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Abstract: A general summability method, the so-called f-summability is con-
sidered for multi-dimensional Fourier series. It is proved that if the kernel
functions are uniformly bounded in a Herz space then the restricted maximal
operator of the #-means of a distribution is of weak type (1, 1), provided that
the supremum in the maximal operator is taken over a cone-like set. From this
it follows that of f — f a.e. for all f € Li(T%). Moreover, of f(x) converges
to f(z) over a cone-like set at each Lebesgue point of f € L;(T¢) if and only
if the kernel functions are uniformly bounded in a suitable Herz space. The
Cesaro, Riesz and Weierstrass summations are investigated as special cases of
the f-summation.

1. Introduction

The well-known Lebesgue [8] theorem says that for every integrable
function f the Fejér means o, f(z) = 1 S sif(x) converge to f(x) as

n — oo at each Lebesgue point of f, where s;f denotes the kth partial
sum of the Fourier series of f. Almost every point is a Lebesgue point
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of f. Later Alexits [1] generalized this result and gave a sufficient and
necessary condition such that the singular integrals converge at every
Lebesgue point.

For multi-dimensional trigonometric-Fourier series Marcinkievicz
and Zygmund [9, 17] proved that the Fejér means o,f of a function
f € Li(T%) converge a.e. to f as n — oo provided that n is in a
cone, i.e., 771 < ni/n; < 7 for every k,j = 1,...,d and for some
T>1(n = (n,...,ng) € NY. We have extended this result to the
f-summation in [14]. The so called #-summation is a general method of
summation and it is intensively studied in the literature (see e.g. Butzer
and Nessel [3], Trigub and Belinsky [13] and Weisz [14, 4, 5] and the ref-
erences therein). Similar results for so-called cone-like sets can be found
in Gét [6] and Weisz [15, 16].

In this paper we extend the results concerning the Lebesgue points
to cone-like sets defined by a function . We introduce a new version of
the Hardy-Littlewood maximal function depending on v and show that
if the kernel functions of the f-summation are uniformly bounded in a
modified Herz space, then the maximal function 02 f can be estimated by
the Hardy-Littlewood maximal function M f, provided that the supre-
mum in the maximal operator is taken over a cone-like set. Since M is
of weak type (p,p) we obtain o’ f — f a.e. over a cone-like set for all
f € L,(T%). The set of convergence is also characterized, the convergence
holds at every p-Lebesgue point of f. The converse holds also, more ex-
actly, o f(x) — f(z) over a cone-like set at each p-Lebesgue point of
f € L,(T?) if and only if the kernel functions are uniformly bounded in
the Herz space. As special cases five examples of the #-summation are
considered, amongst others the Cesaro, Riesz and Weierstrass summa-
tions. Similar results for Fourier transforms can be found in Feichtinger
and Weisz [5, 15].

2. Wiener algebra

Let us fix d > 1, d € N. For a set Y # 0 let Y? be its Cartesian
product Y x ... x Y taken with itself d-times. For x = (x1,...,24) € R?
and u = (u1,...,uy) € RYset u-x:= Zzzl ULTE-

We briefly write L, or L,(T%) instead of L,(T%, \) space equipped
with the norm (or quasi-norm) | f[l, :== ([ |f[PdA)? (0 < p < o0),
where T = [—m, 7] is the torus and A is the Lebesgue measure.
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The weak L, space, L, (T?) (0 < p < 0o) consists of all measur-
able functions f for which

1 f]lp.00 := sup pA(|f] > p)/7 < 0,
p>0

while we set Lo oo(T?) = Loo(T?). Note that L, o (T?) is a quasi-normed
space (see Bergh and Lofstrom [2]). It is easy to see that for each 0 <
<p < o0,
Ly(T?) C Lypoo(T?)  and ||+ [lpoe < | - [lp-

The space of continuous functions with the supremum norm is denoted
by C(T?).

