

∫

Td

|f(x− t)− f(x)||Kθ
n(t)| dt =

= C

∫
∏d

j=1(−γj(ξm)π,γj(ξm)π)

|f(x− t)− f(x)||Kθ
n(t)| dt+

+ C

∫

Td\
∏d

j=1(−γj(ξm)π,γj(ξm)π)

|f(x−t)−f(x)||Kθ
n(t)| dt=:

=: A0(x) + A1(x).
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We estimate A0(x) by

A0(x) = C
m∑

k=−∞

∫

Pk

|f(x− t)− f(x)||Kθ
n(t)| dt ≤

≤ C
m∑

k=−∞

(∫

Pk

|Kθ
n(t)|q dt

)1/q(∫

Pk

|f(x− t)− f(x)|p dt
)1/p

≤

≤ C

m∑

k=−∞

(∫

Pk

|Kθ
n(t)|q dt

)1/q

G(γ1(ξ
k)π, . . . , γd(ξ

k)π).

Then, by (18),

A0(x) ≤ Cqǫ
m∑

k=−∞

( d∏

j=1

γj(ξ
k)
)1/p

(∫

Pk

|Kθ
n(t)|q dt

)1/q

≤ Cqǫ‖Kθ
n‖Eγ

q (Td).

There exists δ > 0 such that (−δ, δ)d ⊂ ∏d
j=1(−γj(ξm)π, γj(ξm)π).

Then

A1(x) ≤ C

∫

Td\(−δ,δ)d
|f(x− t)− f(x)||Kθ

n(t)| dt ≤

≤ C
(∫

Td\(−δ,δ)d
|Kθ

n(t)|q dt
)1/q

(‖f‖p + |f(x)|),

which tends to 0 as n → ∞, n ∈ R
d
τ,γ. This completes the proof of the

theorem. ♦

Observe that (8) and (−δ′, δ′)d ⊂
d∏

j=1

(−γj(ξk)π, γj(ξk)π) ⊂ (−δ, δ)d

imply

‖Kθ
n‖Eγ

q (Td\(−δ,δ)d) ≤ ‖Kθ
n‖Lq(Td\

∏d
j=1(−γj(ξk)π,γj(ξk)π))

≤(19)

≤
( 0∑

l=k+1

∫

Pl

|Kθ
n(t)|q dt

)1/q

≤

≤ Cδ

0∑

l=k+1

( d∏

j=1

γj(ξ
k)
)1−1/q

(∫

Pl

|Kθ
n(t)|q dt

)1/q
≤

≤ Cδ‖Kθ
n‖Eγ

q (Td\
∏d

j=1(−γj(ξk)π,γj(ξk)π))
≤

≤ Cδ‖Kθ
n‖Eγ

q (Td\(−δ′,δ′)d).
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Condition (17) is trivially equivalent to

lim
n→∞,n∈Rd

τ,γ

‖Kθ
n‖Lq(Td\

∏d
j=1(−γj (ξk)π,γj(ξk)π))

= 0

and hence to
lim

n→∞,n∈Rd
τ,γ

‖Kθ
n‖Eγ

q (Td\(−δ,δ)d) = 0.

In case θ̂ ∈ Eγ
q (R

d) we can formulate a little bit simpler version of
the preceding theorem.

Theorem 8. Suppose that cj = cj,1 = cj,2 for all j = 1, . . . , d. Let

θ ∈ W (C, ℓ1)(R
d), θ(0) = 1, θ̂ ∈ Eγ

q (R
d), 1 ≤ p ≤ ∞ and 1/p+ 1/q = 1.

Then
lim

n→∞,n∈Rd
τ,γ

σθ
nf(x) = f(x)

for all p-Lebesgue points of f ∈ Lp(T
d).

Proof. By (10) the first condition of Th. 7 is satisfied. On the other
hand, let

d∏

j=1

(−γj(ξk0)π, γj(ξk0)π) ⊂ (−δ, δ)d, τj/c
r
j ≤ 1, csj/τj ≥ 1

and ξl−1 ≤ n1 < ξl as in the proof of Th. 4. Obviously, if n→∞, n ∈ R
d
τ,γ

then l →∞. We get similarly to (11) and (12) that

‖Kθ
n‖Eγ

q (Td\(−δ,δ)d) ≤

≤ Cq

∞∑

i=k0+l−s−1

( d∏

j=1

γj(ξ
i)
)1−1/q(∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

+

+ Cq

∞∑

i=(l−s)∨0

( d∏

j=1

γj(ξ
i)
)1−1/q(∫

Pi

|θ̂(t1, . . . , td)|q dt
)1/q

,

which tends to 0 as n → ∞, n ∈ R
d
τ,γ, since θ̂ ∈ Eγ

q (R
d). Then (17)

follows by (19), which finishes the proof of our theorem. ♦

Since each point of continuity is a p-Lebesgue point, we have

Corollary 4. If the conditions of Th. 7 or Th. 8 are satisfied and if
f ∈ L1(T

d) is continuous at a point x, then

lim
n→∞,n∈Rd

τ,γ

σθ
nf(x) = f(x).