A measurable function f belongs to the Wiener amalgam space
W (Loo, £1)(R?) if

Wz =D sup | f(z+k)| < co.

kezd x€[0,1)4

It is easy to see that W(Ls,¢1)(R?) C L,(RY) for all 1 < p < oo.
The closed subspace of W (L, £1)(R?) containing continuous functions
is denoted by W (C, £,)(R%) and is called Wiener algebra. It is used quite
often in Gabor analysis, because it provides a convenient and general
class of windows (see e.g. Grochenig [7]). It turned out in Feichtinger
and Weisz [4, 5] that it can be well applied in summability theory, too.

3. O-summability of Fourier series

We will consider the 6-summation defined by a multi-parameter
sequence. Let

(1) 0 = (0(k,n),k € Z%,n € N*)
be a 2d-parameter sequence of real numbers satisfying

2)  000,...0,n) =1, lim 0(k,n) =1 (0(k,n))sens € 0y

n—o0

for each n € N, Recall that for a distribution f € &'(T?) the nth Fourier
coefficient is defined by f(n) := f(e™%) (n € Z%,1 = /—1). In special
case, if f € Li(T%) then

. 1 ot
f(n):W/Td fe™tdt (n€Z%).
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The §-means of a distribution f € S'(T¢) are defined by

@
D SR Sy re =

ki=—o0 kg=—o0
(r € T4, n € N%), where KY denotes the §-kernel

i f: O(—k,n)e™? (t € T9).

ki=—o0 kg=—o0

Observe that (2) ensures that K? € Li(T).
We can also define a f-summation by one single function 6 defined
on R?. In this case we define the sequence in (1) by

8(k,n) == 9(7]2 S—Z) (k € Z¢,n € N9).

If 9( )y=1and 0 € W(C, 61)( 4) then (2) is satisﬁed because

Z Z ‘ ( Lo >‘ Z Z <Hn]> sup |0(z+1)|=

ki=—o0 kg=—o00 li=—0c0 lg=—0c0 j=1 E[O 1

=(Hmwmmw<w
j=1

The Fourier transform of f € Li(R?) is given by
f(x) = / f(t)e 2@t dt (z € RY).
R4

If  is a function and 6§ € L1 (R?) then

(4) (Hn]) Flo — DBty .. nata) dt

for all z € T¢ n € N? and f € L,(T?), where f is extended periodically
to R? (see Feichtinger and Weisz [4]).

4. Hardy—-Littlewood inequality and cone-like sets

Suppose that for all j = 2,...,d, v; : Ry — R, are strictly in-
creasing and continuous functions such that v;(1) = 1, lim., 7; = oo and
lim;o7; = 0. Moreover, suppose that there exist ¢; 1, cj2,§ > 1 such that

(5) cj1yj(x) < v(€x) < ¢oyi(x) (x> 0).
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Note that this is satisfied if v; is a power function. For convenience
we extend the notations for j = 1 by v3 := 7 and ¢1; = 12 = &.
Here Z denotes the identity function Z(z) = x. Let v = (71,...,%a)
and 7 = (7q,...,7q) with 74 = 1 and fixed 7; > 1 (j = 2,...,d). We
will investigate the Hardy—Littlewood maximal operator and later the
maximal operator of the f-summation over a cone-like set (with respect
to the first dimension)

6) R :={zeR]:7'v(m)<n; <7y(m),j=2,....d}.

If each ; is the identity, j = 2,...,d, then we get the cone defined by 7.
The condition on 7; seems to be natural, because Gat [6] proved in the
two-dimensional case that to each cone-like set with respect to the first
dimension there exists a larger cone-like set with respect to the second
dimension and reversely, if and only if (5) holds.

Llee(T4) (1 < p < 00) denotes the space of measurable functions f
for which |f|? is locally integrable, resp. f is locally bounded if p = oo.
In [15] we have introduced the Hardy-Littlewood maximal function on a
cone-like set by

T,y N i/ p )1/p d
Mp f(I) ' xEI,(Il?ljl,pld)GRﬁw(|[| I |f| A (I <t )
with the usual modification for p = oo, where f € L!°¢(T9) and the
supremum is taken over all rectangles I := I; x --- x I; C T? with
sides parallel to the axes. Taking the supremum over rectangles with
\L;| = v(lh]),] = 2,...,d, le. 75 =1,j=1,...,d), we obtain the
maximal operator M. The inequality
M)f < MJYf < COM)f

was shown in Weisz [15]. In case p = 1 we write simply M7 and M7.
If each «; is the identity function then we get back the classical Hardy—
Littlewood maximal function defined on a cone. The following theorem
was proved in [15].
Theorem 1. The mazimal operator M} (1 < p < o0) is of weak type
(p,p), i.e.

M7 fllpoc = sup PADMG > )P <Gl fll, (f € Ly(TY).

Moreover, if 1 < p<r < oo then
MY flle < Collflle (f € Le(TY).
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Since the set of continuous functions are dense in L (T%), the usual
density argument due to Marcinkiewicz and Zygmund [9] implies

Corollary 1. If f € Ll(’]I'd) then

,,,,,

u |—0,5=1,...,

5. Herz spaces

The E,(R?) (1 < g < 00) spaces were used recently by Feichtinger
and Weisz [5] in the summability theory of Fourier transforms. A function
belongs to the (homogeneous) Herz space E,(RY) (1 < q < o0) if

1£llE, =) 2M07 VD f1 g cpagi-tng o <2imyllg < 00.
k=—o00
Here we introduce a generalization of the E,(R?) spaces depending
on the function v (see [15]). A function f € LY*(R?) is in the space
EIRY) (1< q<o0)if

d

7 NEESS (IT)” 11l <

k=—o00

where £ and ~; are defined in (5) and

d d

P, = H ( 7 (€5, y;(€ ) \H ( ) vj(gk_l)ﬂ) (keZ).
j=1

Ifyj=Zforallj=1,...,d and 5 = 2 then we get back the original

spaces E,(R?). However, it is easy to see that the spaces are equivalent

for all £ > 1, whenever each «; is the identity function. If we modify the

definition of Py,

P,ézﬁ( v, (€M), (& )\H( Y, ;€ )ﬂTd (keZ),

j=1
then we get the definition of the space E;](']I‘d). This means that we
have to take the sum in (7) for k£ < 0, only, because ~;(1) = 1 for all
j=1,...,d. Observe that

Pl ~TLue e
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Indeed,
d
v (€
il = <H” ”)(: gl )
and . .
0—%(5 ) < (€M) < —;(€Y)
7,2 QLI

because of (5). Thus

a d  q
2o ([Toie) (- T1.4) = = oo (Te) (-1 )
This 1mphes easily that

Li(XY) = B} (X?) «= E)(X?) «= E}(X?) «= EL(XY) (1<q<q <o),

where X denotes either R or T. Moreover,

(8) EJ(T?) < Ly(T?) (1 <g¢<o0)
Indeed, we have
1 1
B(E) € (e <<
G Cja

and

0 d L\ 1-1/a
Il < 30 (TTw€d) Il <

k=—o0 j=1
0 d
1 \IkI(1=1/q)
<> (II-) 1£10.lly < Cyll £l
k=—o0 j=1 7

6. Convergence of the 8-means of Fourier transforms

For a given 7, ~ satisfying the above conditions the restricted maz-
imal 0-operator are defined by

of = sup |of].
nerd
Ifyj=Zforall j =2,...,dthen we get a cone. This case was considered

in Marcinkiewicz and Zygmund [9, 17] and more recently by the author
[14]. Obviously, o f — f in Li- or C-norm if and only if the numbers
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|K7||1 are uniformly bounded (n € RY ). In [4, 15] we have proved if §

is a function then this condition is equivalent to 6 € Li(RY).
Here we consider the pointwise convergence of the #-means. In the
one-dimensional case Alexits [1] and Torchinsky [12] proved that if there

exists an even function n such that 7 is non-increasing on R, , |§| <,
n € Li(R) then the maximal operator of the #-means is of weak type

(1,1). This condition is equivalent to b c E(R) (see [5]). Now we
generalize this theorem as follows.