The converse of Th. 7 holds also.
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Theorem 9. Suppose that 1 ≤ p ≤ ∞, 1/p + 1/q = 1 and (2) and (17)
hold. If

lim
n→∞,n∈Rd

τ,γ

σθ
nf(x) = f(x)

for all p-Lebesgue points of f ∈ Lp(T
d), then

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C.

Proof. The space Dγ,0
p (Td) consists of all functions f ∈ Dγ

p (T
d) for which

f(0) = 0 and 0 is a p-Lebesgue point of f , in other words

lim
r→0

(
1

∏d
j=1 γj(r)

∫
∏d

j=1(−γj(r)π,γj (r)π)

|f(u)|p du
)1/p

= 0

with the usual modification for p =∞. We can easily show that Dγ,0
p (Td)

is a Banach space. We get from the conditions of the theorem that

lim
n→∞,n∈Rd

τ,γ

σθ
nf(0) = 0 for all f ∈ Dγ,0

p (Td).

Thus the operators

Un : Dγ,0
p (Td)→ R, Unf := σθ

nf(0) (n ∈ R
d
τ,γ)

are uniformly bounded by the Banach–Steinhaus theorem. Observe that
in (16) we may suppose that f is 0 in a neighborhood of 0. Then

C ≥ ‖Un‖ =

= sup
‖f‖

D
γ,0
p (Td)

≤1

∣∣∣
∫

Td

f(−t)Kθ
n(t) dt

∣∣∣ =

= sup
‖f‖

D
γ
p (Td)

≤1

∣∣∣
∫

Td

f(−t)Kθ
n(t) dt

∣∣∣ =

= ‖Kθ
n‖Eγ

q (Td)

for all n ∈ R
d
τ,γ. ♦

Corollary 5. Suppose that 1 ≤ p ≤ ∞, 1/p+ 1/q = 1 and (2) and (17)
holds. Then

lim
n→∞,n∈Rd

τ,γ

σθ
nf(x) = f(x)

for all p-Lebesgue points of f ∈ Lp(T
d) if and only if

sup
n∈Rd

τ,γ

‖Kθ
n‖Eγ

q (Td) ≤ C.

A one-dimensional version of this theorem can be found in the book
of Alexits [1].
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7. Some summability methods

In this section we consider some summability methods as special
cases of the θ-summation. The details can be found in [15]. Note that
q = ∞ is the most important case in the results of Sec. 6. Let γj(ξx) =
= ξωjγj(x) (x > 0) and ω1 = 1.

Example 1 ((C, α) or Cesàro summation). Let d = 1 and

θ(k, n) =

{Aα
n−1−|k|

Aα
n−1

if |k| ≤ n− 1,

0 if |k| ≥ n

for some 0 < α <∞, where

Aα
k :=

(
k + α

k

)
=

(α + 1)(α+ 2) . . . (α + k)

k!
= O(kα) (k ∈ N).

The Cesàro means are given by

σθ
nf(x) :=

1

Aα
n−1

n−1∑

k=−n+1

Aα
n−1−|k|f̂(k)e

ıkx.

In case α = 1 we get the Fejér means, i.e.

σ1
nf(x) =

n−1∑

k=−n+1

(
1− |k|

n

)
f̂(k)eıkx =

1

n

n−1∑

k=0

skf(x).

It is known that the kernel functions satisfy

|Kθ
n(u)| ≤ Cmin(n, n−αu−α−1) (n ∈ N, u 6= 0)

(see Zygmund [17]). It is easy to see that (9) and (17) holds as well as
all theorems of this paper.

Example 2 (Riesz summation). Let

θ(x) :=

{
(1− |x|2)α if |x| ≤ 1,

0 if |x| > 1
(x ∈ R

d).

Then
|θ̂(x)| ≤ C|x|−d/2−α−1/2 (x 6= 0).

If

(20)

∑d
j=1 ωj

ωi

− d

2
− 1

2
< α <∞ for all i = 1, . . . , d,

then θ̂ ∈ Eγ
∞(Rd). Here | · | denotes the Euclidean norm.
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Note that for cones, i.e. ωj = 1, j = 1, . . . , d, we get the well known
parameter (d−1)/2 on the left hand side of (20). In case d = 2 we obtain
the condition (1/ω2 − 1/2) ∨ (ω2 − 1/2) < α <∞.

Example 3 (Weierstrass summation). If θ(x) = e−2π|x|2 (x ∈ R
d),

then θ̂(x) = e−2π|x|2 and θ̂ ∈ Eγ
∞(Rd).

Example 4. If θ(x) = e−2π|x| (x ∈ R
d) then θ̂(x) = cd/(1 + |x|2)(d+1)/2.

Suppose that ωd ≤ ωj for all j = 2, . . . , d. If ωd ≤ 1 and
∑d−1

j=1 ωj < dωd

or if ωd > 1 and
∑d

j=2 ωj < d then θ̂ ∈ Eγ
∞(Rd). If d = 2 then we obtain

1/2 < ω2 < 2.

Example 5 (Picard and Bessel summation). In case

θ(x) = 1/(1 + |x|2)(d+1)/2 (x ∈ R
d)

we have θ̂(x) = cde
−2π|x| and θ̂ ∈ Eγ

∞(Rd).
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