Theorem 2. Let 0 satisfy (2), 1 <p<ooand1/p+1/q=1. If
(9) Sup 1K g3y < C,

nER

then
afoyf§0< sup ||K ||E"/(Td> M f a.e.

neRY,
for all f € L,(T?).
Proof. By (3)
27T

0% f(x) \_ dz( |K°(t) |th) (/ \fx—t\pdt) p.

It is easy to see that if

(x—t)K°(t) dt‘ Gy Z/|f (z—t)||KC(t)] dt.

=1,...

then eru)
u T Px U d
[, = (OO R
Therefore
otr@l<e 3 ([ 1) Gouen, .. <
k=—00
/p /q
<oy (Hw(&k))l ([ tenear)” vz pie) =
k=—oo  j=1 I

= O 20y M f ()
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which shows the theorem. ¢
Note that (2) implies K € Loo(T?) C Ly(T%) C E)(T%) for all
n € N¢, Th. 1 implies immediately
Theorem 3. Let 0 satisfy (2), 1 <p<ooand1/p+1/q=1. If
sup || K || grey < C,

nerd
then
0% fllpoo < Co sup [ 3en ) I1flly (€ Ly(T).

nerd
Moreover, for every p < r < oo
19941l < € sup IKSggen ) If e (F € Le(T))
€RY

n

These inequalities and the usual density theorem due to Marcinkie-
wicz—Zygmund [9] imply
Corollary 2. Let 0 satisfy (2), 1 <p<ooand1/p+1/q=1. If
sup || K|l gy pey < C,

nerg

then

lim olf=f a.e.
n—oo,n€RY

for all f € L,(T%) whenever 1 < p < oo and for all f € C(T?) whenever

p = 00.

_ In case the summability method is defined by a function 6 and

0 € EJ(R?) then the preceding theorems hold.

Theorem 4. Suppose that c¢; = c;1 = ¢ for all 5 = 1,...,d. Let

0 W(C,0)(RY), 1<p<ocoandl/p+1/qg=1. Iff € EJ(R?) then
of < OO ey M7 f  ace

for all f € L,(T?).

Proof. Since by (4)

0 . v 0 _
@) = o [ Fla = DI
d
= (H@) - f(LL’ — T,)/H\(nltl, . ,ndtd) dt,

we can see that
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(Hn]) Z (ny(ty + 21m), . .., na(ta + 27qm)).

JEZA

We will prove that 8 € E7(R?) implies

(10) KD g ray < CollOllpgay  forall  neRE
Since n € Rﬁy we have 7, 'y;(n1) < n; < 75y;(ng) for all j = 1,...,d.

For the term j = 0 of the norm we observe by (6) that

' (f[nj)@(nltl, . nata)
20: (]i[vj )1 v Hn] </ O(nit, .. ndtd)|th) "

E”(Td)

k=—oc0 j=1
0 d 1-1/q d 1 1/q 1/q
<, 3 (TTwe)) (H% (m)) (/ 0t .. |th) ,
k=—oc0 j=1 =1
where

ﬁ( 7573(1 VJ(fk)W’Tﬂj(”l)%‘(fk)ﬁ)\

J=1

d
VIT (=77 ) (), 757 )65 ).
j=1
Suppose that &1 < ny < € for some [ € N. Then by (5),
=€) < i) <580 = ¢
We can choose r,s € N such that Tj/C; < 1 and cj/Tj > 1 for all
j=1,...,d. This and (5) imply that
T' '8 T
7575(n1)7; (6%) < 7595 (€75 (€F) = Ti¢i;(€%) = C—i%(ﬁkwr ) < (M)
J
and1 .
=5 (na) (€571 = = (€)Y =
Tj Tj

1, _ C; e e
= =T () = Ly (€T 2 (6,
7j 7j

If
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d d

Qk,l _ H( i (€k+l+r)ﬂ_’ %’(fkﬂw)ﬂ) \ H(_7j (€k+l—s—2)ﬂ_’ i (€k+l—s—2)ﬂ_)’

j=1 7j=1

<

(H nj) (nltl, P ,ndtd)
1 Eq(T?)

z(n V() ([, o)

k=—oc0 j=1 kil
d 1-1/q 1-1/q
Z (ch-i-l) (H% ghH=s- 1) y
k=—o0
k+l+r 1/q
< > / 0(ty, ...t |th) <
i=k+l—s—1

k+l+r d

<0, Z > (Hng’ /q /|9t1,... |th) qg

k=—o0 i=k+l—s—1 j=1

l+r
< C, Z(H% ' ll/q /|9t1,... |th> /qg

1=—00

< Cq||9||Eg(Rd)-

Moreover,

H(Hm) Z nl(tl + 251m),. d(td—l—dew))‘

JEZd J#0 E(T9
0 1/q , 8
Z(Hw 9) ()
k=—o00 Jj=1
—~ g 1/q
X (/ ‘ Z H(nl(tl+2j17r),...,nd(td+2jd7r))‘ dt) <
P jeza,j20

0 d

<Z(H®1”Wﬁm%

k=—o00
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q 1/q
(/ Z 9 72,1 tl +2j1ﬂ') d(td+2jdﬂ'))‘ dt) S

JEZA 540

Hn (/} Z 9n1 (1 + 2j170), . d(td+2jdw))}th)l/q.

JEZA 5

Let
Ri:={j€Z%:§#0,n(T+257) x ... x ng(T + 2jgm) N P; # 0}.

Since

4 1 1 _
In;(t; + 25;m)| = —7;(na)m > —;(¢ N =
Tj Tj
1, cj l—s—1 l—s—1
- T_jcj = T—j%'(f ) > 75§ ),
we conclude
H(Hn]) 0(ny(ty + 217), . d(td+2jd7r))’ o <
€740 q (T4)
g \/4
<C’ Hnj < Z > " 0(ny (t+2j17), d(td+2jd7r))’ dt) <
=(l—s)VOjER;

1/q
q
(t1+2j17r),...,nd(td+2jd7r))‘ dt) .

<C, i (f[@( 3

i=(l—s)v0 j=1

Since R; has at most C' H;l:l %f) members, we get that

(12) | (f[nj) jezdzj¢o§(nl(tl 24, malta+ 250m)| <
<c 3 (I)(S ()
(I—s)vo  j=1 : jeRi m=1 'm

N 1/q
Bty + 20u7), . malta + 2jam))|" dt) <
']Td

<c & (ITwe) ™ (Iw) (2 (1T

jERi m=1
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~

1/q
x/ \9(t1,...,td)|th) <
n1 (T4+2517) X ... xng(T+2547)

1/q

¢, 3 (TTwe) ™ ([ o o) <

which proves (10). The theorem follows from Th. 2. ¢
Theorem 5. Let § € W(C,4)(R?), 1 <p<ooand 1/p+1/qg=1. If
0 € EY(R?), then

105 fllp.co < CollOllggma I, (f € Ly(T)).
Moreover, for every p <r < oo

lo2f 1l < Clll gy a1l (f € Lo(TY)).

Corollary 3. Let § € W(C, £;)(RY), 0(0) = 1, 1 < p < oo and
1/p+1/q=1. If € E}(R?), then

lim o’f=f oae
n—oo,n€RY

for all f € L,(T%) whenever 1 < p < oo and for all f € C(T%) whenever
p = 00.

If f e L,(T% (1 <p < 2) implies the a.e. convergence of Cor. 2,
then of is bounded from L,(T?) to Ly, «(T%), as in Th. 3 (see Stein [10]).
The partial converse of Th. 2 is given in the next result. More exactly,
if af/f can be estimated pointwise by M7 f, then (9) holds.

Theorem 6. Let 0 satisfy (2), 1 <p < oo and 1/p+1/q=1. Suppose
that

(13) ol f(x) < CM;Y f(x)
for all x € T¢ and for all f € L,(T?). Then

nerd

Proof. Let us define the space D} (T%) (1 < p < oo) by the norm

1 1/p
(14)  [[fllpy(rey :== sup (7/ |f|pd)\) .
0<r<t \ T, % () JTI (s rmns ()
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Observe that the norm
d
e /P
(15) 171 = swp (TT5(€9) " lrll

is an equivalent norm on DJ(T?). Indeed, choosing r = &* (k < 0) we
conclude || f[l. < C||f[lpy. On the other hand, if £"~! < < £ for some

n < 0 then
1

T15_,7i(r) /11?_1<—w (r); (r))
d —1
s([lw@“ﬁ) / [P dX =
j=1 (=5 (€M) (E)m)

) <.ﬁ”’(fn_l>)_l S [ irans

k=—o00 ¥ Lk

|fIPdX <

d L d
< (ITwe ) X (TIue) e
j=1 k=—o00 j=1
Note that . . .
7€) < 77j(£k+1) << (€ and (€0 > (€.
5,1 €1 Gj.2
Hence

n d

d
1 / 1 \n—k
raxs ([Tee) S (I1-) Ik <
[T (= () () H 2) 2 ch,l

d d
'Yj(r) j=1 k=—oc0 j=1
=1

j
< CIIfIIE,
or, in other words || f||pyrey < C||f]l+. Choosing r = 1 we can see that
D)(T?) C Ly(T%) and || fll, < C|fllpyere). Taking the supremums in
(14) and (15) for all 0 < r < 0o and k € Z then we obtain the space
D} (RY).
It is easy to see by (15) that

(16) sup

<1
HfHD;/(Td)_

y (—t)K5(8) dt| = | Kl g ra)-

There exists a function f € D)(T%) with || f||py <1 such that
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K| v ira
&l [ rnE dt].
2 Td

Since f € L,(R?), by (13),
o) = | [ Rl @ <cMpre)  nersy).

which implies
10| 27 pay < CM7 f(0) < CM)F(0) < O fllpy < C.
This proves the result. ¢
Note that the norm of D} (T¢) in (14) is equivalent to

1 1/p
||f“ = sup ( i / ‘f|1”d)\) .
re(0,1)4,reRd szl Tj JIIj=y (—rymrim)

We will characterize the points of convergence. To this end we
generalize the concept of Lebesgue points. By Cor. 1,

1
lm ] /f(:z +u)du = f(x) for a.e. x € T,
Y 1

0€I,(|I1 ...,/ I ER
11;1-0,5=1,....d

where f € Li¢(T9). A point x € T? is called a p-Lebesgue point (or a
Lebesgue point of order p) of f € L¢(T?) if

1 1/10
li — — Pd =
im S%(|[|/I|f(z+u) f(z)] u) 0 (1<p< )

0€L,(|Iq ], Ig])€
|1;1=0,5=1,...,
resp.
lim suplf(atu)— f@)] =0 (p=c0).
0€l,(| )5 | IgNERS o wel

11;1-0,5=1,....d

One can see that this definition is equivalent to

1 1/p
1im<d7/ |f(:)3+u)—f(:c)|pdu) =0 (1<p< )
rON T2y v (r) I, (v () ()
resp. to

g s @0 - J@] =0 (=)

w€l 1)y (=5 (r)m v (r)m)

Usually the 1-Lebesgue points are considered in the case if each v; is the
identity function (cf. Stein and Weiss [11] or Butzer and Nessel [3]). One
can show in the usual way that almost every point x € T is a p-Lebesgue
point of f € L,(T%) if 1 < p < oo. x € T? is an co-Lebesgue point of
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f € L'¢(T9) if and only if f is continuous at x. Moreover, all r-Lebesgue
points are p-Lebesgue points, whenever p < r.
The next theorem generalizes Lebesgue’s theorem.

Theorem 7. Let 0 satisfy (2), 1 <p<oo, 1/p+1/¢g=1 and

Sup ||K ||E"/(Td <C
neRY

If for all o > 0
(17) lim KL 2, ra(—s5.8)0) = O,

n—oo,n€RE

then
lim o) f(z) = f(2)

n—oo,n€RY
for all p-Lebesgue points of f € L,(T?).
Proof. Now denote by

Gl = ( /| LR f<x>\pdt)l/p (ueR,).

Since x is a p-Lebesgue point of f, for all ¢ > 0 there exists m € Z,
m < 0 such that

Gn(r)m, ..., yalr)m)

18 0<r<gm.
" (mewm)” .
Note that

@) = 10) = o [ (e =0 = F@)KiO
Thus
@)= ) < C [ 1f@=0) = Fa)lIKLe)] e =

—<f. o= t) — F@) K20 e
(=5 (€™)m,7;(€7))

cf Fle=t)—F @K dt =
TATG_, (=5 (E™)m,; (€m))

= AQ([L’) + Al ([L’)
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We estimate Ag(z) by

3

=

f( zora) ([ e -0~ swra) <
e,

Then, by (18),

m d 1/p 1/q
=0 3 (TTuen) ([ Imtorar) - < Cellgm,
k=—oc0 j=1 k

There exists § > 0 such that (—d,6)¢ C H?Zl(—vj(fm)ﬂ,vj(fm)ﬂ).
Then

flo =) = f)l| K1) dt <

| /\

1/q
KO dt) G (€M), . (€I,

M) <C / F(e— 1) — f(@)||[KS(0)] dt <
T4\ (—6,6)¢

0/ nig 20\ 9
<o, i) s, 1)

which tends to 0 as n — oo,n € Rﬁﬁ. This completes the proof of the

theorem. ¢
d
Observe that (8) and (—d",0")% C [T (—;(&%)m,~;(E%)m) C (=46, 0)?
j=1
imply

(19) HK HE” (T9\(-4,6)4 < HK HL (Td\l_[ 1 (=5 (€F)m v (€F)m)) <

< (z K ) "

I=k+17 11
0 d L\ , 1/q
<ar S (TIwen) ([ imtiorar) "<
I=k+1 j=1 B
0
< Goll Kl gy a1, (v ek ym s ey <
< Csll KN gy (v (—o.57)) -
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Condition (17) is trivially equivalent to
. 0 -
i Il oy o 6m s eym = O

n—oo,n€RY

and hence to
lim | K}l gy -sa0) = 0.

n—oo,n€RZ

In case 0 € E7(R?) we can formulate a little bit simpler version of
the preceding theorem.

Theorem 8. Suppose that c¢; = cj1 = ¢ for all 5 = 1,...,d. Let
0 e W(C,)(RY), 0(0)=1,0 € E}(RY), 1 <p<ocoandl/p+1/q=1.

Then
lim  o"f(x) = f(x)

n—oo,n€RY

for all p-Lebesgue points of f € L,(T?).
Proof. By (10) the first condition of Th. 7 is satisfied. On the other

hand, let
d

H(_’yj(gko)ﬁf}/j(gko)ﬂ-) - (_57 5)d> TJ'/C; < 17 C;/Tj >1

j=1
and ¢! < ny < € as in the proof of Th. 4. Obviously, if n — co,n € Riy
then [ — co. We get similarly to (11) and (12) that

||Kz||Eg(1rd\(_5,5)d) <

0o d
<c, Y (IIwe) /|9t1,... )

i=ko+l—s—1  j=1

9] d /q
w0 30 (TDue) ™" ([ e vaprar) ™,

i=(-s)v0 j=1
which tends to 0 as n — oo,n € RY_, since g E7(R?). Then (17)
follows by (19), which finishes the proof of our theorem. ¢
Since each point of continuity is a p-Lebesgue point, we have

Corollary 4. If the conditions of Th. 7 or Th. 8 are satisfied and if
f € Li(T%) is continuous at a point x, then

lim | olf(a) = f(z).

n—oo,n€RZ

The converse of Th. 7 holds also.
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Theorem 9. Suppose that 1 < p < oo, 1/p+1/qg=1 and (2) and (17)
hold. If

lim o, f(z) = f(x)

n—oo,n€RY
for all p-Lebesgue points of f € L,(T?), then
sup IIKfQIIE;(m <C.

nerg

Proof. The space D°(T?) consists of all functions f € D7(T?) for which
f(0) =0 and 0 is a p-Lebesgue point of f, in other words

1 1/10
lim(dif |f(u)\pdu) _0
TN T2 % (r) I, (v )y ()

with the usual modification for p = oco. We can easily show that D;,”O(Td)
is a Banach space. We get from the conditions of the theorem that
lim  o%f(0)=0 forall feDI(T.

n—o0,n€RY
Thus the operators
U, : DI°(TY) = R, Unf :=00f(0) (neRL)
are uniformly bounded by the Banach—Steinhaus theorem. Observe that
in (16) we may suppose that f is 0 in a neighborhood of 0. Then

C = ||Unll =

—  sup (—)K° (1) dt) —

d

1710y <1 T
= sup

<1

”f”D;(Td)_

(—t)K?(¢) dt) -

Td
= || K3l g (o)

for all n e RY,. O
Corollary 5. Suppose that 1 <p < oo, 1/p+1/q=1 and (2) and (17)

holds. Then
lim  op f(z) = f(x)

n—oo,n€RY
for all p-Lebesgue points of f € L,(T?) if and only if
sup ||K3||E3(Td) < C.

nerd

A one-dimensional version of this theorem can be found in the book
of Alexits [1].
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7. Some summability methods

In this section we consider some summability methods as special
cases of the f-summation. The details can be found in [15]. Note that
¢ = oo is the most important case in the results of Sec. 6. Let v;(éx) =
= &“y;(x) (x> 0) and wy = 1.

Example 1 ((C,a) or Cesaro summation). Let d = 1 and

Agflf\k\ : < _
0k, n) = I if |[k| <n -1,
0 if |[k| >n

for some 0 < o < oo, where
T <k+a):(oz+1)(oz+2)...(oz+k)20(ka) (heN).

k k!
The Cesaro means are given by
n—1
1 (6% R IRT
sz(x) = o Z An—l—\k|f(k)ek :
n=1 g n41
In case a = 1 we get the Fejér means, i.e.
n—1 n—1
EIN 20y e L
afw = Y (1) e = 13 g f)
k=—n+1 k=0

It is known that the kernel functions satisfy
|K?(u)| < Cmin(n,n " *u*"") (neN, u#0)
(see Zygmund [17]). It is easy to see that (9) and (17) holds as well as
all theorems of this paper.
Example 2 (Riesz summation). Let

HW%Z{O—MWQiHﬂSL @ € RY,

0 if |z| > 1
Then
0(z)] < Cla[~22712 (x #£0).
If
Zc'l—l wi d 1
(20) jT—i—§<Oé<OO forallz:l,,d,

then 6 € EY(R?). Here | - | denotes the Euclidean norm.



Herz spaces and pointwise summability of Fourier series 255

Note that for cones, i.e. w; =1, 7 =1,...,d, we get the well known
parameter (d—1)/2 on the left hand side of (20). In case d = 2 we obtain
the condition (1/wy —1/2) V (w2 — 1/2) < o < 0.

Example 3 (Weierstrass summation). If §(z) = e " (z € RY),
then 6(z) = e~2"=* and § € E2(RY).

Example 4. If §(z) = e=>"7 (z € RY) then 8(z) = cq/(1 + |[2)@+D/2,
Suppose that wg < wj; for all j =2,...,d. If wg <1 and Z?_l w; < dwg

or if wy > 1 and 2?22 w; < d then b EY(RY). If d = 2 then we obtain
1/2 <wy < 2.
Example 5 (Picard and Bessel summation). In case
O(z) =1/(1+ o)V (2 eRY)
we have 5(:,;) = cge 7l and § € EY(RY).
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